Effect of Soil Type and Application of Ecological Fertilizer Composed of Ash from Biomass Combustion on Selected Physicochemical, Thermal, and Rheological Properties of Potato Starch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Materials
2.1.1. Design of Field Experiment
2.2. Methods
2.2.1. Analysis of Selected Physicochemical Properties
2.2.2. Analysis of the Content of Minerals in Starches
2.2.3. Measurement of Thermal Properties Using Differential Scanning Calorimetry (DSC)
2.2.4. Pasting Properties by Rapid Visco Analyzer (RVA)
2.2.5. Viscosity Curves
2.2.6. Sweep Frequency Test
2.2.7. Statistical Analysis
3. Results and Discussions
3.1. Physicochemical Properties and Color of the Starch
3.2. The Content of Mineral Elements in Starch
3.3. Gelatinization Properties
3.4. Pasting Properties of Potato Starches
3.5. Flow Behavior
3.6. Viscoelastic Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ebúrneo, J.M.; Garcia, E.L.; dos Santos, T.P.R.; de Souza, E.D.F.C.; Soratto, R.P.; Fernandes, A.M.; Leonel, M. Influence of nitrogen fertilization on the characteristics of potato starch. Aust. J. Crop. Sci. 2018, 12, 365–373. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Wang, Q.; Zhang, H.; Li, M.; Song, B.; Zhao, Z. Effects of potassium fertilization on potato starch physicochemical properties. Int. J. Biol. Macromol. 2018, 17, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-J.; Chang, E.-H.; Fan, M.-M.; Wang, Z.-Q.; Yang, J.-C. Effects of potassium and calcium on root exudates and grain quality during grain filling. Acta Agron. Sin. 2011, 37, 661–669. [Google Scholar] [CrossRef]
- Noda, T.; Tsuda, S.; Mori, M.; Takigawa, S.; Matsuura-Endo, C.; Saito, K.; Mangalika, W.H.A.; Hanaoka, S.; Suzuki, Y.; Yamauchi, H. The effect of harvest dates on the starch properties of various potato cultivars. Food Chem. 2004, 86, 119–125. [Google Scholar] [CrossRef]
- Szpunar-Krok, E.; Szostek, M.; Pawlak, R.; Gorzelany, J.; Migut, D. Effect of fertilisation with ash from biomass combustion on the mechanical properties of potato tubers (Solanum tuberosum L.) grown in two types of soil. Agronomy 2022, 12, 379. [Google Scholar] [CrossRef]
- Pycia, K.; Juszczak, L.; Gałkowska, D.; Witczak, M. Physicochemical properties of starches obtained from polish potato cultivars. Starch/Stärke 2012, 64, 105–114. [Google Scholar] [CrossRef]
- WRB 2015 World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports 106. Food and Agriculture Organization of the United Nations, Rome. 2015. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 25 March 2022).
- Fertilization Recommendations. Part I. Limit Numbers for the Evaluation of the Content Macro-Soils and Micronutrients in Soils; Series, P., Ed.; IUNG-PIB: Puławy, Poland, 1990; Volume 44, pp. 1–26. (In Polish) [Google Scholar]
- Morrison, W.R.; Laignelet, B. An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J. Cereal Sci. 1983, 1, 9–20. [Google Scholar] [CrossRef]
- Pycia, K.; Gałkowska, D.; Juszczak, L.; Fortuna, T.; Witczak, T. Physicochemical, thermal and rheological properties of starches isolated from malting barley varieties. J. Food Sci. Technol. 2015, 52, 4797–4807. [Google Scholar] [CrossRef] [Green Version]
- Liszka-Skoczylas, M.; Berski, W.; Witczak, M.; Skoczylas, Ł.; Kowalska, I.; Smoleń, S.; Szlachcic, P.; Kozieł, M. The Influence of Hydroponic Potato Plant Cultivation on Selected Properties of Starch Isolated from Its Tubers. Molecules 2022, 27, 856. [Google Scholar] [CrossRef]
- Wieczorek, D.; Żyszka-Haberecht, B.; Kafka, A.; Lipok, J. Determination of phosphorus compounds in plant tissues: From colourimetry to advanced instrumental analytical chemistry. Plant. Methods 2022, 18, 22. [Google Scholar] [CrossRef]
- Lizarazo, H.S.P.; Hurtado, R.G.G.; Rodríguez, L.F. Physicochemical and Morphological Characterization of Potato Starch (Solanum tuberosum L.) as Raw Material for the Purpose of Obtaining Bioethanol. Agron. Colomb. 2015, 33, 244–252. [Google Scholar] [CrossRef]
- Singh, N.; Singh, J.; Kaur, L.; Sodhi, N.S.; Gill, B.S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- Hoover, R. Composition, molecular structure and physicochemical properties of tuber and root starches: A review. Carbohydr. Polym. 2001, 45, 253–267. [Google Scholar] [CrossRef]
- Dai, S.; Li, H.; Liu, A.; Song, J.; Liu, J.; Zhao, Z. Effect of nitrogen and potassium fertilizers on the starch physiochemical properties of Jinan. J. Triticeae Crops 2006, 26, 107–110. [Google Scholar]
- Liu, H.; Yao, H.; Shi, C.; Zhang, L. Effect of potassium application time on starch accumulation and related enzyme activities of sweet potato variety Jixu 23. Sci. Agric. Sin. 2014, 47, 43–52. [Google Scholar]
- Singh, N.; Kaur, L. Morphological, thermal, rheological and retrogradation properties of potato starch fractions varying in granule size. J. Sci. Food Agric. 2004, 84, 1241–1252. [Google Scholar] [CrossRef]
- Singh, J.; Singh, N. Studies on the morphological, thermal and rheological properties of starch separated from some Indian potato cultivars. Food Chem. 2001, 75, 67–77. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, N.; Ezekiel, R.; Guraya, H.S. Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations. Food Chem. 2007, 101, 643–651. [Google Scholar] [CrossRef]
- Zięba, T.; Solińska, D.; Kapelko-Żeberska, M.; Gryszkin, A.; Babić, J.; Ačkar, Ð.; Hernández, F.; Lončarić, A.; Šubarić, D.; Jozinović, A. Properties of Potato Starch Roasted with Apple Distillery Wastewater. Polymers 2020, 12, 1668. [Google Scholar] [CrossRef]
- Kasemsuwan, T.; Jane, J.L. Quantitative method for survey starch phosphate derivatives and starch phospholipids by nuclear magnetic resonance spectroscopy. Cereal Chem. 1996, 73, 702–707. Available online: https://www.cerealsgrains.org/publications/cc/backissues/1996/Documents/73_702.pdf (accessed on 25 March 2022).
- Blennow, A.; Bay-Smidt, A.M.; Olsen, C.A.; Møllera, B.L. The distribution of covalently bound phosphate in the starch granule in relation to starch crystallinity. Int. J. Biol. Macromol. 2000, 27, 211–218. [Google Scholar] [CrossRef]
- Noda, T.; Kottearachchi, N.S.; Tsuda, S.; Mori, M.; Takigawa, S.; Matsuura-Endo, C.; Kim, S.-J.; Hashimoto, N.; Yamauchi, H. Starch phosphorus content in potato (Solanum tuberosum L.) cultivars and its effect on other starch properties. Carbohydr. Polym. 2007, 68, 793–796. [Google Scholar] [CrossRef]
- Leonel, M.; Carmo, E.L.; Fernandes, A.M.; Franco, C.M.L.; Soratto, R.P. Physico-chemical properties of starches isolated from potato cultivars grown in soils with different phosphorus availability. J. Sci. Food Agric. 2016, 96, 1900–1905. [Google Scholar] [CrossRef]
- Kainuma, K.; Miyamoto, S.; Yoshioka, S.; Suzuki, S. Studies on structure and physico-chemical properties of starch: Part 3. changes in physical properties of high phosphate potato starch by substitution of cations. J. Jap. SocStarchSci. 1976, 23, 59–66. [Google Scholar] [CrossRef]
- Zaidul, I.S.M.; Norulaini, N.; Omar, A.K.M.; Yamauchi, H.; Noda, T. Correlations of the composition, minerals, and RVA pasting properties of various potato starches. Starch-Starke 2007, 59, 269–276. [Google Scholar] [CrossRef]
- Liszka-Skoczylas, M. Effect of Potato Plants (Solanum tuberosum L.) Fertilization on Content and Quality of Starch in Tubers. Food Sci. Technol. Qual. 2020, 27, 31–46. [Google Scholar] [CrossRef]
- Suh, S.D.; Verhoeven, T.; Denyer, K.; Jane, J. Characterization of Nubet and Franubet barley starches. Carbohydr. Polym. 2004, 56, 85–93. [Google Scholar] [CrossRef]
- Singh, N.; Isono, N.; Srichuwong, S.; Noda, T.; Nishinari, K. Structural, thermal and viscoselastic properties of potato starches. Food Hydrocoll. 2008, 22, 979–988. [Google Scholar] [CrossRef]
- Tester, R.F.; Morrison, W.R. Swelling and gelatinization of cereal starches I. Effect of amylopectine, amylase, and lipids. Cereal Chem. 1990, 67, 551–557. Available online: https://www.cerealsgrains.org/publications/cc/backissues/1990/Documents/67_551.pdf (accessed on 28 March 2022).
- Dupuis, J.H.; Liu, Q. Potato starch: A review of physicochemical, functional and nutritional properties. Am. Potato Res. 2019, 96, 127–138. [Google Scholar] [CrossRef]
- Tester, R.F. Starch: The polysaccharide fractions. In Proceedings of the an International Conference sponsored by the Food Chemistry Group of the Royal Society of Chemistry in association with the Institute of Food Science and Technology Research Subject Group, Cambridge, UK, 15–17 April 1996. [Google Scholar]
- Bello-Perez, L.A.; Sanchez-Rivera, M.A.; Nunez-Santiego, C.; Rodriguez-Ambriz, S.L.; Roman-Gutierrez, A.D. Effect of the pearled in the isolation and the morphological, physicochemical and rheological characteristics of barley starch. Carbohydr. Polym. 2010, 81, 63–69. [Google Scholar] [CrossRef]
Type of Soil | Fertilization | Amylose Content (%) | Clarity (%) | L* | a* | b* | WI* |
---|---|---|---|---|---|---|---|
Haplic Luvisol | Control | 29.7 ± 0.7 d | 59.0 ± 0.7 b | 90.2 ± 0.0 a | 0.02 ± 0.01 g | 2.71 ± 0.01 c | 10.15 ± 0.03 gh |
D1 | 29.3 ± 0.8 d | 62.9 ± 0.2 cde | 90.5 ± 0.0 b | −0.05 ± 0.01 ef | 3.00 ± 0.03 def | 10.00 ± 0.03 g | |
D2 | 27.2 ± 2.4 abcd | 61.0 ± 0.9 bc | 90.3 ± 0.1 ab | 0.10 ± 0.01 h | 2.90 ± 0.01 d | 10.10 ± 0.06 gh | |
D3 | 28.2 ± 0.9 bcd | 60.8 ± 20 bc | 91.3 ± 0.1 d | −0.04 ± 0.01 f | 3.02 ± 0.03 def | 9.25 ± 0.11 d | |
D4 | 27.6 ± 0.9 abcd | 64.8 ± 1.0 ef | 90.9 ± 0.0 c | 0.02 ± 0.01 g | 2.91 ± 0.02 d | 9.52 ± 0.02 e | |
D5 | 25.0 ± 1.8 ab | 68.0 ± 1.1 f | 90.8 ± 0.0 c | 0.03 ± 0.01 g | 3.10 ± 0.01 fg | 9.72 ± 0.01 f | |
D6 | 26.8 ± 1.0 abcd | 67.1 ± 1.3 f | 90.2 ± 0.0 a | 0.10 ± 0.01 h | 2.97 ± 0.04 def | 10.26 ± 0.03 h | |
Gleyic Chernozem | Control | 25.7 ± 1.9 abc | 61.3 ± 0.6 bcd | 91.4 ± 0.0 de | −0.01 ± 0.0 d | 3.18 ± 0.05 g | 9.14 ± 0.06 d |
D1 | 27.5 ± 1.7 abcd | 59.5 ± 0.9 b | 92.1 ± 0.0 g | −0.26 ± 0.0 b | 2.65 ± 0.09 bc | 8.35 ± 0.01 b | |
D2 | 28.3 ± 1.3 cd | 53.3 ± 0.1 a | 91.9 ± 0.1 g | −0.12 ± 0.0 d | 2.54 ± 0.06 ab | 8.45 ± 0.10 b | |
D3 | 26.8 ± 0.3 abcd | 52.5 ± 0.3 a | 91.3 ± 0.0 d | −0.08 ± 0.0 de | 3.06 ± 0.02 efg | 9.18 ± 0.04 d | |
D4 | 27.8 ± 2.1 abcd | 67.3 ± 1.1 f | 92.9 ± 0.0 h | −0.30 ± 0.0 a | 2.48 ± 0.10 a | 7.54 ± 0.06 a | |
D5 | 25.6 ± 0.1 abc | 64.6 ± 0.3 def | 91.7 ± 0.1 f | −0.2 ± 0.0 c | 2.96 ± 0.03 de | 8.81 ± 0.10 c | |
D6 | 24.7 ± 0.6 a | 61.8 ± 2.5 bcde | 91.6 ± 0.1 ef | −0.09 ± 0.0 d | 2.44 ± 0.03 a | 8.77 ± 0.05 c | |
Two−Way ANOVA | |||||||
Type of Soil | p = 0.065 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | |
Fertilization | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | |
Type of Soil x Fertilization | p = 0.188 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Type of soil | Fertilization | P | K | Ca | Mg | Na | Fe | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|
(mg⋅kg−1) | |||||||||
Haplic Luvisol | Control | 662 ± 7 d | 693 ± 44 d | 26.9 ± 4.1 d | 51.5 ± 6.8 abcd | 6.93 ± 0.71 bcd | 5.29 ± 0.85 bcd | 0.527 ± 0.080 | 0.834 ± 0.184 ab |
D1 | 620 ± 12 b | 613 ± 5 c | 15.7 ± 4.7 abc | 62.9 ± 0.8 e | 4.62 ± 0.42 ab | 5.41 ± 1.44 bcd | 0.899 ± 0.058 | 0.666 ± 0.153 a | |
D2 | 633 ± 24 bcd | 606 ± 14 abc | 23.4 ± 6.9 cd | 58.5 ± 0.3 de | 5.46 ± 0.05 abc | 5.46 ± 1.85 cd | 0.957 ± 0.078 | 0.900 ± 0.156 ab | |
D3 | 618 ± 12 b | 613 ± 21 c | 21.1 ± 0.5 bcd | 58.8 ± 3.1 de | 4.99 ± 2.35 ab | 2.91 ± 1.27 ab | 0.660 ± 0.434 | 0.639 ± 0.258 a | |
D4 | 630 ± 20 bcd | 611 ± 10 c | 15.4 ± 3.6 abc | 55.6 ± 1.4 cde | 5.35 ± 0.61 abc | 4.07 ± 0.47 abcd | 0.626 ± 0.059 | 0.716 ± 0.025 ab | |
D5 | 630 ± 14 bc | 627 ± 21 c | 11.0 ± 1.2 a | 57.0 ± 1.3 de | 5.04 ± 0.70 ab | 3.06 ± 0.52 acb | 0.594 ± 0.064 | 1.050 ± 0.062 ab | |
D6 | 655 ± 5 cd | 649 ± 13 cd | 10.8 ± 1.1 a | 55.4 ± 2.6 cde | 4.43 ± 0.85 ab | 2.53 ± 0.33 a | 0.681 ± 0.073 | 0.855 ± 0.274 ab | |
Gleyic Chernozem | Control | 574 ± 4 a | 557 ± 10 ab | 16.7 ± 2.9 abc | 56.5 ± 1.0 de | 2.84 ± 0.11 a | 3.14 ± 0.31 abc | 0.575 ± 0.108 | 1.204 ± 0.257 b |
D1 | 621 ± 11 b | 613 ± 13 c | 16.9 ± 3.3 abc | 53.4 ± 1.5 abcd | 7.78 ± 0.65 cd | 2.97 ± 0.22 acb | 0.602 ± 0.115 | 1.020 ± 0.150 ab | |
D2 | 635 ± 8 bcd | 634 ± 14 c | 16.6 ± 2.0 abc | 48.1 ± 0.6 abc | 7.95 ± 0.38 cd | 2.13 ± 0.31 a | 0.561 ± 0.104 | 0.927 ± 0.093 ab | |
D3 | 564 ± 10 a | 553 ± 18 a | 11.2 ± 2.2 ab | 51.6 ± 2.7 abc | 5.56 ± 1.46 abc | 2.62 ± 0.65 a | 0.503 ± 0.051 | 0.581 ± 0.079 a | |
D4 | 579 ± 5 a | 601 ± 7 abc | 13.8 ± 3.1 abc | 45.8 ± 0.3 a | 6.51 ± 0.67 bcd | 2.08 ± 0.34 a | 0.454 ± 0.044 | 0.686 ± 0.132 a | |
D5 | 585 ± 34 a | 609 ± 19 bc | 12.2 ± 3.2 ab | 47.0 ± 1.7 ab | 4.39 ± 0.15 ab | 3.14 ± 0.33 abc | 0.428 ± 0.037 | 0.868 ± 0.179 ab | |
D6 | 644 ± 30 bcd | 608 ± 5 bc | 19.4 ± 1.8 abcd | 55.0 ± 0.9 bcde | 8.52 ± 0.36 d | 6.12 ± 0.76 d | 0.552 ± 0.138 | 0.673 ± 0.090 a | |
Two-Way ANOVA | |||||||||
Type of Soil | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.413 | |
Fertilization | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | |
Type of Soil x Fertilization | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.225 | p < 0.001 |
Type of Soil | Fertilization | Gelatinization | Retrogradation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TO (°C) | TP (°C) | TE (°C) | ΔT (°C) | ΔHG (J/g) | TO (°C) | TP (°C) | TE (°C) | ΔT (°C) | ΔHR (J/g) | R (%) | ||
Haplic Luvisol | Control | 65.8 ± 0.5 ab | 71.3 ± 0.1 cd | 78.5 ± 1.3 bc | 12.7 ± 1.8 b | 20.3 ± 0.8 def | 49.5 ± 0.5 cd | 60.9 ± 0.6 a | 71.5 ± 1.4 a | 22.0 ± 1.6 ab | 6.26 ± 0.28 cde | 30.8 ± 1.5 a |
D1 | 66.4 ± 0.3 bcd | 71.3 ± 0.1 d | 77.7 ± 0.4 ab | 11.3 ± 0.7 ab | 19.3 ± 0.8 cde | 50.0 ± 0.5 cde | 62.2 ± 0.4 ab | 73.9 ± 1.5 ab | 23.8 ± 1.6 b | 7.80 ± 0.33 h | 40.4 ± 2.6 e | |
D2 | 65.2 ± 0.3 a | 70.9 ± 0.1 ab | 77.4 ± 0.4 a | 12.2 ± 0.6 ab | 21.0 ± 0.3 ef | 50.1 ± 0.1 cdef | 62.2 ± 0.6 ab | 73.5 ± 0.7 ab | 23.4 ± 0.7 b | 7.53 ± 0.36 fgh | 36.0 ± 1.9 c | |
D3 | 66.0 ± 0.2 abc | 70.7 ± 0.1 a | 77.2 ± 0.1 a | 11.2 ± 0.3 a | 20.8 ± 0.2 ef | 50.4 ± 0.1 cdef | 62.0 ± 0.3 ab | 72.6 ± 0.1 a | 22.2 ± 0.1 ab | 6.81 ± 0.12 def | 32.7 ± 0.9 ab | |
D4 | 66.1 ± 0.2 bc | 71.1 ± 0.1 bcd | 77.6 ± 0.3 ab | 11.5 ± 0.5 ab | 19.4 ± 0.4 cde | 50.6 ± 0.2 def | 62.4 ± 0.3 b | 73.4 ± 0.2 ab | 22.8 ± 0.3 b | 8.57 ± 0.35 i | 44.2 ± 2.7 f | |
D5 | 66.0 ± 0.3 abc | 71.1 ± 0.1 bcd | 77.9 ± 0.1 abc | 11.9 ± 0.3 ab | 21.4 ± 0.5 f | 51.0 ± 0.1 efg | 62.6 ± 0.4 bc | 72.8 ± 0.6 a | 21.8 ± 0.6 ab | 7.49 ± 0.36 fgh | 35.0 ± 0.9 bc | |
D6 | 66.1 ± 0.1 bc | 71.3 ± 0.1 d | 77.4 ± 0.6 a | 11.3 ± 0.6 ab | 20.4 ± 0.4 def | 51.1 ± 0.1 efg | 62.7 ± 0.1 bc | 73.2 ± 0.1 ab | 22.1 ± 0.1 ab | 7.81 ± 0.17 h | 38.2 ± 1.2 cde | |
Gleyic Chernozem | Control | 66.3 ± 0.2 bcd | 71.3 ± 0.1 cd | 77.2 ± 0.7 a | 10.9 ± 0.9 a | 21.4 ± 0.5 f | 51.6 ± 0.2 fgh | 62.8 ± 0.2 bc | 73.6 ± 0.1 ab | 22.1 ± 0.1 ab | 7.82 ± 0.16 h | 36.5 ± 1.3 cd |
D1 | 66.6 ± 0.3 bcd | 71.0 ± 0.1 bc | 78.1 ± 0.2 abc | 11.5 ± 0.5 ab | 16.3 ± 0.9 a | 52.4 ± 0.7 gh | 62.9 ± 0.3 bc | 73.6 ± 0.4 ab | 21.2 ± 0.5 ab | 7. 70 ± 0.14 gh | 47.3 ± 2.8 f | |
D2 | 67.0 ± 0.1 d | 71.7 ± 0.2 e | 78.2 ± 0.3 abc | 11.2 ± 0.1 a | 17.1 ± 0.8 b | 53.0 ± 0.4 h | 62.8 ± 0.2 bc | 71.8 ± 0.6 a | 18.8 ± 1.0 a | 5.10 ± 0.34 a | 29.9 ± 0.8 a | |
D3 | 65.9 ± 0.5 abc | 70.6 ± 0.2 a | 78.2 ± 0.8 abc | 12.3 ± 1.3 ab | 18.7 ± 0.9 bcd | 46.5 ± 0.5 a | 63.9 ± 0.6 b | 75.8 ± 1.7 bc | 29.3 ± 1.4 c | 5.47 ± 0.22 ab | 29.3 ± 2.1 a | |
D4 | 66.5 ± 0.1 bcd | 70.9 ± 0.2 ab | 77.8 ± 0.6 abc | 11.4 ± 0.6 ab | 19.4 ± 0.6 cde | 47.4 ± 1.3 a | 62.9 ± 1.1 bc | 78.1 ± 1.4 c | 30.7 ± 2.6 c | 5.86 ± 0.14 bc | 30.3 ± 1.7 a | |
D5 | 66.5 ± 0.3 bcd | 71.1 ± 0.1 bcd | 77.8 ± 0.1 abc | 11.3 ± 0.1 ab | 17.6 ± 0.5 abc | 47.6 ± 0.4 ab | 62.4 ± 0.2 b | 78.5 ± 0.7 c | 30.9 ± 1.1 c | 6.98 ± 0.19 efg | 39.7 ± 2.1 de | |
D6 | 66.7 ± 0.2 cd | 71.8 ± 0.3 e | 78.8 ± 0.1 c | 12.1 ± 0.1 ab | 20.3 ± 0.9 def | 49.0 ± 0.2 bc | 62.8 ± 0.4 bc | 77.9 ± 0.8 c | 28.9 ± 0.9 c | 6.12 ± 0.05 bcd | 30.2 ± 1.1 a | |
Two-Way ANOVA | ||||||||||||
Type of Soil | p < 0.001 | p = 0.084 | p = 0.053 | p = 0.381 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | |
Fertilization | p < 0.001 | p < 0.001 | p = 0.903 | p = 0.963 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | |
Type of Soil x Fertilization | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.029 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Type of Soil | Fertilization | PT (°C) | PV (mPa·s) | HPV (mPa·s) | BD (mPa·s) | FV (mPa·s) | SB (mPa·s) |
---|---|---|---|---|---|---|---|
Haplic Luvisol | Control | 72.4 ± 0.7 ab | 2103 ± 107 ab | 2048 ± 105 ab | 55.3 ± 4.2 ab | 2911 ± 107 bcd | 863 ± 5 fg |
D1 | 72.4 ± 0.1 ab | 2206 ± 26 bc | 2164 ± 28 bcd | 41.7 ± 3.1 a | 2990 ± 17cdefg | 826 ± 18 defg | |
D2 | 72.2 ± 0.4 ab | 2017 ± 74 a | 1966 ± 66 a | 51.0 ± 7.9 ab | 2811 ± 68 bc | 844 ± 13 efg | |
D3 | 72.4 ± 0.8 ab | 2229 ± 50 cd | 2179 ± 42 bcd | 50.7 ± 9.9 ab | 2943 ± 30 bcde | 764 ± 44 bcd | |
D4 | 72.7 ± 0.4 ab | 2363 ± 29 e | 2263 ± 26 cde | 100.0 ± 7.2 d | 2967 ± 20 cdef | 718 ± 14 bc | |
D5 | 72.2 ± 0.9 ab | 2404 ± 27 e | 2308 ± 18 de | 96.0 ± 13.9 cd | 2998 ± 23 cdefg | 689 ± 35 b | |
D6 | 71.7 ± 0.0 a | 2419 ± 75 e | 2273 ± 47 de | 146.0 ± 30.5 e | 3001 ± 21 cdefg | 728 ± 29 bc | |
Gleyic Chernozem | Control | 72.2 ± 0.4 ab | 2328 ± 15 de | 2269 ± 14 de | 59.3 ± 4.7 abc | 3061 ± 18 efg | 792 ± 11 cdef |
D1 | 72.9 ± 0.5 ab | 2420 ± 51 e | 2344 ± 43 e | 76.3 ± 9.9 abcd | 3112 ± 32 g | 768 ± 11 cde | |
D2 | 73.2 ± 0.0 ab | 2242 ± 38 cd | 2159 ± 37 bcd | 83.3 ± 1.5 bcd | 3099 ± 24 fg | 940 ± 16 h | |
D3 | 71.9 ± 0.5 ab | 2327 ± 77 de | 2256 ± 74 cde | 70.3 ± 21.0 abcd | 3046 ± 36 defg | 789 ± 40 cdef | |
D4 | 72.4 ± 0.1 ab | 2327 ± 101 de | 2156 ± 79 bcd | 170.3 ± 22.1 e | 2655 ± 43 a | 498 ± 36 a | |
D5 | 72.6 ± 0.0 ab | 2173 ± 58 bc | 2103 ± 6 8 abc | 70.0 ± 9.6 abcd | 2997 ± 60 cdefg | 895 ± 18 gh | |
D6 | 73.2 ± 0.0 b | 2112 ± 36 ab | 2065 ± 35 ab | 47.3 ± 7.6 ab | 2900 ± 38 bc | 835 ± 27 defg | |
Two-Way ANOVA | |||||||
Type of Soil | p < 0.001 | p = 0.167 | p = 0.213 | p = 0.224 | p < 0.001 | p = 0.135 | |
Fertilization | p = 0.527 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | |
Type of Soil x Fertilization | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Type of Soil | Fertilization | K | n | R2 |
---|---|---|---|---|
Haplic Luvisol | Control | 34.2 ± 2.0 bcd | 0.439 ± 0.007 ab | 0.944 |
D1 | 35.2 ± 1.0 d | 0.407 ± 0.003 a | 0.959 | |
D2 | 32.7 ± 1.0 bcd | 0.427 ± 0.021 ab | 0.945 | |
D3 | 41.5 ± 0.8 ef | 0.408 ± 0.018 a | 0.948 | |
D4 | 30.9 ± 0.5 b | 0.446 ± 0.025 ab | 0.949 | |
D5 | 39.8 ± 1.3 e | 0.429 ± 0.018 ab | 0.928 | |
D6 | 45.0 ± 1.5 g | 0.397 ± 0.013 a | 0.956 | |
Gleyic Chernozem | Control | 34.9 ± 1.2 cd | 0.429 ± 0.021 ab | 0.943 |
D1 | 43.2 ± 0.7 fg | 0.399 ± 0.020 a | 0.956 | |
D2 | 31.7 ± 1.2 bc | 0.403 ± 0.033 a | 0.944 | |
D3 | 33.8 ± 1.2 bcd | 0.424 ± 0.014 ab | 0.945 | |
D4 | 25.8 ± 0.7 a | 0.470 ± 0.016 bc | 0.937 | |
D5 | 24.3 ± 0.1 a | 0.506 ± 0.001 c | 0.935 | |
D6 | 35.2 ± 1.2 d | 0.436 ± 0.004 ab | 0.933 | |
Two-Way ANOVA | ||||
Type of Soil | p < 0.001 | p < 0.001 | - | |
Fertilization | p < 0.001 | p < 0.001 | - | |
Type of soil x Fertilization | p < 0.001 | p < 0.001 | - |
Type of Soil | Fertilization | K′ | n′ | R2 | K″ | n″ | R2 |
---|---|---|---|---|---|---|---|
Haplic Luvisol | Control | 107.7 ± 6.5 cd | 0.155 ± 0.011 bc | 0.987 | 21.3 ± 1.9 b | 0.239 ± 0.006 cd | 0.992 |
D1 | 103.3 ± 7.2 bcd | 0.143 ± 0.013 ab | 0.984 | 19.6 ± 1.3 b | 0.223 ± 0.003 abc | 0.982 | |
D2 | 103.1 ± 6.3 bcd | 0.145 ± 0.006 abc | 0.981 | 19.9 ± 1.4 b | 0.236 ± 0.012 cd | 0.981 | |
D3 | 100.4 ± 5.1 bcd | 0.155 ± 0.004 bc | 0.988 | 20.5 ± 2.4 b | 0.225 ± 0.008 abc | 0.992 | |
D4 | 96.6 ± 5.0 bcd | 0.155 ± 0.009 bc | 0.986 | 22.1 ± 1.2 b | 0.206 ± 0.012 a | 0.986 | |
D5 | 92.7 ± 3.4 b | 0.154 ± 0.014 bc | 0.990 | 18.9 ± 0.2 b | 0.235 ± 0.003 cd | 0.987 | |
D6 | 108.4 ± 5.3 d | 0.146 ± 0.010 abc | 0.993 | 20.3 ± 1.9 b | 0.231 ± 0.008 abcd | 0.991 | |
Gleyic Chernozem | Control | 103.6 ± 3.8 bcd | 0.143 ± 0.008 ab | 0.983 | 19.3 ± 1.4 b | 0.233 ± 0.00 8 bcd | 0.989 |
D1 | 100.5 ± 2.7 bcd | 0.153 ± 0.007 bc | 0.994 | 21.3 ± 1.6 b | 0.208 ± 0.013 ab | 0.983 | |
D2 | 131.5 ± 4.4 e | 0.122 ± 0.012 a | 0.987 | 22.5 ± 1.3 b | 0.233 ± 0.013 bcd | 0.994 | |
D3 | 94.3 ± 3.6 bc | 0.144 ± 0.010 abc | 0.989 | 21.0 ± 1.1 b | 0.213 ± 0.004 abc | 0.980 | |
D4 | 58.8 ± 1.3 a | 0.170 ± 0.007 c | 0.988 | 14.5 ± 0.7 a | 0.257 ± 0.009 d | 0.995 | |
D5 | 95.6 ± 4.6 bcd | 0.160 ± 0.005 bc | 0.992 | 19.6 ± 1.1 b | 0.223 ± 0.007 abc | 0.989 | |
D6 | 93.8 ± 2.5 bc | 0.162 ± 0.003 bc | 0.991 | 18.9 ± 0.6 b | 0.234 ± 0.008 cd | 0.987 | |
Two-Way ANOVA | |||||||
Type of Soil | p < 0.001 | p = 1.0000 | - | p = 0.078 | p = 0.727 | - | |
Fertilization | p < 0.001 | p < 0.001 | - | p < 0.001 | p < 0.001 | - | |
Type of Soil x Fertilization | p < 0.001 | p < 0.001 | - | p < 0.001 | p < 0.001 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pycia, K.; Szupnar-Krok, E.; Szostek, M.; Pawlak, R.; Juszczak, L. Effect of Soil Type and Application of Ecological Fertilizer Composed of Ash from Biomass Combustion on Selected Physicochemical, Thermal, and Rheological Properties of Potato Starch. Molecules 2022, 27, 4318. https://doi.org/10.3390/molecules27134318
Pycia K, Szupnar-Krok E, Szostek M, Pawlak R, Juszczak L. Effect of Soil Type and Application of Ecological Fertilizer Composed of Ash from Biomass Combustion on Selected Physicochemical, Thermal, and Rheological Properties of Potato Starch. Molecules. 2022; 27(13):4318. https://doi.org/10.3390/molecules27134318
Chicago/Turabian StylePycia, Karolina, Ewa Szupnar-Krok, Małgorzata Szostek, Renata Pawlak, and Lesław Juszczak. 2022. "Effect of Soil Type and Application of Ecological Fertilizer Composed of Ash from Biomass Combustion on Selected Physicochemical, Thermal, and Rheological Properties of Potato Starch" Molecules 27, no. 13: 4318. https://doi.org/10.3390/molecules27134318
APA StylePycia, K., Szupnar-Krok, E., Szostek, M., Pawlak, R., & Juszczak, L. (2022). Effect of Soil Type and Application of Ecological Fertilizer Composed of Ash from Biomass Combustion on Selected Physicochemical, Thermal, and Rheological Properties of Potato Starch. Molecules, 27(13), 4318. https://doi.org/10.3390/molecules27134318