Physicochemical Characteristics of Bambara Groundnut Speciality Malts and Extract
Abstract
:1. Introduction
2. Results and Discussion
2.1. Colour Characteristics of Bambara Groundnut Speciality Malts and Syrups
2.2. The pH Characteristics of the Bambara Groundnut Speciality Malts and Syrups
2.3. The Protein Content of Bambara Groundnut Speciality Malts and Syrups
2.4. Amylase Activities of Bambara Groundnut Speciality Malts and Syrups
2.5. Total Polyphenols Content and Antioxidant Activities of Bambara Groundnut Speciality Malts and Syrups
2.6. Total Soluble Solid of Bambara Groundnut Malt Syrups
2.7. Metabolites of the Bambara Groundnut Speciality Malts
2.7.1. Amino Acid Compositions of Bambara Groundnut Speciality Malts
2.7.2. Acids, Sugars, and Sugar Alcohol of Bambara Groundnut Speciality Malts
2.7.3. Fatty Acids Methyl Esters (FAME) of Bambara Groundnut Speciality Malts
2.7.4. Volatile metabolites in Bambara groundnut speciality malts
3. Materials and Methods
3.1. Materials, Reagents, and Equipment Sources
3.2. Bambara Groundnut Speciality Malts and Syrups Physicochemical Analysis
3.2.1. Colour Determination of Speciality Bambara Groundnut Malts and Syrups
3.2.2. Determination of Speciality Bambara Groundnut Malts and Syrups pH
3.2.3. Protein Content Determination of Bambara Groundnut Speciality Malts and Syrups
3.2.4. Determination of Apparent Degree BRIX (°Brix) of Bambara Groundnut Syrups
3.2.5. α- and β-Amylases Activities of Bambara Groundnut Speciality Malt Determination
Alpha-Amylase Assay Procedure (Ceralpha Method)
Beta-Amylase Assay Procedure (Betamyl-3 Method)
3.2.6. Total Polyphenols and Antioxidants Activities of Bambara Groundnut Speciality Malt Determination
Total Polyphenols Content by Folin–Ciocâlteu Reagent (FCR) Assay
Antioxidant Activities by Ferric-Reducing Antioxidant Power (FRAP) Assay
Antioxidant Activities by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Assay
3.2.7. Metabolite Profiling of Bambara Groundnut Speciality Malt
Determination of Fatty Acids Methyl Esters (FAME) and Hydrocarbons by Gas Chromatography–Flame Ionisation Detection (GC-FID)
Sugars, Acids, and Sugar Alcohols Determination by Gas Chromatography–Mass Spectrometry (GC-MS)
Amino Acids Determination by Gas Chromatography–Mass Spectrometry (GC-MS)
Volatile Compounds Determination by Headspace Gas Chromatography–Mass Spectrometry (HS-GC-MS)
3.3. Identification of Metabolite Compounds
3.4. Statistical Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Alain, M.; Israël, M.; René, M.S. Improving the nutritional quality of cowpea and Bambara bean flours for use in infant feeding. Pak. J. Nutr. 2007, 6, 660–664. [Google Scholar]
- Subuola, F.; Widodo, Y.; Kehinde, T. Processing and Utilization of Legumes in the Tropics. In Trends in Vital Food and Control Engineering; InTech: West Palm Beach, FL, USA, 2012; ISBN 9789535104490. [Google Scholar]
- Kavitha, S.; Parimalavalli, R. Effect of processing methods on proximate composition of cereals and legumes flour. J. Hum. Nutr. Food Sci. 2014, 2, 1051. [Google Scholar]
- Serventi, L. Upcycling Legume Water: From Wastewater to Food Ingredients; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-42467-1. [Google Scholar]
- Xue, Z.; Wang, C.; Zhai, L.; Yu, W.; Chang, H.; Kou, X.; Zhou, F. Bioactive compounds and antioxidant activity of mung bean (Vigna radiata L.), soybean (Glycine max L.) and black bean (Phaseolus vulgaris L.) during the germination process. Czech J. Food Sci. 2016, 34, 68–78. [Google Scholar] [CrossRef]
- Tang, D.; Dong, Y.; Ren, H.; Li, L.; He, C. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem. Cent. J. 2014, 8, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dueñas, M.; Sarmento, T.; Aguilera, Y.; Benitez, V.; Mollá, E.; Esteban, R.M.; Martín-Cabrejas, M.A. Impact of cooking and germination on phenolic composition and dietary fibre fractions in dark beans (Phaseolus vulgaris L.) and lentils (Lens culinaris L.). LWT Food Sci. Technol. 2016, 66, 72–78. [Google Scholar] [CrossRef]
- Viktorinová, K.; Petřeková, K.; Šimek, J.; Hartman, I.; Hertel, V. Nutrition and Sensory Evaluation of Germinated Legumes. Kvas. Prum. 2020, 66, 270–276. [Google Scholar] [CrossRef]
- Erba, D.; Angelino, D.; Marti, A.; Manini, F.; Faoro, F.; Morreale, F.; Pellegrini, N.; Casiraghi, M.C. Effect of sprouting on nutritional quality of pulses. Int. J. Food Sci. Nutr. 2019, 70, 30–40. [Google Scholar] [CrossRef]
- Lemmens, E.; Moroni, A.V.; Pagand, J.; Heirbaut, P.; Ritala, A.; Karlen, Y.; Lê, K.-A.; den Broeck, H.C.; Brouns, F.J.P.H.; Brier, N.; et al. Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2018, 18, 1541–4337. [Google Scholar] [CrossRef] [Green Version]
- Dueñas, M.; Fernández, D.; Hernández, T.; Estrella, I.; Muñoz, R. Bioactive phenolic compounds of cowpeas (Vigna sinensis L). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. J. Sci. Food Agric. 2005, 85, 297–304. [Google Scholar] [CrossRef]
- Owuamanam, C.; Ogueke, C.; Iwouno, J.; Edom, T. Use of Seed Sprouting in Modification of Food Nutrients and Pasting Profile of Tropical Legume Flours. Niger. Food J. 2014, 32, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Manickavasagan, A.; Thirunathan, P. (Eds.) Pulses; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-41375-0. [Google Scholar]
- Aguilera, Y.; Díaz, M.F.; Jiménez, T.; Benítez, V.; Herrera, T.; Cuadrado, C.; Martín-Pedrosa, M.; Martín-Cabrejas, M.A.; Jiménez, T.; Benítez, V.; et al. Changes in nonnutritional factors and antioxidant activity during germination of nonconventional legumes. J. Agric. Food Chem. 2013, 61, 8120–8125. [Google Scholar] [CrossRef] [PubMed]
- Chinma, C.E.; Abu, J.O.; Asikwe, B.N.; Sunday, T.; Adebo, O.A. Effect of germination on the physicochemical, nutritional, functional, thermal properties and in vitro digestibility of Bambara groundnut flours. LWT 2021, 140, 110749. [Google Scholar] [CrossRef]
- Boukid, F.; Zannini, E.; Carini, E.; Vittadini, E. Pulses for bread fortification: A necessity or a choice? Trends Food Sci. Technol. 2019, 88, 416–428. [Google Scholar] [CrossRef]
- Asuk, A.A.; Ugwu, M.N.; Idole, B. The Effect of Different Malting Periods on the Nutritional Composition of Malted Sorghum-Soy Composite Flour. J. Food Sci. Nutr. Res. 2020, 3, 217–230. [Google Scholar] [CrossRef]
- Murugkar, D.A. Effect of sprouting of soybean on the chemical composition and quality of soymilk and tofu. J. Food Sci. Technol. 2014, 51, 915–921. [Google Scholar] [CrossRef] [Green Version]
- Samaras, T.S.; Camburn, P.A.; Chandra, S.X.; Gordon, M.H.; Ames, J.M. Antioxidant Properties of Kilned and Roasted Malts. J. Agric. Food Chem. 2005, 53, 8068–8074. [Google Scholar] [CrossRef]
- Lloyd, W.J.W. Environmental Effects on the Biochemical Phases of Malt Kilning. J. Am. Soc. Brew. Chem. 1988, 46, 8–13. [Google Scholar] [CrossRef]
- Carvalho, D.O.; Correia, E.; Lopes, L.; Guido, L.F. Further insights into the role of melanoidins on the antioxidant potential of barley malt. Food Chem. 2014, 160, 127–133. [Google Scholar] [CrossRef]
- Carvalho, D.O.; Gonçalves, L.M.; Guido, L.F. Overall Antioxidant Properties of Malt and How They Are Influenced by the Individual Constituents of Barley and the Malting Process. Compr. Rev. Food Sci. Food Saf. 2016, 15, 927–943. [Google Scholar] [CrossRef]
- Sharma, P.; Goudar, G.; Longvah, T.; Gour, V.S.; Kothari, S.L.; Wani, I.A. Fate of Polyphenols and Antioxidant Activity of Barley during Processing. Food Rev. Int. 2020, 8, 163–198. [Google Scholar] [CrossRef]
- Coghe, S.; Gheeraert, B.; Michiels, A.; Delvaux, F.R. Development of Maillard Reaction Related Characteristics During Malt Roasting. J. Inst. Brew. 2006, 112, 148–156. [Google Scholar] [CrossRef]
- Woffenden, H.M.; Ames, J.M.; Chandra, S. Relationships between Antioxidant Activity, Color, and Flavor Compounds of Crystal Malt Extracts. J. Agric. Food Chem. 2001, 49, 5524–5530. [Google Scholar] [CrossRef] [PubMed]
- Koren, D.; Kun, S.; Hegyesné Vecseri, B.; Kun-Farkas, G. Study of antioxidant activity during the malting and brewing process. J. Food Sci. Technol. 2019, 56, 3801–3809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bamforth, C.W. Brewing New Technologies; Woodhead Publishing Limited: Cambridge, UK, 2006; ISBN 9781855734906. [Google Scholar]
- Coghe, S.; Vanderhaegen, B.; Pelgrims, B.; Basteyns, A.V.; Delvaux, F.R. Characterization of Dark Specialty Malts: New Insights in Color Evaluation and Pro- and Antioxidative Activity. J. Am. Soc. Brew. Chem. 2004, 61, 125–132. [Google Scholar] [CrossRef]
- Cortés, N.; Kunz, T.; Suárez, A.F.; Hughes, P.; Methner, F.-J. Development and Correlation between the Organic Radical Concentration in Different Malt Types and Oxidative Beer Stability. J. Am. Soc. Brew. Chem. 2010, 68, 107–113. [Google Scholar] [CrossRef]
- Gąsior, J.; Kawa-Rygielska, J.; Kucharska, A.Z. Carbohydrates Profile, Polyphenols Content and Antioxidative Properties of Beer Worts Produced with Different Dark Malts Varieties or Roasted Barley Grains. Molecules 2020, 25, 3882. [Google Scholar] [CrossRef]
- Coghe, S.; Adriaenssens, B.; Leonard, S.; Delvaux, F.R. Fractionation of colored maillard reaction products from dark specialty malts. J. Am. Soc. Brew. Chem. 2004, 62, 79–86. [Google Scholar] [CrossRef]
- Coghe, S.; Derdelinckx, G.; Delvaux, F.R. Effect of non-enzymatic browning on flavour, colour and antioxidative activity of dark specialty malts—A review. Monatsschr. Brauwiss 2004, 57, 25–38. [Google Scholar]
- Vandecan, S.M.G.; Daems, N.; Schouppe, N.; Saison, D.; Delvaux, F.R. Formation of Flavor, Color, and Reducing Power during the Production Process of Dark Specialty Malts. J. Am. Soc. Brew. Chem. 2011, 69, 150–157. [Google Scholar] [CrossRef]
- Mäkinen, O.E.; Arendt, E.K. Nonbrewing Applications of Malted Cereals, Pseudocereals, and Legumes: A Review. J. Am. Soc. Brew. Chem. 2015, 73, 223–227. [Google Scholar] [CrossRef]
- Rögner, N.S.; Mall, V.; Steinhaus, M. Odour-active compounds in liquid malt extracts for the baking industry. Eur. Food Res. Technol. 2021, 247, 1263–1275. [Google Scholar] [CrossRef]
- Guido, L.; Moreira, M. Malting. In Engineering Aspects of Cereal and Cereal-Based Products; Guine, R.D., dos Reis Correia, P.M., Eds.; CRC Press: Boca Raton, FI, USA, 2013; pp. 51–70. [Google Scholar]
- Dziki, D.; Gawlik-Dziki, U. Processing of germinated grains. In Sprouted Grains; Elsevier: Amsterdam, The Netherlands, 2019; pp. 69–90. ISBN 9780128115251. [Google Scholar]
- Mayes, S.; Ho, W.K.; Chai, H.H.; Gao, X.; Kundy, A.C.; Mateva, K.I.; Zahrulakmal, M.; Hahiree, M.K.I.M.; Kendabie, P.; Licea, L.C.S.; et al. Bambara groundnut: An exemplar underutilised legume for resilience under climate change. Planta 2019, 250, 803–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, N.S.; Chai, H.H.; Basu, S.; Sri Redjeki, E.; Moreton, J.; Mayes, K.; Ho, W.K.; Massawe, F.; Mayes, S. Exploring the domestication of Bambara groundnut. Acta Hortic. 2015, 1101, 183–190. [Google Scholar] [CrossRef]
- Diedericks, C.F.; Venema, P.; Mubaiwa, J.; Jideani, V.A.; van der Linden, E. Effect of Processing on the Microstructure and Composition of Bambara Groundnut (Vigna subterranea (L.) Verdc.) Seeds, Flour and Protein Isolates. Food Hydrocoll. 2020, 108, 106031. [Google Scholar] [CrossRef]
- Drewnowski, A. 50 Foods for Healthier People and a Healthier Planet. World Wildl. Found. Knorr Foods 2020, 59. [Google Scholar]
- Nwokolo, E. Bambara groundnut (Vigna subterranea (L.) Verdc.). In Food and Feed from Legumes and Oilseeds; Springer: Boston, MA, USA, 1996; Volume 52, pp. 216–221. ISBN 9781461380504. [Google Scholar]
- Oyeyinka, A.T.; Pillay, K.; Tesfay, S.; Siwela, M. Physical, nutritional and antioxidant properties of Zimbabwean Bambara groundnut and effects of processing methods on their chemical properties. Int. J. Food Sci. Technol. 2017, 52, 2238–2247. [Google Scholar] [CrossRef]
- Abba, R.Z.; Imam, A.A.; Atiku, M.K.; Muhammad, Y.Y. Effect of Sprouting on the Functional Properties and Amino Acid Profile of Two Bambara Groundnut (Vigna subterranea) Protein Isolates. Asian Food Sci. J. 2018, 2, 1–9. [Google Scholar] [CrossRef]
- Jideani, V.A. Utilizing bambara groundnut in Value-Added products. Food Technol. 2016, 70, 48–52. [Google Scholar]
- Agu, H.O.; Onuoha, G.O.; Elijah, O.E.; Jideani, V.A. Consumer Acceptability of Acha and Malted Bambara Groundnut (BGN) Biscuits Sweetened with Date Palm. Heliyon 2020, 6, e05522. [Google Scholar] [CrossRef]
- Ding, J.; Feng, H. Controlled germination for enhancing the nutritional value of sprouted grains. In Sprouted Grains; Elsevier: Amsterdam, The Netherlands, 2019; pp. 91–112. ISBN 9780128115251. [Google Scholar]
- Adetokunboh, A.H.; Obilana, A.O.; Jideani, V.A. Enzyme and Antioxidant Activities of Malted Bambara Groundnut as Affected by Steeping and Sprouting Times. Foods 2022, 11, 783. [Google Scholar] [CrossRef]
- Kramer, P. Management of Malting for Flavor Development and its Impact on Malt Analyses. In Proceedings of the Barley Improvement Conference, Davis, CA, USA, 12 January 2015. [Google Scholar]
- Woffenden, H.M.; Ames, J.M.; Chandra, S.; Anese, M.; Nicoli, M.C. Effect of Kilning on the Antioxidant and Pro-oxidant Activities of Pale Malts. J. Agric. Food Chem. 2002, 50, 4925–4933. [Google Scholar] [CrossRef] [PubMed]
- Lekjing, S.; Venkatachalam, K. Effects of germination time and kilning temperature on the malting characteristics, biochemical and structural properties of HomChaiya rice. RSC Adv. 2020, 10, 16254–16265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Rourke, T. Malt specifications & brewing performance. Brew. Int. 2002, 2, 27–30. [Google Scholar]
- Yahya, H.; Linforth, R.S.T.; Cook, D.J. Flavour generation during commercial barley and malt roasting operations: A time course study. Food Chem. 2014, 145, 378–387. [Google Scholar] [CrossRef]
- Mayer, H.; Ceccaroni, D.; Marconi, O.; Sileoni, V.; Perretti, G.; Fantozzi, P. Development of an all rice malt beer: A gluten free alternative. LWT Food Sci. Technol. 2016, 67, 67–73. [Google Scholar] [CrossRef]
- Murevanhema, Y.Y.; Jideani, V.A. Production and Characterization of Milk Produced from Bambara Groundnut (Vigna subterranea) Varieties. J. Food Process. Preserv. 2015, 39, 1485–1498. [Google Scholar] [CrossRef]
- Simons, C. Color Determination in Food. Available online: https://cwsimons.com/color-determination-in-food/ (accessed on 16 March 2021).
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Agustini, S. Color development in complex model system on various time and temperature. J. Din. Penelit. Ind. 2017, 28, 1–9. [Google Scholar]
- Jha, S.N. (Ed.) Colour Measurements and Modeling. In Nondestructive Evaluation of Food Quality; Springer: Berlin/Heidelberg, Germany, 2010; pp. 17–40. ISBN 978-3-642-15795-0. [Google Scholar]
- Osuji, C.M.; Ofoedu, C.E.; Omeire, G.C.; Ojukwu, M. Colour analysis of syrup from malted and unmalted rice of different varieties. Croat. J. Food Sci. Technol. 2020, 12, 130–138. [Google Scholar] [CrossRef]
- Willaert, R.G.; Baron, G. V Wort Boiling Today-Boiling Systems with Low Thermal Stress in Combination with Volatile Stripping. Cerevisia 2001, 26, 217–230. [Google Scholar]
- Willaert, R. The Beer Brewing Process: Wort Production and Beer Fermentation. In Handbook of Food Products Manufacturing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 443–506. [Google Scholar]
- Giebel, J. Food product development: Malt ingredient solutions. Available online: https://www.preparedfoods.com/articles/116693-food-product-development-malt-ingredient-solutions (accessed on 29 January 2019).
- Felix, O.E. Production of Malt-based Sugar Syrup from Enzymatic Hydrolysis of Malted Sorghum and Millet Grains. Asian Food Sci. J. 2020, 14, 1–17. [Google Scholar] [CrossRef]
- Hansen, B.; Wasdovitch, B. Malt Ingredients in Baked Goods. Cereal Foods World 2005, 50, 18–22. [Google Scholar]
- DeLange, A.J. Estimating Mash pH. Available online: http://themodernbrewhouse.com/wp-content/uploads/2016/11/DeLange-Estimating-Mash-pH.pdf (accessed on 15 December 2021).
- Geurts, J. Specialty Malt Acidity. In Proceedings of the World Brewing Congress 2016, Chilton, WI, USA, 13–17 August 2016. [Google Scholar]
- Liscomb, C.; Bies, D.; Hansen, R. Specialty Malt Contributions to Wort and Beer. J. Am. Soc. Brew. Chem. 2015, 52, 181–190. [Google Scholar] [CrossRef]
- Ofoedu, C.E.; Osuji, C.M.; Omeire, G.C.; Ojukwu, M.; Okpala, C.O.R.; Korzeniowska, M. Functional properties of syrup from malted and unmalted rice of different varieties: A comparative study. J. Food Sci. 2020, 85, 3081–3093. [Google Scholar] [CrossRef] [PubMed]
- Cela, N.; Condelli, N.; Caruso, M.C.; Perretti, G.; Di Cairano, M.; Tolve, R.; Galgano, F. Gluten-free brewing: Issues and perspectives. Fermentation 2020, 6, 53. [Google Scholar] [CrossRef]
- Palmer, G. Barley and Malt. In Handbook of Brewing, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 139–160. ISBN 9781498751926. [Google Scholar]
- DeLange, A.J. Understanding pH and Its Application in Small- Scale Brewing—Part I: Fundamentals and Relevance to Brewhouse Procedures. Available online: https://www.morebeer.com/articles/understanding_ph_in_brewing (accessed on 16 October 2020).
- Ofoedu, C.E.; Akosim, C.Q.; Iwouno, J.O.; Obi, C.D.; Shorstkii, I.; Okpala, C.O.R. Characteristic changes in malt, wort, and beer produced from different Nigerian rice varieties as influenced by varying malting conditions. PeerJ 2021, 9, e10968. [Google Scholar] [CrossRef]
- Gasiński, A.; Błażewicz, J.; Kawa-Rygielska, J.; Śniegowska, J.; Zarzecki, M. Analysis of Physicochemical Parameters of Congress Worts Prepared from Special Legume Seed Malts, Acquired with and without Use of Enzyme Preparations. Foods 2021, 10, 304. [Google Scholar] [CrossRef]
- Fox, G.P. Chemical Composition in Barley Grains and Malt Quality. In Genetics and Improvement of Barley Malt Quality; Springer Science & Business Media: Berlin/Heidelberg, Germany; Springer Science & Business Media: New York, NY, USA, 2009; pp. 63–98. [Google Scholar]
- Stewart, G.G. Adjuncts. In Brewing Materials and Processes; CRC Press: Boca Raton, FL, USA, 2017; pp. 129–144. [Google Scholar]
- Gebeyaw, M. Impact of Malt Barley Varieties on Malt Quality: A Review. Agric. Rev. 2021, 42, 116–119. [Google Scholar] [CrossRef]
- Skendi, A.; Papageorgiou, M. Influence of kilning temperature on chemical composition of a Greek barley malt and its wort properties. Millenium J. Educ. Technol. Health 2018, 2, 49–58. [Google Scholar] [CrossRef]
- Black, K.; Distillery, A.; Scotland, A. Legumes in Distilleries and Breweries—Novel Beverages and High Protein Co-products—TRUE Project. Available online: https://www.true-project.eu/legume-brewing/ (accessed on 13 June 2020).
- Iannetta, P.P.M.; Black, K.; Tziboula-Clarke, A.; White, P.; Walker, G.M. Why Bean Beer? 2018. Available online: https://rke.abertay.ac.uk/ws/portalfiles/portal/15422461/Walker_BeenBeer_Published_2018.pdf (accessed on 13 June 2020).
- Kü, F.; Back, W.; Krottenthaler, M.; Kurz, T. Particle Size Distribution in Wort During Large Scale Brewhouse Operations. Am. Inst. Chem. Eng. AIChE J. 2007, 53, 1373–1388. [Google Scholar] [CrossRef]
- Jin, B.; Li, L.; Liu, G.-Q.; Li, B.; Zhu, Y.-K.; Liao, L.-N. Structural Changes of Malt Proteins During Boiling. Molecules 2009, 14, 1081–1097. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.M.; Coverdale, S.M.; Onley-Watson, K.; Bell, D.; Healy, P. The gel filteration chromatographic-profiles of protein and peptides of wort and beer: Effects of processing—Malting, Mashing, kettle boiling, fermebntation and filtering. Inst. Guild Brew. 2003, 109, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, I.M.; Guido, L.F.; Ferreira, I.M.; Guido, L.F. Impact of Wort Amino Acids on Beer Flavour: A Review. Fermentation 2018, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Parkes, S. Wort Boiling Science. Available online: https://byo.com/article/wort-boiling-homebrew-science/ (accessed on 16 August 2020).
- Karababa, E.; Schwarz, P.B.; Horsley, R.D. Effect of Kiln Schedule on Micromalt Quality Parameters. J. Am. Soc. Brew. Chem. 1993, 51, 163–167. [Google Scholar] [CrossRef]
- Gebremariam, M.M.; Zarnkow, M.; Becker, T. Effect of Drying Temperature and Time on Alpha-Amylase, Beta-Amylase, Limit Dextrinase Activities and Dimethyl Sulphide Level of Teff (Eragrostis tef) Malt. Food Bioprocess Technol. 2013, 6, 3462–3472. [Google Scholar] [CrossRef]
- Uvere, P.O.; Adenuga, O.D.; Mordi, C. The effect of germination and kilning on the cyanogenic potential, amylase and alcohol levels of sorghum malts used for burukutu production. Sci. Food Agric. 2000, 80, 352–358. [Google Scholar] [CrossRef]
- Uriyo, M.G. Changes in enzyme activities during germination of cowpeas (Vigna unguiculata, cv. California blackeye). Food Chem. 2001, 73, 7–10. [Google Scholar] [CrossRef]
- Evans, D.E.; Wallace, W.; Lance, R.C.M.; MacLeod, L.C. Measurement of beta-amylase in malting barley (Hordeum vulgare L.). II. The effect of germination and kilning. J. Cereal Sci. 1997, 26, 241–250. [Google Scholar] [CrossRef]
- Blaise, P.; Phiarais, N.; Wijngaard, H.H.; Arendt, E.K.; Brew, J.I. The Impact of Kilning on Enzymatic Activity of Buckwheat Malt. J. Inst. Brew. 2005, 111, 290–298. [Google Scholar]
- Yousif, A.M.; Evans, D.E. Changes in malt quality during production in two commercial malt houses. J. Inst. Brew. 2020, 126, 233–252. [Google Scholar] [CrossRef]
- Abuajah, C.I. Malting Properties of Sorghum: Kilning Temperatures, Heat and Resultant Effects; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2013. [Google Scholar]
- Bathgate, G.N. A review of malting and malt processing for whisky distillation. J. Inst. Brew. 2016, 122, 197–211. [Google Scholar] [CrossRef]
- Ferrari-John, R.S.; Katrib, J.; Zerva, E.; Davies, N.; Cook, D.J.; Dodds, C.; Kingman, S. Electromagnetic Heating for Industrial Kilning of Malt: A Feasibility Study. Food Bioprocess Technol. 2017, 10, 687–698. [Google Scholar] [CrossRef]
- Rani, K. Extraction and study of kinetic parameters of variety of sprouted pulses β-amylases. Int. J. Pharm. Life Sci. 2012, 3, 1893–1896. [Google Scholar]
- Lewis, M.J.; Young, T.W. Malting biochemistry. In Brewing; Springer: Boston, MA, USA, 2001; pp. 191–204. [Google Scholar]
- Gupta, M.; Abu-Ghannam, N.; Gallaghar, E. Barley for Brewing: Characteristic Changes during Malting, Brewing and Applications of its By-Products. Compr. Rev. Food Sci. Food Saf. 2010, 9, 318–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poisson, G.; Kortz, H.; Field, J.; Fleury, N.; Kmiotek, S.J. Brewing Process Optimization: Mash Efficiency. Ph.D. Dissertation, Worcester Polytechnic Institute, Worcester, MA, USA, 2021. [Google Scholar]
- Parés Viader, R.; Yde, M.S.H.; Hartvig, J.W.; Pagenstecher, M.; Carlsen, J.B.; Christensen, T.B.; Andersen, M.L. Optimization of Beer Brewing by Monitoring α-Amylase and β-Amylase Activities during Mashing. Beverages 2021, 7, 13. [Google Scholar] [CrossRef]
- Gholami Aghel, M.; Hashemiravan, M.; Khorshidpoor, B. Production of Functional Beverage based on Carrot juice, Malt Extract and Ginger Extract. Adv. Biores. 2016, 7, 130–134. [Google Scholar] [CrossRef]
- Lewis, M.J.; Young, T.W. Malting technology: Malt, specialized malts and non-malt adjuncts. In Brewing; Springer: Boston, MA, USA, 2001; pp. 163–190. [Google Scholar]
- De Schepper, C.F.; Michiels, P.; Buvé, C.; Van Loey, A.M.; Courtin, C.M. Starch hydrolysis during mashing: A study of the activity and thermal inactivation kinetics of barley malt α-amylase and β-amylase. Carbohydr. Polym. 2021, 255, 117494. [Google Scholar] [CrossRef]
- O’Rourke, T. The function of enzymes in brewing. Brew. Int. 2002, 2, 14–18. [Google Scholar]
- German Brewing Infusion Mashing. Available online: http://braukaiser.com/wiki/index.php/Infusion_Mashing (accessed on 17 March 2021).
- Mosher, M.; Trantham, K. Brewing Science: A Multidisciplinary Approach; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-319-46393-3. [Google Scholar]
- Henson, C.A.; Duke, S.H.; Bockelman, H.E. Comparisons of modern U.S. and Canadian malting barley cultivars with those from pre-prohibition: II. amylolytic enzyme activities and thermostabilities. J. Am. Soc. Brew. Chem. 2018, 76, 38–49. [Google Scholar] [CrossRef]
- Rani, H.; Bhardwaj, R.D. Quality attributes for barley malt: “The backbone of beer”. J. Food Sci. 2021, 86, 3322–3340. [Google Scholar] [CrossRef]
- Taylor & Francis Group, LLC. Enzymes in Food and Beverage Processing; Chandrasekaran, M., Ed.; Taylor & Francis Group, LLC: Abingdon, UK, 2015; ISBN 9781482221282. [Google Scholar]
- Montanari, L.; Floridi, S.; Marconi, O.; Tironzelli, M.; Fantozzi, P. Effect of mashing procedures on brewing. Eur. Food Res. Technol. 2005, 221, 175–179. [Google Scholar] [CrossRef]
- Herrera-Gamboa, J.G.; López-Alvarado, C.B.; Pérez-Ortega, E.; Damas-Buenrostro, L.C.; Cabada-Amaya, J.C.; Pereyra-Alférez, B. Proteomic analysis of two malting barleys (Hordeum vulgare L.) and their impact on wort quality. J. Cereal Sci. 2018, 80, 150–157. [Google Scholar] [CrossRef]
- Ambra, R.; Pastore, G.; Lucchetti, S. The Role of Bioactive Phenolic Compounds on the Impact of Beer on Health. Molecules 2021, 26, 486. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhao, H.; Chen, J.; Fan, W.; Dong, J.; Kong, W.; Sun, J.; Cao, Y.; Cai, G. Evolution of phenolic compounds and antioxidant activity during malting. J. Agric. Food Chem. 2007, 55, 10994–11001. [Google Scholar] [CrossRef] [PubMed]
- Jannat, B. Antioxidant activity of Iranian barley grain cultivars and their malts. Artic. Afr. J. Food Sci. 2015, 9, 534–539. [Google Scholar] [CrossRef] [Green Version]
- Dvořáková, M.; Guido, L.F.; Dostálek, P.; Skulilová, Z.; Moreira, M.M.; Barros, A.A. Antioxidant Properties of Free, Soluble Ester and Insoluble-Bound Phenolic Compounds in Different Barley Varieties and Corresponding Malts. J. Inst. Brew. 2008, 114, 27–33. [Google Scholar] [CrossRef]
- Nemzer, B.; Lin, Y.; Huang, D. Antioxidants in sprouts of grains. In Sprouted Grains; Elsevier: Amsterdam, The Netherlands, 2019; pp. 55–68. [Google Scholar]
- Inns, E.L.; Buggey, L.A.; Booer, C.; Nursten, H.E.; Ames, J.M. Effect of modification of the kilning regimen on levels of free ferulic acid and antioxidant activity in malt. J. Agric. Food Chem. 2011, 59, 9335–9343. [Google Scholar] [CrossRef]
- Carciochi, R.A.; Dimitrov, K.; Galván D´Alessandro, L. Effect of malting conditions on phenolic content, Maillard reaction products formation, and antioxidant activity of quinoa seeds. J. Food Sci. Technol. 2016, 53, 3978–3985. [Google Scholar] [CrossRef] [Green Version]
- Sovrano, S.; Buiatti, S.; Anese, M. Influence of malt browning degree on lipoxygenase activity. Food Chem. 2006, 99, 711–717. [Google Scholar] [CrossRef]
- Pejin, J.; Grujić, O.; Canadanovic-Brunet, J.; Vujic, D.; Tumbas, V. Investigation of phenolic acids content and antioxidant activity in malt production. J. Am. Soc. Brew. Chem. 2009, 67, 81–88. [Google Scholar] [CrossRef]
- Woffenden, H.M.; Ames, J.M.; Chandra, S. Antioxidant activity, colour and flavour of crystal malt extracts. Int. Congr. Ser. 2002, 1245, 483–484. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Guleria, P. Sustainable Agriculture Reviews 45; Sustainable Agriculture Reviews; Guleria, P., Kumar, V., Lichtfouse, E., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 45, ISBN 978-3-030-53016-7. [Google Scholar]
- Segev, A.; Badani, H.; Kapulnik, Y.; Shomer, I.; Oren-Shamir, M.; Galili, S. Determination of Polyphenols, Flavonoids, and Antioxidant Capacity in Colored Chickpea (Cicer arietinum L.). J. Food Sci. 2010, 75, S115–S119. [Google Scholar] [CrossRef]
- Jideani, V.A.; Diedericks, C.F. Nutritional, Therapeutic, and Prophylactic Properties of Vigna subterranea and Moringa oleifera. In Antioxidant-Antidiabetic Agents and Human Health; InTech: West Palm Beach, FL, USA, 2014; pp. 188–207. [Google Scholar]
- López-Cortez, M.D.S.; Rosales-Martínez, P.; Arellano-Cárdenas, S.; Cornejo-Mazón, M. Antioxidants Properties and Effect of Processing Methods on Bioactive Compounds of Legumes. In Grain Legumes; InTech: London, UK, 2016. [Google Scholar]
- Singh, B.; Singh, J.P.; Shevkani, K.; Singh, N.; Kaur, A. Bioactive constituents in pulses and their health benefits. J. Food Sci. Technol. 2017, 54, 858–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandizvo, T.; Odindo, A.O. Seed coat structural and imbibitional characteristics of dark and light coloured Bambara groundnut (Vigna subterranea L.) landraces. Heliyon 2019, 5, 1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krstanović, V.; Habschied, K.; Dvojković, K.; Mastanjević, K. Research on the Malting Properties of Domestic Wheat Varities. Fermentation 2020, 7, 1. [Google Scholar] [CrossRef]
- Baranwal, D. Malting: An indigenous technology used for improving the nutritional quality of grains- A review. Asian J. Dairy Food Res. 2017, 36, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Limwiwattana, D.; Tongkhao, K.; Na Jom, K. Effect of Sprouting Temperature and Air R elative Humidity on Metabolic Profiles of Sprouting Black Gram (Vigna mungo L.). J. Food Process. Preserv. 2016, 40, 306–315. [Google Scholar] [CrossRef]
- Zhou, K.; Slavin, M.; Lutterodt, H.; Whent, M.; Eskin, N.A.M.; Yu, L. Cereals and Legumes. In Biochemistry of Foods; Elsevier: Amsterdam, The Netherlands, 2013; pp. 3–48. [Google Scholar]
- Tiwari, B.K.; Gowen, A.; McKenna, B. (Eds.) Pulse Foods: Processing, Quality and Nutraceutical Applications; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 978-0-12-382018-1. [Google Scholar]
- Mazahib, A.M.; Nuha, M.O.; Salawa, I.S.; Babiker, E.E. Some nutritional attributes of Bambara groundnut as influenced by domestic processing. Int. Food Res. J. 2013, 20, 1165–1171. [Google Scholar]
- Hardy, Z.; Jideani, A. Functional and Nutritional Characteristics of Bambara Groundnut Milk Powder as an Ingredient in Yoghurt. Masters Dissertation, Cape Peninsula University of Technology, Cape Town, South Africa, 2016. [Google Scholar]
- Duodu, K.G.; Apea-Bah, F.B. African Legumes: Nutritional and Health-Promoting Attributes. In Gluten-Free Ancient Grains; Elsevier: Amsterdam, The Netherlands, 2017; pp. 223–269. ISBN 9780081008911. [Google Scholar]
- Sarkar, A.; Sensarma, S.R. Sustainable Solutions for Food Security: Combating Climate Change by Adaptation, 2019th ed.; Sarkar, A., Sensarma, S.R., VanLoon, G.W., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; ISBN 978-3-319-77877-8. [Google Scholar]
- Nzelu, I.C. Effect of malting on the amino acid profile of red and white/cream colored Bambara Groundnut Seeds’ Flour. Bioglobia 2016, 3, 68–72. [Google Scholar]
- Nie, C.; Wang, C.; Zhou, G.; Dou, F.; Huang, M. Effects of malting conditions on the amino acid compositions of final malt. Afr. J. Biotechnol. 2010, 9, 9018–9025. [Google Scholar] [CrossRef]
- Parr, H.; Bolat, I.; Cook, D. Modelling flavour formation in roasted malt substrates under controlled conditions of time and temperature. Food Chem. 2021, 337, 127641. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Li, Y.; Li, Q.; Gu, G. Factors influencing the organic acids content in final malt. J. Am. Soc. Brew. Chem. 2006, 64, 222–227. [Google Scholar] [CrossRef]
- South, J.B. Changes in organic acid levels during malting. J. Inst. Brew. 1996, 102, 161–166. [Google Scholar] [CrossRef]
- Almeida, C.; Viegas, O.; Meireles, S.; Brandão, T.; Ferreira, I.M.P.L.V.O. Quantification of sugars in Specialty malts by HPLC-IR. In IJUP—Book of Abstracts of the 7th Meeting of Young Researchers of University of Porto/Livro de Resumos do 7. Encontro de Investigação Jovem da U. Porto; Instituto de Ciências Biomédicas Abel Salazar: Rua de Jorge Viterbo Ferreira, Portugal, 2014; Volume 5, p. 83. [Google Scholar]
- Okonkwo, S.I.; Opara, M.F. The analysis of Bambara nut (Voandzeia subterranea (L.) thouars) for sustainability in Africa. Res. J. Appl. Sci. 2010, 5, 394–396. [Google Scholar] [CrossRef]
- Ibrahin, H.; Ogunwusi, I. Industrial Potentials of Bambara Nut. J. Poverty Invest. Dev. 2016, 22, 12–18. [Google Scholar]
- Adeleke, O.R.; Adiamo, O.Q.; Fawale, O.S. Nutritional, physicochemical, and functional properties of protein concentrate and isolate of newly-developed Bambara groundnut (Vigna subterrenea L.) cultivars. Food Sci. Nutr. 2018, 6, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Özcan, M.M.; Aljuhaimi, F.; Uslu, N. Effect of malt process steps on bioactive properties and fatty acid composition of barley, green malt and malt grains. J. Food Sci. Technol. 2018, 55, 226–232. [Google Scholar] [CrossRef]
- Bravi, E.; Marconi, O.; Perretti, G.; Fantozzi, P. Influence of barley variety and malting process on lipid content of malt. Food Chem. 2012, 135, 1112–1117. [Google Scholar] [CrossRef]
- Gerčar, N.; Šmidovnik, A. Kinetics of geometrical isomerization of unsaturated FA in soybean oil. J. Am. Oil Chem. Soc. 2002, 79, 495–500. [Google Scholar] [CrossRef]
- Mateos, L.E.; Tonetto, G.M.; Crapiste, G.H. Isomerization of fatty acids in sunflower oil during heat treatment. Lat. Am. Appl. Res. 2010, 40, 213–217. [Google Scholar]
- Li, Y.; Yu, Y.; Luo, Q.; He, Y.; Tian, Z.; Zhao, Y. Thermally induced isomerization of linoleic acid and α-linolenic acid in Rosa roxburghii Tratt seed oil. Food Sci. Nutr. 2021, 9, 2843–2852. [Google Scholar] [CrossRef] [PubMed]
- Tomislav, M. What is Linoleic Acid? Available online: https://www.news-medical.net/health/What-is-Linoleic-Acid.aspx P (accessed on 28 March 2021).
- Halimi, R.A.; Barkla, B.J.; Mayes, S.; King, G.J. Characteristics of the Underutilised Pulse Bambara Groundnut (Vigna subterranea (L.) Verdc.) Relevant to Food & Nutritional Security. Proceedings 2020, 36, 199. [Google Scholar] [CrossRef] [Green Version]
- Boye, J.I. Nutraceutical and Functional Food Processing Technology; John Wiley & Sons, Ltd: West Sussex, UK, 2015; ISBN 9781118504949. [Google Scholar]
- Bagchi, D.; Preuss, H.G.; Swaroop, A.; Bagchi, D. (Eds.) Nutraceuticals and Functional Foods in Human Health and Disease Prevention; CRC Press: Boca Raton, FL, USA, 2015; ISBN 9780429156939. [Google Scholar]
- García-Lomillo, J.; González-SanJosé, M.L. Pyrazines in thermally treated foods. Encycl. Food Chem. 2018, 2, 353–362. [Google Scholar] [CrossRef]
- Hui, Y.H.; Chandan, R.C.; Clark, S.; Cross, N.; Dobbs, J.; Hurst, W.J.; Nollet, L.M.L.; Shimoni, E.; Sinha, N.; Smith, E.B.; et al. Handbook of Food Products Manufacturing; Hui, Y.H., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; ISBN 9780470113554. [Google Scholar]
- Farah, A. Coffee as a Speciality and Functional Beverage; Woodhead Publishing Limited: Sawston, UK, 2009; ISBN 9781845693428. [Google Scholar]
- Maga, J.A.; Sizer, C.E. Pyrazines in foods. CRC Crit. Rev. Food Technol. 1973, 4, 39–115. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, S.; Nie, Y.; Xu, Y. Quantitative analysis of pyrazines and their perceptual interactions in Soy Sauce aroma type Baijiu. Foods 2021, 10, 441. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, R.; Yang, F.; Xie, Y.; Guo, Y.; Yao, W.; Zhou, W. Control strategies of pyrazines generation from Maillard reaction. Trends Food Sci. Technol. 2021, 112, 795–807. [Google Scholar] [CrossRef]
- Wang, F.; Shen, H.; Liu, T.; Yang, X.; Yang, Y.; Guo, Y. Formation of pyrazines in maillard model systems: Effects of structures of lysine-containing dipeptides/tripeptides. Foods 2021, 10, 273. [Google Scholar] [CrossRef]
- Channell, G.A.; Yahya, H.; Cook, D.J. Thermal volatile generation in barley malt: On-line MS studies. J. Am. Soc. Brew. Chem. 2010, 68, 175–182. [Google Scholar] [CrossRef]
- Oxford University Press, Inc. The Oxford Companion to Beer; Oliver, G., Ed.; Oxford University Press, Inc.: New York, NY, USA, 2012; ISBN 9780195367133. [Google Scholar]
- Mi, X.-J.; Hou, J.-G.; Wang, Z.; Han, Y.; Ren, S.; Hu, J.-N.; Chen, C.; Li, W. The protective effects of maltol on cisplatin-induced nephrotoxicity through the AMPK-mediated PI3K/Akt and p53 signaling pathways. Sci. Rep. 2018, 8, 15922. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Ma, Y.; Wang, L.; Zhang, Y.; Zhou, J. Multispectroscopic studies on the interaction of maltol, a food additive, with bovine serum albumin. Food Chem. 2012, 133, 264–270. [Google Scholar] [CrossRef]
- Anwar-Mohamed, A.; El-Kadi, A.O.S. Induction of cytochrome P450 1a1 by the food flavoring agent, maltol. Toxicol. Vitr. 2007, 21, 685–690. [Google Scholar] [CrossRef] [PubMed]
- KrishnaKumar, V.; Barathi, D.; Mathammal, R.; Balamani, J.; Jayamani, N. Spectroscopic properties, NLO, HOMO–LUMO and NBO of maltol. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 121, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Hong, S.; Iizuka, Y.; Kim, C.Y.; Seong, G.J. The Neuroprotective Effect of Maltol against Oxidative Stress on Rat Retinal Neuronal Cells. Korean J. Ophthalmol. 2015, 29, 58–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Xu, Q.; Hu, J.; Han, X.; Li, W.; Zhao, L. Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice. Nutrients. 2015, 7, 682–696. [Google Scholar] [CrossRef]
- Li, W.; Su, X.-M.; Han, Y.; Xu, Q.; Zhang, J.; Wang, Z.; Wang, Y.-P. Maltol, a Maillard reaction product, exerts anti-tumor efficacy in H22 tumor-bearing mice via improving immune function and inducing apoptosis. RSC Adv. 2015, 5, 101850–101859. [Google Scholar] [CrossRef]
- Mortzfeld, F.B.; Hashem, C.; Vranková, K.; Winkler, M.; Rudroff, F. Pyrazines: Synthesis and Industrial Application of these Valuable Flavor and Fragrance Compounds. Biotechnol. J. 2020, 15, 2000064. [Google Scholar] [CrossRef]
- Fan, W.; Qian, M.C. Characterization of Aroma Compounds of Chinese “Wuliangye” and “Jiannanchun” Liquors by Aroma Extract Dilution Analysis. J. Agric. Food Chem. 2006, 54, 2695–2704. [Google Scholar] [CrossRef]
- Ismarti, I.; Triyana, K.; Fadzillah, N.A.; Nordin, N.F.H. The significance of Maillard reaction for species-specific detection gelatine in food industry. J. Phys. Conf. Ser. 2021, 1731, 012018. [Google Scholar] [CrossRef]
- Sofi, S.A.; Singh, J.; Chhikara, N.; Panghal, A.; Gat, Y. Quality characterization of gluten free noodles enriched with chickpea protein isolate. Food Biosci. 2020, 36, 100626. [Google Scholar] [CrossRef]
- Panghal, A.; Kaur, R.; Janghu, S.; Sharma, P.; Sharma, P.; Chhikara, N. Nutritional, phytochemical, functional and sensorial attributes of Syzygium cumini L. pulp incorporated pasta. Food Chem. 2019, 289, 723–728. [Google Scholar] [CrossRef]
- Medhe, S.; Jain, S.; Anal, A.K. Effects of sprouting and cooking processes on physicochemical and functional properties of moth bean (Vigna aconitifolia) seed and flour. J. Food Sci. Technol. 2019, 56, 2115–2125. [Google Scholar] [CrossRef] [PubMed]
- Atudorei, D.; Stroe, S.-G.; Codină, G.G. Impact of Germination on the Microstructural and Physicochemical Properties of Different Legume Types. Plants 2021, 10, 592. [Google Scholar] [CrossRef] [PubMed]
- Awobusuyi, T.D.; Siwela, M. Nutritional properties and consumer’s acceptance of provitamin a-biofortified amahewu combined with Bambara (Vigna subterranea) flour. Nutrients 2019, 11, 1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montanuci, F.D.; Ribani, M.; de Matos Jorge, L.M.; Matos Jorge, R.M. Effect of steeping time and temperature on malting process. J. Food Process Eng. 2017, 40, e12519. [Google Scholar] [CrossRef]
- Xu, B.; Chang, S.K.C. Total Phenolics, Phenolic Acids, Isoflavones, and Anthocyanins and Antioxidant Properties of Yellow and Black Soybeans As Affected by Thermal Processing. J. Agric. Food Chem. 2008, 56, 7165–7175. [Google Scholar] [CrossRef]
- Rico, D.; Peñas, E.; del Carmen García, M.; Martínez-Villaluenga, C.; Rai, D.K.; Birsan, R.I.; Frias, J.; Martín-Diana, A.B. Sprouted barley flour as a nutritious and functional ingredient. Foods 2020, 9, 296. [Google Scholar] [CrossRef] [Green Version]
- Frank, T.; Meuleye, B.S.; Miller, A.; Shu, Q.-Y.; Engel, K.-H. Metabolite Profiling of Two Low Phytic Acid ( lpa ) Rice Mutants. J. Agric. Food Chem. 2007, 55, 11011–11019. [Google Scholar] [CrossRef]
- Jom, K.N.; Frank, T.; Engel, K.-H. A metabolite profiling approach to follow the sprouting process of mung beans (Vigna radiata). Metabolomics 2011, 7, 102–117. [Google Scholar] [CrossRef]
- Frank, T.; Nörenberg, S.; Engel, K. Metabolite Profiling of Two Novel Low Phytic Acid ( lpa ) Soybean Mutants. J. Agric. Food Chem. 2009, 57, 6408–6416. [Google Scholar] [CrossRef]
- Frank, T.; Scholz, B.; Peter, S.; Engel, K.-H. Metabolite profiling of barley: Influence of the malting process. Food Chem. 2011, 124, 948–957. [Google Scholar] [CrossRef]
- Shu, X.-L.; Frank, T.; Shu, Q.; Engel, K. Metabolite profiling of germinating rice seeds. J. Agric. Food Chem. 2008, 56, 11612–11620. [Google Scholar] [CrossRef] [PubMed]
- Salmerón, I.; Loeza-Serrano, S.; Pérez-Vega, S.; Pandiella, S.S. Headspace gas chromatography (HS-GC) analysis of imperative flavor compounds in Lactobacilli-fermented barley and malt substrates. Food Sci. Biotechnol. 2015, 24, 1363–1371. [Google Scholar] [CrossRef]
- Lopez, A.R. AOAC Official Method 996.06 Fat (Total, Saturated, and Unsaturated) in Foods, hydrolytic extraction gas chromatographic method. In Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Stenerson, K.K. The Derivatization and Analysis of Amino Acids by GC-MS; Merck KGaA: Darmstadt, Germany, 2021. [Google Scholar]
- McGough, M.M.; Sato, T.; Rankin, S.A.; Sindelar, J.J. Reducing sodium levels in frankfurters using naturally brewed soy sauce. Meat Sci. 2012, 91, 69–78. [Google Scholar] [CrossRef] [PubMed]
BGN Speciality Malt | L* | a* | b* | C | h° |
---|---|---|---|---|---|
Base | 74.12 ± 0.29 a | 3.96 ± 0.71 a | 11.85 ± 1.24 a | 12.50 ± 1.30 a | 71.54 ± 2.63 a |
Caramel | 74.24 ± 0.26 a | 4.76 ± 0.86 a | 15.31 ± 0.26 a | 16.04 ± 0.33 a | 72.74 ± 2.98 a |
Roasted | 63.91 ± 0.45 b | 9.87 ± 0.52 b | 22.41 ± 2.55 b | 24.51 ± 2.23 b | 66.05 ± 3.06 b |
Toasted | 45.98 ± 0.27 c | 16.44 ± 0.63 c | 22.68 ± 2.99 b | 28.03 ± 2.80 b | 53.90 ± 2.48 c |
Colour Characteristics | Bambara Groundnut Speciality Malt Syrups | |||
---|---|---|---|---|
Base Malt | Caramel Malt | Roasted Malt | Toasted Malt | |
L* | 49.56 ± 0.15 a | 52.77 ± 0.07 b | 41.43 ± 0.32 c | 28.55 ± 0.69 d |
a* | 8.07 ±1.63 a | 7.78 ± 1.46 a | 9.51 ± 2.64 a | 2.52 ± 0.99 b |
b* | 15.82 ± 1.41 a | 20.28 ± 0.76 b | 16.22 ± 3.12 a | 8.30 ± 1.40 c |
Chroma | 17.82 ± 1.10 a | 21.75 ± 0.70 b | 19.04 ± 1.75 a | 8.68 ± 1.62 c |
Hue angle | 62.94± 5.10 ab | 69.03 ± 3.90 ab | 59.20 ± 11.47 a | 73.53 ± 3.66 b |
Bambara Groundnut Speciality Malt Syrup | pH |
---|---|
Base malt | 5.52 ± 0.06 a |
Caramel malt | 5.13 ± 0.04 b |
Roasted malt | 5.46 ± 0.03 a |
Toasted malt | 5.71 ± 0.01 c |
BGN Speciality Malt | Alpha-Amylase | Beta-Amylase |
---|---|---|
Base | 1.01 ± 0.01 a | 0.11 ± 0.00 a |
Caramel | 0.21 ± 0.00 b | 0.10 ± 0.00 b |
Roasted | 0.29 ± 0.00 c | 0.10 ± 0.00 c |
Toasted | 0.15 ± 0.00 d | 0.06 ± 0.00 d |
BGN Speciality Malt Syrup | α-Amylase | β-Amylase |
---|---|---|
Base malt | 0.39 ± 0.00 a | 0.14 ± 0.00 a |
Caramel malt | 0.31 ± 0.00 b | 0.13 ± 0.00 b |
Roasted malt | 0.30 ± 0.00 b | 0.15 ± 0.00 c |
Toasted malt | 0.31 ± 0.00 c | 0.21 ± 0.00 d |
Bambara Groundnut Speciality Malt | Polyphenol (mg GAE/g) | FRAP (µmol AAE/g) | DPPH (µmol TE/g) |
---|---|---|---|
Base | 1.50 ± 0.09 a | 4.89 ± 0.30 a | 6.36 ± 0.05 a |
Caramel | 1.55 ± 0.07 a | 5.86 ± 0.23 a | 6.81 ± 0.92 a |
Roasted | 3.11 ± 0.25 b | 15.39 ± 0.56 b | 14.13 ± 0.13 b |
Toasted | 2.86 ± 0.23 b | 15.89 ± 0.90 b | 13.70 ± 1.22 b |
BGN Speciality Malt Syrup | Total Polyphenols (mg GAE/g) | FRAP (µmol AAE/g) | DPPH (µmol TE/g) |
---|---|---|---|
Base malt | 0.72 ±0.04 a | 2.00 ± 0.14 b | 1.56 ± 0.13 a |
Caramel malt | 0.65 ± 0.03 a | 1.20 ± 0.02 a | 1.51 ± 0.13 ab |
Roasted malt | 1.20 ± 0.05 b | 2.42 ± 0.05 c | 2.11 ± 0.30 b |
Toasted malt | 1.60 ± 0.19 c | 4.43 ± 0.18 d | 2.96 ± 0.49 c |
Essential Amino Acid | Amino Acids Concentration (mg/g) | |||
---|---|---|---|---|
Base Malt | Caramel Malt | Roasted Malt | Toasted Malt | |
Lysine | 61.97 ± 1.17 a | 52.67 ± 0.17 b | 38.89 ± 0.40 c | 10.72 ± 0.82 d |
Threonine | 15.385 ± 0.05 a | 12.93 ± 0.08 b | 13.55 ± 0.11 c | 9.90 ± 0.01 d |
Phenylalanine | 13.99 ± 0.15 a | 11.25 ± 0.01 b | 12.81 ± 0.18 c | 9.16 ± 0.51 d |
Valine | 12.47 ± 0.31 a | 11.95 ± 0.06 b | 12.14 ± 0.01 ab | 7.91 ± 0.08 c |
Leucine | 11.91 ± 0.23 a | 10.41 ± 0.10 a | 10.45 ± 0.54 a | 11.26 ± 1.42 a |
Isoleucine | 10.60 ± 0.08 a | 9.97 ± 0.02 b | 8.46 ± 0.01 c | 7.25 ± 0.10 d |
Methionine | 4.52 ± 0.04 a | 4.38 ± 0.04 b | 4.24 ± 0.06 c | 1.92 ± 0.05 d |
Non-Essential Amino Acid | ||||
Aspartic acid | 27.45 ± 0.22 a | 21.84 ± 0.05 b | 23.00 ± 0.07 c | 14.46 ± 0.25 d |
Glutamic acid | 22.24 ± 0.06 a | 19.98 ± 0.01 b | 21.44 ± 0.35 c | 13.66 ± 0.04 d |
Cysteine | 22.34 ± 0.01 a | 12.94 ± 0.25 b | 15.38 ± 0.12 c | 7.23 ± 0.36 d |
Serine | 13.10 ± 0.06 a | 10.51 ± 0.00 b | 11.59 ± 0.16 c | 11.75 ± 0.06 c |
Proline | 13.14 ± 0.10 a | 11.62 ± 0.13 b | 11.49 ± 0.52 b | 7.16 ± 0.14 c |
Alanine | 7.87 ± 0.13 a | 7.35 ± 0.01 b | 7.40 ± 0.23 b | 4.05 ± 0.14 c |
Glycine | 7.42 ± 0.01 a | 6.81 ± 0.03 b | 5.73 ± 0.03 c | 2.71 ± 1.93 d |
Tyrosine | 4.73 ± 0.02 a | 4.26 ± 0.04 b | 4.02 ± 0.06 c | 3.06 ± 0.02 d |
Acid, Sugar, and Sugar Alcohol (mg/g) | Bambara Groundnut Speciality Malts | |||
---|---|---|---|---|
Base | Caramel | Roasted | Toasted | |
Lactic acid | 0.04 ± 0.00 ab | 0.01 ± 0.00 a | 0.03 ± 0.00 ab | 0.06 ± 0.00 b |
Fructose | 0.02 ± 0.00 a | 0.07 ± 0.00 a | 0.34 ± 0.03 b | 0.02 ± 0.00 a |
Sucrose | 4.77 ± 1.10 a | 5.27 ± 1.50 a | 9.08 ± 3.10 b | 6.33 ± 0.70 ab |
Myo-inositol | 0.04 ± 0.00 a | 0.22 ± 0.10 ab | 0.47 ± 0.10 bc | 0.76 ± 0.40 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adetokunboh, A.H.; Obilana, A.O.; Jideani, V.A. Physicochemical Characteristics of Bambara Groundnut Speciality Malts and Extract. Molecules 2022, 27, 4332. https://doi.org/10.3390/molecules27144332
Adetokunboh AH, Obilana AO, Jideani VA. Physicochemical Characteristics of Bambara Groundnut Speciality Malts and Extract. Molecules. 2022; 27(14):4332. https://doi.org/10.3390/molecules27144332
Chicago/Turabian StyleAdetokunboh, Adeola Helen, Anthony O. Obilana, and Victoria A. Jideani. 2022. "Physicochemical Characteristics of Bambara Groundnut Speciality Malts and Extract" Molecules 27, no. 14: 4332. https://doi.org/10.3390/molecules27144332
APA StyleAdetokunboh, A. H., Obilana, A. O., & Jideani, V. A. (2022). Physicochemical Characteristics of Bambara Groundnut Speciality Malts and Extract. Molecules, 27(14), 4332. https://doi.org/10.3390/molecules27144332