Contrasting Volatilomes of Livestock Dung Drive Preference of the Dung Beetle Bubas bison (Coleoptera: Scarabaeidae)
Abstract
:1. Introduction
2. Results
2.1. Behavioral Assay to Dung VOCs
2.2. Volatilome Profiling
2.2.1. Horse, Cattle, and Sheep Dung Volatilomes (from Pasture-Fed Animals)
2.2.2. Horse Dung from Animals Fed on Lucerne-Hay and Pasture
2.3. Electroantennogram Responses and Behavioral Assay with Chemical Compounds
3. Discussion
4. Materials and Methods
4.1. Beetle and Dung Collection
4.2. Olfactory Responses of B. bison to Dung Volatiles
4.3. Volatilome Analysis
4.3.1. Headspace Collection of Dung VOCs
4.3.2. GC–MS/QToF Analysis of Dung Volatilomes
4.3.3. Identification of VOCs
4.4. Electroantennogram Recordings of B. bison
4.5. Olfactory Responses of B. bison to Selected VOCs and Dung Spiked with Selected VOCs
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doube, B.M. Ecosystem services provided by dung beetles in Australia. Basic Appl. Ecol. 2018, 26, 35–49. [Google Scholar] [CrossRef]
- Nichols, E.; Spector, S.; Louzada, J.; Larsen, T.; Amezquita, S.; Favila, M.E. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 2008, 141, 1461–1474. [Google Scholar] [CrossRef]
- Ridsdill-Smith, T.J.; Edwards, P.B. Biological Control: Ecosystem Functions Provided by Dung Beetles. In Ecology and Evolution of Dung Beetles; Ridsdill-Smith, T.J., Simmons, L.W., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 245–266. ISBN 9781444333152. [Google Scholar]
- Scholtz, C.H.; Davis, A.L.V.; Kryger, U. Evolutionary Biology and Conservation of Dung Beetles; Pensoft: Sofia, Bulgaria, 2009; ISBN 9789546425171. [Google Scholar]
- Dormont, L.; Epinat, G.; Lumaret, J.-P. Trophic Preferences Mediated by Olfactory Cues in Dung Beetles Colonizing Cattle and Horse Dung. Environ. Èntomol. 2004, 33, 370–377. [Google Scholar] [CrossRef]
- Wurmitzer, C.; Blüthgen, N.; Krell, F.-T.; Maldonado, B.; Ocampo, F.; Müller, J.K.; Schmitt, T. Attraction of dung beetles to herbivore dung and synthetic compounds in a comparative field study. Chemoecology 2017, 27, 75–84. [Google Scholar] [CrossRef]
- Stavert, J.R.; Drayton, B.A.; Beggs, J.R.; Gaskett, A.C. The volatile organic compounds of introduced and native dung and carrion and their role in dung beetle foraging behaviour. Ecol. Èntomol. 2014, 39, 556–565. [Google Scholar] [CrossRef]
- Schmitt, T.; Krell, F.-T.; Linsenmair, K.E. Quinone mixture as attractant for necrophagous dung beetles specialized on dead millipedes. J. Chem. Ecol. 2004, 30, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Verdú, J.R.; Cortez, V.; Ortiz, A.J.; González-Rodríguez, E.; Martinez-Pinna, J.; Lumaret, J.-P.; Lobo, J.M.; Numa, C.; Sánchez-Piñero, F. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles. Sci. Rep. 2015, 5, 13912. [Google Scholar] [CrossRef] [Green Version]
- Gittings, T.; Giller, P.S. Resource quality and the colonisation and succession of coprophagous dung beetles. Ecography 1998, 21, 581–592. [Google Scholar] [CrossRef]
- Lumaret, J.-P.; Iborra, O. Separation of Trophic Niches by Dung Beetles (Coleoptera, Scarabaeoidea) in Overlapping Habitats. Pedobiologia 1996, 40, 392–404. [Google Scholar]
- Hanski, I. Nutritional Ecology of Dung-and Carrion-Feeding Insects. In Nutritional Ecology of Insects, Mites, and Spiders; Wiley: Hoboken, NJ, USA, 1987; pp. 837–884. [Google Scholar]
- Frank, K.; Brückner, A.; Hilpert, A.; Heethoff, M.; Blüthgen, N. Nutrient quality of vertebrate dung as a diet for dung beetles. Sci. Rep. 2017, 7, 12141. [Google Scholar] [CrossRef] [Green Version]
- Whipple, S.D.; Hoback, W.W. A Comparison of Dung Beetle (Coleoptera: Scarabaeidae) Attraction to Native and Exotic Mammal Dung. Environ. Èntomol. 2012, 41, 238–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finn, J.; Giller, P.S. Experimental investigations of colonisation by north temperate dung beetles of different types of domestic herbivore dung. Appl. Soil Ecol. 2002, 20, 1–13. [Google Scholar] [CrossRef]
- Martín-Piera, F.; Lobo, J.M. A Comparative Discussion of Trophic Preferences in Dung Beetle Communities. Misc. Zool. 1996, 19, 13–31. [Google Scholar]
- Dormont, L.; Rapior, S.; McKey, D.B.; Lumaret, J.-P. Influence of dung volatiles on the process of resource selection by coprophagous beetles. Chemoecology 2006, 17, 23–30. [Google Scholar] [CrossRef]
- Dormont, L.; Jay-Robert, P.; Bessière, J.-M.; Rapior, S.; Lumaret, J.-P. Innate olfactory preferences in dung beetles. J. Exp. Biol. 2010, 213, 3177–3186. [Google Scholar] [CrossRef] [Green Version]
- Frank, K.; Brückner, A.; Blüthgen, N.; Schmitt, T. In search of cues: Dung beetle attraction and the significance of volatile composition of dung. Chemoecology 2018, 28, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Aii, T.; Yonaga, M.; Tanaka, H. Changes in Headspace Volatiles of Feed in the Digestive Tracts of Cattle. Jpn. J. Grassl. Sci. 1980, 26, 223–230. [Google Scholar] [CrossRef]
- Inouchi, J.; Shibuya, T.; Hatanaka, T. Food Odor Responses of Single Antennal Olfactory Cells in the Japanese Dung Beetle, Geotrupes auratus (Coleoptera: Geotrupidae). Appl. Èntomol. Zoo. 1988, 23, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Sladecek, F.X.J.; Dötterl, S.; Schäffler, I.; Segar, S.T.; Konvicka, M. Succession of Dung-Inhabiting Beetles and Flies Reflects the Succession of Dung-Emitted Volatile Compounds. J. Chem. Ecol. 2021, 47, 433–443. [Google Scholar] [CrossRef]
- Marino, P.; Raguso, R.; Goffinet, B. The ecology and evolution of fly dispersed dung mosses (Family Splachnaceae): Manipulating insect behaviour through odour and visual cues. Symbiosis 2009, 47, 61–76. [Google Scholar] [CrossRef]
- Midgley, J.J.; White, J.D.M.; Johnson, S.; Bronner, G. Faecal mimicry by seeds ensures dispersal by dung beetles. Nat. Plants 2015, 1, 15141. [Google Scholar] [CrossRef]
- Magalhães, D.M.; Borges, M.; Laumann, R.A.; Woodcock, C.M.; Withall, D.M.; Pickett, J.A.; Birkett, M.A.; Blassioli-Moraes, M.C. Identification of Volatile Compounds Involved in Host Location by Anthonomus grandis (Coleoptera: Curculionidae). Front. Ecol. Evol. 2018, 6, 98. [Google Scholar] [CrossRef] [Green Version]
- Weithmann, S.; Von Hoermann, C.; Schmitt, T.; Steiger, S.; Ayasse, M. The Attraction of the Dung Beetle Anoplotrupes stercorosus (Coleoptera: Geotrupidae) to Volatiles from Vertebrate Cadavers. Insects 2020, 11, 476. [Google Scholar] [CrossRef]
- Marsili, R.T. Comparison of solid-phase microextraction and dynamic headspace methods for the gas chromatographic-mass spectrometric analysis of light-induced lipid oxidation products in milk. J. Chromatogr. Sci. 1999, 37, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Pokhrel, M.R.; Cairns, S.C.; Hemmings, Z.; Floate, K.D.; Andrew, N.R. A Review of Dung Beetle Introductions in the Antipodes and North America: Status, Opportunities, and Challenges. Environ. Èntomol. 2021, 50, 762–780. [Google Scholar] [CrossRef]
- Jones, A.G.; Forgie, S.A.; Scott, D.J.; Beggs, J.R. Generalist dung attraction response in a New Zealand dung beetle that evolved with an absence of mammalian herbivores. Ecol. Èntomol. 2012, 37, 124–133. [Google Scholar] [CrossRef]
- Inouchi, J.; Shibuya, T.; Matsuzaki, O.; Hatanaka, T. Distribution and fine structure of antennal olfactory sensilla in Japanese dung beetles, Geotrupes auratus Mtos. (Coleoptera: Geotrupidae) and Copris pecuarius Lew. (Coleoptera: Scarabaeidae). Int. J. Insect Morphol. Embryol. 1987, 16, 177–187. [Google Scholar] [CrossRef]
- Burger, B.V.; Munro, Z.; Brandt, W.F. Pheromones of the Scarabaeinae, II*. Composition of the Pheromone Disseminating Carrier Material Secreted by Male Dung Beetles of the Genus Kheper. Z. Naturforsch. Sect. C J. Biosci. 1990, 45, 863–872. [Google Scholar] [CrossRef] [Green Version]
- Burger, B.V.; Petersen, W.G.B.; Weber, W.G.; Munro, Z.M. Semiochemicals of the Scarabaeinae. VII: Identification and Synthesis of EAD-Active Constituents of Abdominal Sex Attracting Secretion of the Male Dung Beetle, Kheper subaeneus. J. Chem. Ecol. 2002, 28, 2527–2539. [Google Scholar] [CrossRef] [Green Version]
- Burger, B.V.; Petersen, W.G.B.; Tribe, G.D. Semiochemicals of the Scarabaeinae, IV*: Identification of an Attractant for the Dung Beetle Pachylomerus femoralis in the Abdominal Secretion of the Dung Beetle Kheper Lamarcki. Z. Fur Naturforsch. Sect. C J. Biosci. 1995, 50, 675–680. [Google Scholar] [CrossRef] [Green Version]
- Burger, B.; Petersen, W.; Ewig, B.; Neuhaus, J.; Tribe, G.; Spies, H.; Burger, W. Semiochemicals of the Scarabaeinae: VIII. Identification of active constituents of the abdominal sex-attracting secretion of the male dung beetle, Kheper bonellii, using gas chromatography with flame ionization and electroantennographic detection in parallel. J. Chromatogr. A 2008, 1186, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Burger, B.V.; Petersen, W.G.B. Semiochemicals of the Scarabaeinae: VI. Identification of EAD-active constituents of abdominal secretion of male dung beetle, Kheper nigroaeneus. J. Chem. Ecol. 2002, 28, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Burger, B.V.; Munro, Z.; Röth, M.; Spies, H.S.C.; Truter, V.; Tribe, G.D.; Crewe, R.M. Composition of the Heterogeneous Sex Attracting Secretion of the Dung Beetle, Kheper lamarcki. Z. Fur Naturforsch. Sect. C J. Biosci. 1983, 38, 848–855. [Google Scholar] [CrossRef]
- Sayers, T.D.J.; Steinbauer, M.; Farnier, K.; Miller, R.E. Dung mimicry in Typhonium (Araceae): Explaining floral trait and pollinator divergence in a widespread species complex and a rare sister species. Bot. J. Linn. Soc. 2020, 193, 375–401. [Google Scholar] [CrossRef]
- Kite, G. The floral odour of Arum maculatum. Biochem. Syst. Ecol. 1995, 23, 343–354. [Google Scholar] [CrossRef]
- Schiestl, F.P.; Dötterl, S. The Evolution of Floral Scent and Olfactory Preferences in Pollinators: Coevolution or Pre-Existing Bias? Evolution 2012, 66, 2042–2055. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.P. Assessing Nutritional Resources for Dung Beetles—Optimising Ecosystem Services. Ph.D. Thesis, University of New England, Armidale, NSW, Australia, 2019. [Google Scholar]
- Podskalská, H.; Ruzicka, J.; Hoskovec, M.; Šálek, M. Use of infochemicals to attract carrion beetles into pitfall traps. Èntomol. Exp. Appl. 2009, 132, 59–64. [Google Scholar] [CrossRef]
- Kalinová, B.; Podskalská, H.; Růžička, J.; Hoskovec, M. Irresistible bouquet of death—How are burying beetles (Coleoptera: Silphidae: Nicrophorus) attracted by carcasses. Naturwissenschaften 2009, 96, 889–899. [Google Scholar] [CrossRef]
- Badji, C.; Dorland, J.; Kheloul, L.; Bréard, D.; Richomme, P.; Kellouche, A.; de Souza, C.A.; Bezerra, A.; Anton, S. Behavioral and Antennal Responses of Tribolium confusum to Varronia globosa Essential Oil and Its Main Constituents: Perspective for Their Use as Repellent. Molecules 2021, 26, 4393. [Google Scholar] [CrossRef]
- Harvey, D.J.; Vuts, J.; Hooper, A.; Finch, P.; Woodcock, C.M.; Caulfield, J.C.; Kadej, M.; Smolis, A.; Withall, D.M.; Henshall, S.; et al. Environmentally vulnerable noble chafers exhibit unusual pheromone-mediated behaviour. PLoS ONE 2018, 13, e0206526. [Google Scholar] [CrossRef]
- Liu, C.-M.; Matsuyama, S.; Kainoh, Y. Synergistic Effects of Volatiles from Host-Infested Plants on Host-Searching Behavior in the Parasitoid Wasp Lytopylus rufipes (Hymenoptera: Braconidae). J. Chem. Ecol. 2019, 45, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Schröder, R.; Hilker, M. The Relevance of Background Odor in Resource Location by Insects: A Behavioral Approach. BioScience 2008, 58, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Togni, P.H.B.; Laumann, R.A.; Medeiros, M.A.; Sujii, E.R. Odour masking of tomato volatiles by coriander volatiles in host plant selection of Bemisia tabaci biotype B. Èntomol. Exp. Appl. 2010, 136, 164–173. [Google Scholar] [CrossRef]
- Edwards, P.; Wright, J.; Wilson, P. Introduced Dung Beetles in Australia: A Pocket Field Guide; Csiro Publishing: Clayton, Australia, 2015. [Google Scholar]
- Kirk, A.A. The biology of Bubas bison (L.) (Coleoptera: Scarabaeidae) in southern France and its potential for recycling dung in Australia. Bull. Èntomol. Res. 1983, 73, 129–136. [Google Scholar] [CrossRef]
- Kirk, A.A.; Wallace, M.M.H. Seasonal variations in numbers, biomass and breeding patterns of dung beettles [Coleoptera: Scarabaeidae] in Southern France. BioControl 1990, 35, 569–581. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A Generalization of the Retention Index System including Linear Temperature Programmed Gas-Liquid Partition Chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Pluskal, T.; Korf, A.; Smirnov, A.; Schmid, R.; Fallon, T.R.; Du, X.; Weng, J.-K. Chapter 7. Metabolomics Data Analysis Using MZmine. New Dev. Mass Spectrom 2020, 2020, 232–254. [Google Scholar] [CrossRef]
- Mueller, D.C.; Piller, M.; Niessner, R.; Scherer, M.; Scherer, G. Untargeted Metabolomic Profiling in Saliva of Smokers and Nonsmokers by a Validated GC-TOF-MS Method. J. Proteome Res. 2014, 13, 1602–1613. [Google Scholar] [CrossRef]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [Green Version]
- Korf, A.; Hammann, S.; Schmid, R.; Froning, M.; Hayen, H.; Cramp, L.J.E. Digging—A new data mining workflow for improved processing and interpretation of high resolution GC-Q-TOF MS data in archaeological research. Sci. Rep. 2020, 10, 767. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, A.; Qiu, Y.; Jia, W.; Walker, D.I.; Jones, D.P.; Du, X. ADAP-GC 4.0: Application of Clustering-Assisted Multivariate Curve Resolution to Spectral Deconvolution of Gas Chromatography–Mass Spectrometry Metabolomics Data. Anal. Chem. 2019, 91, 9069–9077. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Su, M.; Qiu, Y.; Jia, W.; Du, X. ADAP-GC 3.0: Improved Peak Detection and Deconvolution of Co-eluting Metabolites from GC/TOF-MS Data for Metabolomics Studies. Anal. Chem. 2016, 88, 8802–8811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfrommer, A.; Krell, F.-T. Who Steals the Eggs? Coprophanaeus Telamon (Erichson) Buries Decomposing Eggs in Western Amazonian Rain Forest (Coleoptera: Scarabaeidae). Coleopt. Bull. 2004, 58, 21–27. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perera, N.N.; Weston, P.A.; Barrow, R.A.; Weston, L.A.; Gurr, G.M. Contrasting Volatilomes of Livestock Dung Drive Preference of the Dung Beetle Bubas bison (Coleoptera: Scarabaeidae). Molecules 2022, 27, 4152. https://doi.org/10.3390/molecules27134152
Perera NN, Weston PA, Barrow RA, Weston LA, Gurr GM. Contrasting Volatilomes of Livestock Dung Drive Preference of the Dung Beetle Bubas bison (Coleoptera: Scarabaeidae). Molecules. 2022; 27(13):4152. https://doi.org/10.3390/molecules27134152
Chicago/Turabian StylePerera, Nisansala N., Paul A. Weston, Russell A. Barrow, Leslie A. Weston, and Geoff M. Gurr. 2022. "Contrasting Volatilomes of Livestock Dung Drive Preference of the Dung Beetle Bubas bison (Coleoptera: Scarabaeidae)" Molecules 27, no. 13: 4152. https://doi.org/10.3390/molecules27134152
APA StylePerera, N. N., Weston, P. A., Barrow, R. A., Weston, L. A., & Gurr, G. M. (2022). Contrasting Volatilomes of Livestock Dung Drive Preference of the Dung Beetle Bubas bison (Coleoptera: Scarabaeidae). Molecules, 27(13), 4152. https://doi.org/10.3390/molecules27134152