A Strategy for Identification and Structural Characterization of Compounds from Plantago asiatica L. by Liquid Chromatography-Mass Spectrometry Combined with Ion Mobility Spectrometry
Abstract
:1. Introduction
2. Result and Discussions
2.1. Application of AB-8 Resin Column Chromatography
2.2. Characterization of Compounds in PAL
2.2.1. Iridoids
2.2.2. Phenylethanoid Glycosides
2.2.3. Flavonoids
2.2.4. Guanidine Derivatives
2.2.5. Organic Acids
2.2.6. Fatty Acids
2.3. Ion Mobility Separation
2.3.1. The Difference between UHPLC-IM-MS and UHPLC-Q-TOF-MS
2.3.2. Ion Mobility Separation of a Group of Isomers
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of Samples Extract
3.3. UHPLC-Q-TOF-MSE and UHPLC-IM-MSE Conditions
3.4. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Samuelsen, A.B. The traditional uses, chemical constituents and biological activities of Plantago major L. A review. J Ethnopharmacol. 2000, 71, 1–21. [Google Scholar] [CrossRef]
- Ye, C.-L.; Jiang, C.-J. Optimization of extraction process of crude polysaccharides from Plantago asiatica L. by response surface methodology. Carbohydr. Polym. 2011, 84, 495–502. [Google Scholar] [CrossRef]
- Ramkumar, D.; Rao, S.S. Efficacy and safety of traditional medical therapies for chronic constipation: Systematic review. Am. J. Gastroenterol. 2005, 100, 936–971. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Qi, M.; Yang, Q.; Tong, R.; Wang, R.; Bligh, S.W.; Yang, L.; Wang, Z. Comprehensive metabolite profiling of Plantaginis Semen using ultra high performance liquid chromatography with electrospray ionization quadrupole time-of-flight tandem mass spectrometry coupled with elevated energy technique. J. Sep. Sci. 2016, 39, 1842–1852. [Google Scholar] [CrossRef]
- Gonçalves, S.; Romano, A. The medicinal potential of plants from the genus Plantago (Plantaginaceae). Ind. Crops Prod. 2016, 83, 213–226. [Google Scholar] [CrossRef]
- Zhu, M.Z.; Wu, W.; Jiao, L.L.; Yang, P.F.; Guo, M.Q. Analysis of Flavonoids in Lotus (Nelumbo nucifera) Leaves and Their Antioxidant Activity Using Macroporous Resin Chromatography Coupled with LC-MS/MS and Antioxidant Biochemical Assays. Molecules 2015, 20, 10553–10565. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, S.; Zhang, X.; Xing, J.; Liu, Z.; Song, F. A strategy for identification and structural characterization of compounds from Gardenia jasminoides by integrating macroporous resin column chromatography and liquid chromatography-tandem mass spectrometry combined with ion-mobility spectrometry. J. Chromatogr. A 2016, 1452, 47–57. [Google Scholar] [CrossRef]
- Lu, E.; Pi, Z.; Zheng, Z.; Liu, S.; Song, F.; Li, N.; Liu, Z. Rapid differentiation of aconiti kusnezoffii radix from different geographic origins using ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry. World J. Tradit. Chin. Med. 2021, 7, 71–77. [Google Scholar]
- Lu, J.; Wang, C.; Chen, D.; Wang, J.; Che, K.; Zhong, M.; Zhang, W.; Jiang, Z. Ultra-high-performance liquid chromatograph with triple-quadrupole mass spectrometer quantitation of twelve phenolic components in different parts of sarcandra glabra. World J. Tradit. Chin. Med. 2021, 7, 86–96. [Google Scholar]
- Qian, Y.; Xie, H.; Zuo, T.; Li, X.; Hu, Y.; Wang, H.; Gao, X.; Yang, W. Ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry and database-driven automatic peak annotation for the rapid profiling and characterization of the multicomponents from stephaniae tetrandrae radix (Fang-Ji). World J. Tradit. Chin. Med. 2021, 7, 120–134. [Google Scholar]
- Lee, M.S.; Kerns, E.H. LC/MS applications in drug development. Mass Spectrom. Rev. 1999, 18, 187–279. [Google Scholar] [CrossRef]
- Armenta, S.; Alcala, M.; Blanco, M. A review of recent, unconventional applications of ion mobility spectrometry (IMS). Anal. Chim. Acta 2011, 703, 114–123. [Google Scholar] [CrossRef]
- Feng, G.; Zheng, Y.; Sun, Y.; Liu, S.; Pi, Z.; Song, F.; Liu, Z. A targeted strategy for analyzing untargeted mass spectral data to identify lanostane-type triterpene acids in Poria cocos by integrating a scientific information system and liquid chromatography-tandem mass spectrometry combined with ion mobility spectrometry. Anal. Chim. Acta 2018, 1033, 87–99. [Google Scholar]
- Hofmann, J.; Hahm, H.S.; Seeberger, P.H.; Pagel, K. Identification of carbohydrate anomers using ion mobility-mass spectrometry. Nature 2015, 526, 241–244. [Google Scholar] [CrossRef]
- Harvey, S.R.; Macphee, C.E.; Barran, P.E. Ion mobility mass spectrometry for peptide analysis. Methods 2011, 54, 454–461. [Google Scholar] [CrossRef]
- Uetrecht, C.; Rose, R.J.; van Duijn, E.; Lorenzen, K.; Heck, A.J. Ion mobility mass spectrometry of proteins and protein assemblies. Chem. Soc. Rev. 2010, 39, 1633–1655. [Google Scholar] [CrossRef]
- Yang, M.; Sun, J.; Lu, Z.; Chen, G.; Guan, S.; Liu, X.; Jiang, B.; Ye, M.; Guo, D. Phytochemical analysis of traditional Chinese medicine using liquid chromatography coupled with mass spectrometry. J. Chromatogr. A 2009, 1216, 2045–2062. [Google Scholar] [CrossRef]
- Isailovic, D.; Kurulugama, R.T.; Plasencia, M.D.; Stokes, S.T.; Kyselova, Z.; Goldman, R.; Mechref, Y.; Novotny, M.V.; Clemmer, D.E. Profiling of human serum glycans associated with liver cancer and cirrhosis by IMS-MS. J. Proteome Res. 2008, 7, 1109–1117. [Google Scholar] [CrossRef] [Green Version]
- Rogoza, L.N.; Salakhutdinov, N.F.; Tolstikov, G.A. Polymethyleneamine alkaloids of animal origin. I. Metabolites of marine and microbial organisms. Bioorg. Khim. 2005, 31, 563–577. [Google Scholar]
- Khosravi-Darani, K.; Vasheghani-Farahani, E. Application of supercritical fluid extraction in biotechnology. Crit. Rev. Biotechnol. 2005, 25, 231–242. [Google Scholar] [CrossRef]
- Jia, G.; Lu, X. Enrichment and purification of madecassoside and asiaticoside from Centella asiatica extracts with macroporous resins. J. Chromatogr. A 2008, 1193, 136–141. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, R.; Zhao, Y.; Liu, C.Z. Separation of chlorogenic acid from honeysuckle crude extracts by macroporous resins. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 867, 253–258. [Google Scholar] [CrossRef]
- Fu, B.; Liu, J.; Li, H.; Li, L.; Lee, F.; Wang, X. The application of macroporous resins in the separation of licorice flavonoids and glycyrrhizic acid. J. Chromatogr. A 2005, 1089, 18–24. [Google Scholar] [CrossRef]
- Xi, L.; Mu, T.; Sun, H. Preparative purification of polyphenols from sweet potato (Ipomoea batatas L. ) leaves by AB-8 macroporous resins. Food Chem. 2015, 172, 166–174. [Google Scholar]
- Kucharska, A.Z.; Fecka, I. Identification of Iridoids in Edible Honeysuckle Berries (Lonicera caerulea L. var. kamtschatica Sevast.) by UPLC-ESI-qTOF-MS/MS. Molecules 2016, 21, 24. [Google Scholar]
- Zhou, T.; Liu, H.; Wen, J.; Fan, G.; Chai, Y.; Wu, Y. Fragmentation study of iridoid glycosides including epimers by liquid chromatography-diode array detection/electrospray ionization mass spectrometry and its application in metabolic fingerprint analysis of Gardenia jasminoides Ellis. Rapid Commun. Mass Spectrom. 2010, 24, 2520–2528. [Google Scholar] [CrossRef]
- Hvattum, E.; Ekeberg, D. Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. J. Mass Spectrom. 2003, 38, 43–49. [Google Scholar] [CrossRef]
- Kratzer, C.; Tobudic, S.; Assadian, O.; Buxbaum, A.; Graninger, W.; Georgopoulos, A. Validation of AKACID plus as a room disinfectant in the hospital setting. Appl. Environ. Microbiol. 2006, 72, 3826–3831. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Bucio, J.; Nieto-Jacobo, M.F.; Ramirez-Rodriguez, V.V.; Herrera-Estrella, L. Organic acid metabolism in plants: From adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 2000, 160, 1–13. [Google Scholar] [CrossRef]
- Sauer, M.; Porro, D.; Mattanovich, D.; Branduardi, P. Microbial production of organic acids: Expanding the markets. Trends Biotechnol. 2008, 26, 100–108. [Google Scholar] [CrossRef]
- Kachroo, A.; Kachroo, P. Fatty Acid-derived signals in plant defense. Annu. Rev. Phytopathol. 2009, 47, 153–176. [Google Scholar] [CrossRef] [PubMed]
- Thelen, J.J.; Ohlrogge, J.B. Metabolic engineering of fatty acid biosynthesis in plants. Metab. Eng. 2002, 4, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Abbattista, R.; Losito, I.; De Ceglie, C.; Castellaneta, A.; Calvano, C.D.; Palmisano, F.; Cataldi, T.R.I. A comprehensive study of oleuropein aglycone isomers in olive oil by enzymatic/chemical processes and liquid chromatography-Fourier transform mass spectrometry integrated by H/D exchange. Talanta 2019, 205, 120107. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, N.K.; Kishor, S.; Katyal, N.; Gogoi, P.; Narang, P.; Deep, S. Effect of pH and temperature on conformational equilibria and aggregation behaviour of curcumin in aqueous binary mixtures of ethanol. RSC Adv. 2016, 6, 103275–103288. [Google Scholar] [CrossRef]
- Nag, A.; Chakraborty, P.; Natarajan, G.; Baksi, A.; Mudedla, S.K.; Subramanian, V.; Pradeep, T. Bent Keto Form of Curcumin, Preferential Stabilization of Enol by Piperine, and Isomers of Curcumin intersectionCyclodextrin Complexes: Insights from Ion Mobility Mass Spectrometry. Anal. Chem. 2018, 90, 8776–8784. [Google Scholar] [CrossRef]
- Endo, T.; Taguchi, H.; Yosioka, I. The Glycosides of Plantago-Major-Var-Japonica Nakai—A New Flavanone Glycoside, Plantagoside. Chem. Pharm. Bull. 1981, 29, 1000–1004. [Google Scholar] [CrossRef] [Green Version]
- Yamada, H.; Nagai, T.; Takemoto, N.; Endoh, H.; Kiyohara, H.; Kawamura, H.; Otsuka, Y. Plantagoside, a novel alpha-mannosidase inhibitor isolated from the seeds of Plantago asiatica, suppresses immune response. Biochem. Biophys. Res. Commun. 1989, 165, 1292–1298. [Google Scholar] [CrossRef]
- Matsuura, N.; Aradate, T.; Kurosaka, C.; Ubukata, M.; Kittaka, S.; Nakaminami, Y.; Gamo, K.; Kojima, H.; Ohara, M. Potent protein glycation inhibition of plantagoside in Plantago major seeds. Biomed. Res. Int. 2014, 2014, 208539. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, N.; Sasaki, C.; Aradate, T.; Ubukata, M.; Kojima, H.; Ohara, M.; Hasegawa, J. Plantagoside as Maillard Reaction Inhibitor—Its Inhibitory Mechanism and Application. In Maillard Reaction in Food Chemistry and Medical Science: Update for the Postgenomic Era; Horiuchi, S., et al., Eds.; Elsevier Science Bv: Amsterdam, The Netherlands, 2002; pp. 411–412. [Google Scholar]
- Ewing, S.A.; Donor, M.T.; Wilson, J.W.; Prell, J.S. Collidoscope: An Improved Tool for Computing Collisional Cross-Sections with the Trajectory Method. J. Am. Soc. Mass Spectrom. 2017, 28, 587–596. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Xie, M.; Zeng, X. Purification of Semen Plantaginis Flavonoids and Components Analysis by LC-MS. Food Sci. 2008, 29, 328–332. [Google Scholar]
- He, X.; Gu, J.; Liu, P. Fingerprint of Plantaginis Semen and determination of its two index contents. Chin. Tradit. Herb. Drugs 2013, 44, 3053–3056. [Google Scholar]
- Zeng, J.; Bi, Y.; Xu, B.; Wei, J.; Ren, G.; Xiong, H.; Zhu, J.; Zhu, Y.; Luo, G. Anti-gout Effect of Various Fractions from Plantaginis Semen. Chin. J. Exp. Tradit. Med. Formulae 2015, 21, 132–135. [Google Scholar]
Compound | Drift time (ms) | CCS/Å2 |
---|---|---|
compound 32 | 4.16 | 213.264 |
compound 33 | 4.52 | 219.395 |
compound 34 | 5.22 | 237.860 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Liu, Z.; Song, F.; Xing, J.; Zheng, Z.; Liu, S. A Strategy for Identification and Structural Characterization of Compounds from Plantago asiatica L. by Liquid Chromatography-Mass Spectrometry Combined with Ion Mobility Spectrometry. Molecules 2022, 27, 4302. https://doi.org/10.3390/molecules27134302
Gao H, Liu Z, Song F, Xing J, Zheng Z, Liu S. A Strategy for Identification and Structural Characterization of Compounds from Plantago asiatica L. by Liquid Chromatography-Mass Spectrometry Combined with Ion Mobility Spectrometry. Molecules. 2022; 27(13):4302. https://doi.org/10.3390/molecules27134302
Chicago/Turabian StyleGao, Hongxue, Zhiqiang Liu, Fengrui Song, Junpeng Xing, Zhong Zheng, and Shu Liu. 2022. "A Strategy for Identification and Structural Characterization of Compounds from Plantago asiatica L. by Liquid Chromatography-Mass Spectrometry Combined with Ion Mobility Spectrometry" Molecules 27, no. 13: 4302. https://doi.org/10.3390/molecules27134302
APA StyleGao, H., Liu, Z., Song, F., Xing, J., Zheng, Z., & Liu, S. (2022). A Strategy for Identification and Structural Characterization of Compounds from Plantago asiatica L. by Liquid Chromatography-Mass Spectrometry Combined with Ion Mobility Spectrometry. Molecules, 27(13), 4302. https://doi.org/10.3390/molecules27134302