Microwave-Assisted Synthesis of 5′-O-methacryloylcytidine Using the Immobilized Lipase Novozym 435
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instrumentation
2.1.1. Chemicals
2.1.2. Instrumentation
2.2. Enzymatic Transesterification
2.2.1. Conventional Heating
2.2.2. Microwave Irradiation
2.2.3. Choice of Substrate
2.2.4. Effect of Enzyme Concentration
2.2.5. Effect of Reaction Temperature and Reaction Time
2.2.6. Effect of Molar Ratio
2.2.7. Recyclability
3. Results and Discussion
3.1. Synthesis Approach and Regioselectivity
3.2. Choice of Substrate
3.3. Enzyme Concentration
3.4. Effect of Reaction Temperature
3.5. Effect of Reaction Time
3.6. Effect of Molar Ratio
3.7. Recyclability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Li, Q.; Li, Z. Molecular Packing: Another Key Point for the Performance of Organic and Polymeric Optoelectronic Materials. Acc. Chem. Res. 2020, 53, 962–973. [Google Scholar] [CrossRef] [PubMed]
- Medhekar, N.V.; Ramasubramaniam, A.; Ruoff, R.S.; Shenoy, V.B. Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties. ACS Nano 2010, 4, 2300–2306. [Google Scholar] [CrossRef]
- Jiang, F.; Cui, S.; Song, N.; Shi, L.; Ding, P. Hydrogen Bond-Regulated Boron Nitride Network Structures for Improved Thermal Conductive Property of Polyamide-imide Composites. ACS Appl. Mater. Interfaces 2018, 10, 16812–16821. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Luo, L.B.; Huang, J.; Li, K.; Li, B.; Wang, H.; Liu, X. Effect of molecular rigidity and hydrogen bond interaction on mechanical properties of polyimide fibers. J. Appl. Polym. Sci. 2016, 133, 43677. [Google Scholar] [CrossRef]
- McHale, R.; O’Reilly, R.K. Nucleobase Containing Synthetic Polymers: Advancing Biomimicry via Controlled Synthesis and Self-Assembly. Macromolecules 2012, 45, 7665–7675. [Google Scholar] [CrossRef]
- Lutz, J.-F.; Thünemann, A.F.; Rurack, K. DNA-like “Melting” of Adenine- and Thymine-Functionalized Synthetic Copolymers. Macromolecules 2005, 38, 8124–8126. [Google Scholar] [CrossRef]
- Moukha-chafiq, O.; Reynolds, R.C.; Wilson, J.C.; Snowden, T.S. Parallel Solution Phase Synthesis and Preliminary Biological Activity of a 5′-Substituted Cytidine Analog Library. ACS Comb. Sci. 2019, 21, 628–634. [Google Scholar] [CrossRef]
- Dyba, M.; da Silva, B.; Coia, H.; Hou, Y.; Noguchi, S.; Pan, J.; Berry, D.; Creswell, K.; Krzeminski, J.; Desai, D.; et al. Monoclonal Antibodies for the Detection of a Specific Cyclic DNA Adduct Derived from ω-6 Polyunsaturated Fatty Acids. Chem. Res. Toxicol. 2018, 31, 772–783. [Google Scholar] [CrossRef]
- Conway, L.P.; Delley, R.J.; Neville, J.; Freeman, G.R.; Maple, H.J.; Chan, V.; Hall, A.J.; Hodgson, D.R.W. The aqueous N-phosphorylation and N-thiophosphorylation of aminonucleosides. RSC Adv. 2014, 4, 38663. [Google Scholar] [CrossRef] [Green Version]
- Kröger, A.P.P.; Komil, M.I.; Hamelmann, N.M.; Juan, A.; Stenzel, M.H.; Paulusse, J.M.J. Glucose Single-Chain Polymer Nanoparticles for Cellular Targeting. ACS Macro Lett. 2019, 8, 95–101. [Google Scholar] [CrossRef]
- García, J.; Fernández, S.; Ferrero, M.; Sanghvi, Y.S.; Gotor, V. A mild, efficient and regioselective enzymatic procedure for 5’-O-benzoylation of 2’-deoxynucleosides. Tetrahedron Lett. 2004, 45, 1709–1712. [Google Scholar] [CrossRef]
- Ortiz, C.; Ferreira, M.L.; Barbosa, O.; dos Santos, J.C.S.; Rodrigues, R.C.; Berenguer-Murcia, Á.; Briand, L.E.; Fernandez-Lafuente, R. Novozym 435: The “perfect” lipase immobilized biocatalyst? Catal. Sci. Technol. 2019, 9, 2380–2420. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, P.; Bhunia, B. Industrial Application of Lipase: A Review. Biopharm J. 2015, 1, 41–47. [Google Scholar]
- Gandhi, N.N. Applications of lipase. J. Am. Oil Chem. Soc. 1997, 74, 621–634. [Google Scholar] [CrossRef]
- Stergiou, P.-Y.; Foukis, A.; Filippou, M.; Koukouritaki, M.; Parapouli, M.; Theodorou, L.G.; Hatziloukas, E.; Afendra, A.; Pandey, A.; Papamichael, E.M. Advances in lipase-catalyzed esterification reactions. Biotechnol. Adv. 2013, 31, 1846–1859. [Google Scholar] [CrossRef]
- Marsh, A.; Khan, A.; Haddleton, D.M.; Hannon, M.J. Atom Transfer Polymerization: Use of Uridine and Adenosine Derivatized Monomers and Initiators. Macromolecules 1999, 32, 8725–8731. [Google Scholar] [CrossRef]
- Tang, J.S.J.; Schade, K.; Tepper, L.; Chea, S.; Ziegler, G.; Rosencrantz, R.R. Optimization of the Microwave Assisted Glycosylamines Synthesis Based on a Statistical Design of Experiments Approach. Molecules 2020, 25, 5121. [Google Scholar] [CrossRef]
- Tang, J.S.J.; Rosencrantz, S.; Tepper, L.; Chea, S.; Klöpzig, S.; Krüger-Genge, A.; Storsberg, J.; Rosencrantz, R.R. Functional Glyco-Nanogels for Multivalent Interaction with Lectins. Molecules 2019, 24, 1865. [Google Scholar] [CrossRef] [Green Version]
- Calce, E.; Bugatti, V.; Vittoria, V.; Luca, S.D. Solvent-free synthesis of modified pectin compounds promoted by microwave irradiation. Molecules 2012, 17, 12234–12242. [Google Scholar] [CrossRef]
- Schmidlehner, M.; Kuhn, P.-S.; Hackl, C.M.; Roller, A.; Kandioller, W.; Keppler, B.K. Microwave-assisted synthesis of N-heterocycle-based organometallics. J. Organ. Chem. 2014, 772–773, 93–99. [Google Scholar] [CrossRef]
- Hassan, H.M.A.; Abdelsayed, V.; Khder, A.E.R.S.; AbouZeid, K.M.; Terner, J.; El-Shall, M.S.; Al-Resayes, S.I.; El-Azhary, A.A. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 2009, 19, 3832. [Google Scholar] [CrossRef]
- Kitchen, H.J.; Vallance, S.R.; Kennedy, J.L.; Tapia-Ruiz, N.; Carassiti, L.; Harrison, A.; Whittaker, A.G.; Drysdale, T.D.; Kingman, S.W.; Gregory, D.H. Modern microwave methods in solid-state inorganic materials chemistry: From fundamentals to manufacturing. Chem. Rev. 2014, 114, 1170–1206. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.L.; Tofteng, A.P.; Malik, L.; Jensen, K.J. Microwave heating in solid-phase peptide synthesis. Chem. Soc. Rev. 2012, 41, 1826–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokel, A.; Schäfer, C.; Török, B. Application of microwave-assisted heterogeneous catalysis in sustainable synthesis design. Green Chem. 2017, 19, 3729–3751. [Google Scholar] [CrossRef]
- Wiesbrock, F.; Hoogenboom, R.; Schubert, U.S. Microwave-Assisted Polymer Synthesis: State-of-the-Art and Future Perspectives. Macromol. Rapid Commun. 2004, 25, 1739–1764. [Google Scholar] [CrossRef]
- Pellis, A.; Guebitz, G.M.; Farmer, T.J. On the Effect of Microwave Energy on Lipase-Catalyzed Polycondensation Reactions. Molecules 2016, 21, 1245. [Google Scholar] [CrossRef] [Green Version]
- Delavault, A.; Ochs, K.; Gorte, O.; Syldatk, C.; Durand, E.; Ochsenreither, K. Microwave-Assisted One-Pot Lipid Extraction and Glycolipid Production from Oleaginous Yeast Saitozyma podzolica in Sugar Alcohol-Based Media. Molecules 2021, 26, 470. [Google Scholar] [CrossRef]
- Henze, M.; Merker, D.; Elling, L. Microwave-Assisted Synthesis of Glycoconjugates by Transgalactosylation with Recombinant Thermostable β-Glycosidase from Pyrococcus. Int. J. Mol. Sci. 2016, 17, 210. [Google Scholar] [CrossRef]
- Gelo-Pujic, M.; Guibé-Jampel, E.; Loupy, A.; Galema, S.A.; Mathé, D. Lipase-catalysed esterification of some a-D-glucopyranosides in dry media under focused microwave irradiation. J. Chem. Soc. Perkin Trans. 1 1996, 2777–2780. [Google Scholar] [CrossRef]
- Jeong, G.-T.; Byun, K.-Y.; Lee, W.-T.; Ryu, H.-W.; Sunwoo, C.; Kim, H.-S.; Park, D.-H. Enzymatic synthesis of sorbitan methacrylate: Comparison of methacrylic acid and vinyl methacrylate. Biochem. Eng. J. 2006, 29, 69–74. [Google Scholar] [CrossRef]
- Garcia, M.; Kempe, K.; Haddleton, D.M.; Khan, A.; Marsh, A. Templated polymerizations on solid supports mediated by complementary nucleoside interactions. Polym. Chem. 2015, 6, 1944–1951. [Google Scholar] [CrossRef] [Green Version]
- Yahya, A.R.M.; Anderson, W.A.; Moo-Young, M. Ester synthesis in lipase-catalyzed reactions. Enzyme Microb. Technol. 1998, 23, 438–450. [Google Scholar] [CrossRef]
- Li, X.-F.; Zong, M.-H.; Zhao, G.-L.; Yu, Y.-G.; Wu, H. Application of organic solvent system for lipase-catalyzed regioselective benzoylation of 1-β-D-arabinofuranosylcytosine. Biotechnol. Bioproc. Eng. 2010, 15, 608–613. [Google Scholar] [CrossRef]
- Ogawa, S.; Endo, A.; Kitahara, N.; Yamagishi, T.; Aoyagi, S.; Hara, S. Factors determining the reaction temperature of the solvent-free enzymatic synthesis of trehalose esters. Carbohydr. Res. 2019, 482, 107739. [Google Scholar] [CrossRef] [PubMed]
- Athawale, V.; Manjrekar, N.; Athawale, M. Lipase-catalyzed synthesis of geranyl methacrylate by transesterification: Study of reaction parameters. Tetrahedron Lett. 2002, 43, 4797–4800. [Google Scholar] [CrossRef]
- Sayed, M.; Gaber, Y.; Bornadel, A.; Pyo, S.-H. Multi-steps green process for synthesis of six-membered functional cyclic carbonate from trimethylolpropane by lipase catalyzed methacrylation and carbonation, and thermal cyclization. Biotechnol. Prog. 2016, 32, 83–88. [Google Scholar] [CrossRef]
- Puskas, J.E.; Chiang, C.K.; Sen, M.Y. Green Polymerization Methods: Renewable Starting Materials, Catalysis and Waste Reduction: Green Cationic Polymerizations and Polymer Functionalization for Biotechnology; Wiley-VCH Verlag: Weinheim, Germany, 2011; ISBN 3527326251. [Google Scholar]
- Mingos, M.P.; Baghurst, D.R. Applications of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry. Chem. Soc. Rev. 1991, 20, 1–47. [Google Scholar] [CrossRef]
- Park, D.-W.; Haam, S.; Ahn, I.-S.; Lee, T.G.; Kim, H.-S.; Kim, W.-S. Enzymatic esterification of β-methylglucoside with acrylic/methacrylic acid in organic solvents. J. Biotechnol. 2004, 107, 151–160. [Google Scholar] [CrossRef]
- Yadav, G.D.; Borkar, I.V. Kinetic and Mechanistic Investigation of Microwave-Assisted Lipase Catalyzed Synthesis of Citronellyl Acetate. Ind. Eng. Chem. Res. 2009, 48, 7915–7922. [Google Scholar] [CrossRef]
- Sharma, R. Enzyme Inhibition: Mechanisms and Scope. Enzym. Inhib. Bioapplications 2012, 3–36. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chea, S.; Nguyen, K.T.; Rosencrantz, R.R. Microwave-Assisted Synthesis of 5′-O-methacryloylcytidine Using the Immobilized Lipase Novozym 435. Molecules 2022, 27, 4112. https://doi.org/10.3390/molecules27134112
Chea S, Nguyen KT, Rosencrantz RR. Microwave-Assisted Synthesis of 5′-O-methacryloylcytidine Using the Immobilized Lipase Novozym 435. Molecules. 2022; 27(13):4112. https://doi.org/10.3390/molecules27134112
Chicago/Turabian StyleChea, Sany, Khac Toan Nguyen, and Ruben R. Rosencrantz. 2022. "Microwave-Assisted Synthesis of 5′-O-methacryloylcytidine Using the Immobilized Lipase Novozym 435" Molecules 27, no. 13: 4112. https://doi.org/10.3390/molecules27134112
APA StyleChea, S., Nguyen, K. T., & Rosencrantz, R. R. (2022). Microwave-Assisted Synthesis of 5′-O-methacryloylcytidine Using the Immobilized Lipase Novozym 435. Molecules, 27(13), 4112. https://doi.org/10.3390/molecules27134112