Interfacial Composition of Surfactant Aggregates in the Presence of Fragrance: A Chemical Trapping Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Trapping with a Probe in Aqueous CTAB/KBr/Aromatic Alcohol Solutions
2.3. Rheological Measurements
2.4. Nuclear Magnetic Resonance (NMR) Spectroscopy
3. Rationale of the Chemical Trapping (CT) Method
4. Results and Discussion
4.1. Aromatic Alcohols Induced Morphological Transitions of the CTAB/KBr System
4.2. Changes in Interfacial Compositions Probed by Chemical Trapping
4.3. Mechanism for the Tight Packing of CinOH in CTAB Aggregates by Nuclear Magnetic Resonance (NMR)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Romsted, L.S. Introduction to Surfactant Self-Assembly. In Encyclopedia of Supramolecular Chemistry: From Molecules to Nanomaterials; Gale, P., Steed, J., Eds.; John Wiley & Sons: New York, NY, USA, 2012; Volume 1, pp. 181–203. [Google Scholar]
- Wang, A.; Shi, W.; Huang, J.; Yan, Y. Adaptive soft molecular self-assemblies. Soft Matter 2016, 12, 337–357. [Google Scholar] [CrossRef] [PubMed]
- Ezrahi, S.; Tuval, E.; Aserin, A. Properties, main applications and perspectives of worm micelles. Adv. Colloid Interface Sci. 2006, 128, 77–102. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Tao, X.; Ren, T.; Weng, Y.; Lin, X.; Zhang, Y.; Tang, X. Polypeptide-based vesicles: Formation, properties and application for drug delivery. J. Mater. Chem. 2012, 22, 17404–17414. [Google Scholar] [CrossRef]
- Dreiss, C.A. Wormlike micelles: Where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 2007, 3, 956–970. [Google Scholar] [CrossRef]
- Zana, R.; Kaler, E.W. Giant Micelles: Properties and Applications; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Cates, M.E. Reptation of living polymers: Dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules 1987, 20, 2289–2296. [Google Scholar] [CrossRef]
- Cates, M.E. Dynamics of living polymers and exible surfactant micelles: Scaling laws for dilution. J. Phys. France 1988, 49, 1593–1600. [Google Scholar] [CrossRef]
- Ogura, T.; Sato, T.; Abe, M.; Okano, T. Small Angle X-ray Scattering and Electron Spin Resonance Spectroscopy Study on Fragrance-Infused Cationic Vesicles Modeling Scent-Releasing Fabric Softeners. J. Oleo Sci. 2018, 67, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Romsted, L.S. Do amphiphile aggregate morphologies and interfacial compositions depend primarily on interfacial hydration and ion-specific interactions? The evidence from chemical trapping. Langmuir 2007, 23, 414–424. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Gao, Y.; Zhang, Y.; Zhao, L.; Xu, B.; Romsted, L.S. Effects of interfacial specific cations and water molarities on AOT micelle-to-vesicle transitions by chemical trapping: The specific ion-pair/hydration model. Phys. Chem. Chem. Phys. 2019, 21, 8633–8644. [Google Scholar] [CrossRef]
- Yao, K.X.; Sun, L.J.; Ding, X.X.; Wang, Y.Z.; Liu, T.Z.; Liu, C.Y.; Tan, J.J.; Zhao, L.; Xu, B.C.; Romsted, L. Simultaneous determination of interfacial molarities of an alcohol, bromide ion, and water during an alcohol induced microstructural transition: The difference between medium and long chain alcohols. Soft Matter 2020, 16, 5148–5156. [Google Scholar] [CrossRef]
- Pérez-Fuentes, L.; Bastos-González, D.; Faraudo, J.; Drummond, C. Effect of organic and inorganic ions on the lower critical solution transition and aggregation of PNIPAM. Soft Matter 2018, 14, 7818–7828. [Google Scholar] [CrossRef] [PubMed]
- Rajkhowa, S.; Mahiuddin, S.; Dey, J.; Kumar, S.; Aswal, V.K.; Biswas, R.; Kohlbrecher, J.; Ismail, K. The effect of temperature, composition and alcohols on the microstructures of catanionic mixtures of sodium dodecylsulfate and cetyltrimethylammonium bromide in water. Soft Matter 2017, 13, 3556–3567. [Google Scholar] [CrossRef] [PubMed]
- Thapa, U.; Dey, J.; Kumar, S.; Hassan, P.; Aswal, V.; Ismail, K. Tetraalkylammonium ion induced micelle-to-vesicle transition in aqueous sodium dioctylsulfosuccinate solutions. Soft Matter 2013, 9, 11225–11232. [Google Scholar] [CrossRef]
- Tian, J.-N.; Ge, B.-Q.; Shen, Y.-F.; He, Y.-X.; Chen, Z.-X. Thermodynamics and Structural Evolution during a Reversible Vesicle–Micelle Transition of a Vitamin-Derived Bolaamphiphile Induced by Sodium Cholate. J. Agric. Food Chem. 2016, 64, 1977–1988. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.; Fieber, W. Viscoelasticity of anionic wormlike micelles: Effects of ionic strength and small hydrophobic molecules. Soft Matter 2013, 9, 1203–1213. [Google Scholar] [CrossRef]
- Pleines, M.; Kunz, W.; Zemb, T.; Benczédi, D.; Fieber, W. Molecular factors governing the viscosity peak of giant micelles in the presence of salt and fragrances. J. Colloid Interface Sci. 2019, 537, 682–693. [Google Scholar] [CrossRef]
- Scognamiglio, J.; Jones, L.; Letizia, C.S.; Api, A.M. Fragrance material review on beta-methylphenethyl alcohol. Food Chem. Toxicol. 2012, 50, S199–S203. [Google Scholar] [CrossRef]
- Gonzalez, B.; Vazquez, J.; Morcillo-Parra, M.A.; Mas, A.; Torija, M.J.; Beltran, G. The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability. Food Microbiol. 2018, 74, 64–74. [Google Scholar] [CrossRef]
- Chithralekha, N.; Panneerselvam, A. Surfactant-Alcohol interactions: An ultrasonic, UV and FTIR analysis. Vacuum 2019, 168, 108835. [Google Scholar] [CrossRef]
- Lu, F.; Shi, L.; Yan, H.; Yang, X.; Zheng, L. Aggregation behavior of dodecyltriphenylphosphonium bromide in aqueous solution: Effect of aromatic ionic liquids. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 203–211. [Google Scholar] [CrossRef]
- Dai, C.; Li, W.; Cui, Y.; Sun, Y.; Wu, W.; Xu, Z.; Liu, Y.; Yang, Z.; Wu, X. The effect of functional groups on the sphere-to-wormlike micellar transition in quaternary ammonium surfactant solutions. Colloids Surf. A Physicochem. Eng. Asp. 2016, 500, 32–39. [Google Scholar] [CrossRef]
- Lutz-Bueno, V.; Pasquino, R.; Liebi, M.; Kohlbrecher, J.; Fischer, P. Viscoelasticity Enhancement of Surfactant Solutions Depends on Molecular Conformation: Influence of Surfactant Headgroup Structure and Its Counterion. Langmuir 2016, 32, 4239–4250. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.H.; Miranda, P.C.M.L.; Morgon, N.H.; Heerdt, G.; Dreiss, C.A.; Sabadini, E. Molecular Variations in Aromatic Cosolutes: Critical Role in the Rheology of Cationic Wormlike Micelles. Langmuir 2014, 30, 11535–11542. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.B.; Mao, M.; Zhu, B.Y. The surface physico-chemical properties of surfactants in ethanol-water mixtures. Colloid Surf. A-Physicochem. Eng. Asp. 1999, 155, 339–348. [Google Scholar] [CrossRef]
- Zdziennicka, A.; Jańczuk, B. Modification of adsorption, aggregation and wetting properties of surfactants by short chain alcohols. Adv. Colloid Interface Sci. 2020, 284, 102249. [Google Scholar] [CrossRef]
- Mahbub, S.; Shahriar, I.; Iqfath, M.; Hoque, M.A.; Halim, M.A.; Khan, M.A.; Rub, M.A.; Asiri, A.M. Influence of alcohols/electrolytes on the interaction of reactive red dye with surfactant and removal of dye from solutions. J. Environ. Chem. Eng. 2019, 7, 103364. [Google Scholar] [CrossRef]
- Sidim, T.; Acar, G. Alcohols Effect on Critic Micelle Concentration of Polysorbate 20 and Cetyl Trimethyl Ammonium Bromine Mixed Solutions. J. Surfactants Deterg. 2013, 16, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Chen, X.; Zhao, Y.; Xie, Y.; Qiu, H. Effects of alcohols and counterions on the phase behavior of 1-octyl-3-methylimidazolium chloride aqueous solution. J. Phys. Chem. B 2007, 111, 11708–11713. [Google Scholar] [CrossRef]
- Li, C.; He, J.; Liu, J.; Yu, Z.; Zhang, Q.; He, C.; Hong, W. Self-assembly of lyotropic liquid crystal phases in ternary systems of 1,2-dimethyl-3-hexadecylimidazolium bromide/1-decanol/water. J. Colloid Interface Sci. 2010, 342, 354–360. [Google Scholar] [CrossRef]
- Karayil, J.; Kumar, S.; Hassan, P.A.; Talmon, Y.; Sreejith, L. Microstructural transition of aqueous CTAB micelles in the presence of long chain alcohols. RSC Adv. 2015, 5, 12434–12441. [Google Scholar] [CrossRef]
- Sreejith, L.; Parathakkat, S.; Nair, S.M.; Kumar, S.; Varma, G.; Hassan, P.A.; Talmon, Y. Octanol-triggered self-assemblies of the CTAB/KBr system: A microstructural study. J. Phys. Chem. B 2010, 115, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Kuperkar, K.C.; Mata, J.P.; Bahadur, P. Effect of 1-alkanols/salt on the cationic surfactant micellar aqueous solutions—A dynamic light scattering study. Colloids Surf. A Physicochem. Eng. Asp. 2011, 380, 60–65. [Google Scholar] [CrossRef]
- Moreira, L.A.; Firoozabadi, A. Thermodynamic Modeling of the Duality of Linear 1-Alcohols as Cosurfactants and Cosolvents in Self-Assembly of Surfactant Molecules. Langmuir 2009, 25, 12101–12113. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, A.; Loughlin, J.A.; Romsted, L.S.; Yao, J. Arenediazonium salts: New probes of the interfacial compositions of association colloids. 1. Basic approach, methods, and illustrative applications. J. Am. Chem. Soc. 1993, 115, 8351. [Google Scholar] [CrossRef]
- Sun, L.; Gong, J.; Xu, B.; Wang, Y.; Ding, X.; Zhang, Y.; Liu, C.; Zhao, L.; Xu, B. Ion-Specific Effects on Vesicle-to-Micelle Transitions of an Amino Acid Surfactant Probed by Chemical Trapping. Langmuir 2022, 38, 6295–6304. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Cai, J.J.; Scriven, L.E.; Davis, H.T. Spherical-to-Wormlike Micelle Transition in CTAB Solutions. J. Phys. Chem. 1994, 98, 5984–5993. [Google Scholar] [CrossRef]
- Kern, F.; Lequeux, F.; Zana, R.; Candau, S.J. Dynamic Properties of Salt-Free Viscoelastic Micellar Solutions. Langmuir 1994, 10, 1714–1723. [Google Scholar] [CrossRef]
- Chakraborty, G.; Bardhan, S.; Ghosh, S.; Saha, S.K. Relevance of pi-stacking in tuning the neighboring structural pattern of soft nano-aggregates. J. Mol. Liq. 2020, 317, 114013. [Google Scholar] [CrossRef]
- Chakraborty, G.; Chowdhury, M.P.; Hassan, P.A.; Tsuchiya, K.; Torigoe, K.; Saha, S.K. Interaction of Tyrosine Analogues with Quaternary Ammonium Head Groups at the Micelle/Water Interface and Contrasting Effect of Molecular Folding on the Hydrophobic Outcome and End-Cap Geometry. J. Phys. Chem. B 2018, 122, 2355–2367. [Google Scholar] [CrossRef]
- Ravani, A.; Shukla, A.; Sastry, N.V.; Shah, D.O.; Mishra, M.K. Micellar catalyzed hydroxylation of 1,2,3-trichloro-4,6-dinitrobenzene: Role of cationic head group-pi interaction. J. Mol. Liq. 2020, 301, 112429. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, H.; Wang, W. π-π stacking interaction in mixed surfactant solutions assembled by cationic surfactant and organic salt with a naphthalene nucleus. J. Mol. Liq. 2017, 240, 14–20. [Google Scholar] [CrossRef]
- Hunter, C.A.; Sanders, J.K.M. The nature of π-π interactions. J. Am. Chem. Soc. 1990, 112, 5525–5534. [Google Scholar] [CrossRef]
- Yao, J.; Romsted, L.S. Arenediazonium salts: New probes of the compositions of association colloids. 7. average hydration numbers and cl-concentrations in the surfactant film of nonionic c12e5/octane/water macroemulsions: Temperature and nacl concentration effects. Langmuir 2000, 16, 8771–8779. [Google Scholar] [CrossRef]
[CinOH] | Peak Areas (102 mAU·s) | Observed Yields (%) | Normalized Yields (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
(mM) | 16-ArOH | 16-ArBr | 16-ArOCin | 16-ArOH | 16-ArBr | 16-ArOCin | Total | 16-ArOHN | 16-ArBrN | 16-ArOCinN |
0 | 30.42 | 23.50 | 0 | 69.3 | 29.4 | 0 | 98.7 | 70.2 | 29.8 | 0 |
10 | 22.45 | 17.05 | 4.19 | 62.0 | 25.8 | 4.23 | 92.0 | 67.3 | 28.1 | 4.60 |
30 | 20.14 | 14.16 | 8.88 | 55.9 | 22.2 | 9.00 | 87.1 | 64.2 | 25.6 | 10.3 |
50 | 16.99 | 11.43 | 8.30 | 64.5 | 23.8 | 11.6 | 99.9 | 64.6 | 23.9 | 11.6 |
70 | 16.75 | 10.25 | 9.34 | 63.6 | 21.4 | 13.0 | 97.9 | 64.9 | 21.8 | 13.3 |
100 | 13.72 | 7.02 | 13.98 | 57.3 | 16.1 | 21.4 | 94.8 | 60.5 | 17.0 | 22.6 |
150 | 14.98 | 7.04 | 17.23 | 56.9 | 14.7 | 24.0 | 95.5 | 59.6 | 15.4 | 25.1 |
200 | 13.50 | 6.04 | 19.61 | 51.3 | 12.6 | 27.3 | 91.1 | 56.3 | 13.8 | 29.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, J.; Yao, K.; Sun, Q.; Sun, Y.; Sun, L.; Liu, C.; Xu, B.; Tan, J.; Zhao, L.; Xu, B. Interfacial Composition of Surfactant Aggregates in the Presence of Fragrance: A Chemical Trapping Study. Molecules 2022, 27, 4333. https://doi.org/10.3390/molecules27144333
Gong J, Yao K, Sun Q, Sun Y, Sun L, Liu C, Xu B, Tan J, Zhao L, Xu B. Interfacial Composition of Surfactant Aggregates in the Presence of Fragrance: A Chemical Trapping Study. Molecules. 2022; 27(14):4333. https://doi.org/10.3390/molecules27144333
Chicago/Turabian StyleGong, Jiani, Kaixin Yao, Qihan Sun, Yujia Sun, Lijie Sun, Changyao Liu, Bo Xu, Jiajing Tan, Li Zhao, and Baocai Xu. 2022. "Interfacial Composition of Surfactant Aggregates in the Presence of Fragrance: A Chemical Trapping Study" Molecules 27, no. 14: 4333. https://doi.org/10.3390/molecules27144333
APA StyleGong, J., Yao, K., Sun, Q., Sun, Y., Sun, L., Liu, C., Xu, B., Tan, J., Zhao, L., & Xu, B. (2022). Interfacial Composition of Surfactant Aggregates in the Presence of Fragrance: A Chemical Trapping Study. Molecules, 27(14), 4333. https://doi.org/10.3390/molecules27144333