Kinetic Analysis of Methane Hydrate Formation with Butterfly Turbine Impellers
Abstract
:1. Introduction
2. Results and Discussion
3. Reactor Design
4. Conclusions
- Experiments with a single impeller indicated that the butterfly turbine impeller with surface baffle has the best performance among the single-impeller experiments for the first 30 min after induction time.
- In dual-impeller experiments, half baffle and then surface baffle had the highest values of rate of hydrate formation.
- The induction time was less in both single- and dual-impeller experiments with the presence of full baffle.
- The single and dual-impeller experiment with full baffle achieved the highest formation rate constant values, meaning that the rate of gas consumption for CH4 hydrate formation with full baffle (no central vortex through the hours after induction time) was the fastest.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sloan, E.D. Natural gas hydrates. J. Pet Technol. 1991, 43, 1414–1417. [Google Scholar] [CrossRef]
- Sloan, E.D. Fundamental principles and applications of natural gas hydrates. Nature 2003, 426, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Longinos, S.N.; Longinou, D.D.; Achinas, S. Natural gas hydrates: Possible environmental issues. In Contemporary Environmental Issues and Challenges in Era of Climate Change; Springer: Singapore, 2020; pp. 277–293. [Google Scholar]
- Longinos, S.N.; Parlaktuna, M. The effect of experimental conditions on methane hydrate formation by the use of single and dual impellers. React. Kinet. Mech. Catal. 2021, 132, 771–794. [Google Scholar] [CrossRef]
- Gudmundsson, J.S.; Parlaktuna, M.; Khokhar, A.A. Storage of natural gas as frozen hydrate. SPE Prod. Facil. 1994, 9, 69–73. [Google Scholar] [CrossRef]
- Englezos, P.; Lee, J.D. Gas hydrates: A cleaner source of energy and opportunity for innovative technologies. Korean J. Chem. Eng. 2005, 22, 671–681. [Google Scholar] [CrossRef]
- Merey, Ş.; Longinos, S. The role of natural gas hydrate during natural gas transportation. Ömer Halisdemir Üniversitesi Üniversitesi Mühendislik Bilimleri Derg. 2018, 7, 937–953. [Google Scholar] [CrossRef]
- Koh, C.A.; Sloan, E.D.; Sum, A.K.; Wu, D.T. Fundamentals and applications of gas hydrates. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 237–257. [Google Scholar] [CrossRef]
- Longinos, S.N.; Parlaktuna, M. Kinetic analysis of CO2 hydrate formation by the use of different impellers. React. Kinet. Mech. Catal. 2021, 133, 85–100. [Google Scholar] [CrossRef]
- Hao, W.; Wang, J.; Fan, S.; Hao, W. Study on methane hydration process in a semi-continuous stirred tank reactor. Energy Convers. Manag. 2007, 48, 954–960. [Google Scholar] [CrossRef]
- Servio, P.; Englezos, P. Effect of temperature and pressure on the solubility of carbon dioxide in water in the presence of gas hydrate. Fluid Phase Equilib. 2001, 190, 127–134. [Google Scholar] [CrossRef]
- Daraboina, N.; Ripmeester, J.; Walker, V.K.; Englezos, P. Natural gas hydrate formation and decomposition in the presence of kinetic inhibitors. 3. Structural and compositional changes. Energy Fuels 2011, 25, 4398–4404. [Google Scholar] [CrossRef]
- Mork, M. Formation Rate of Natural Gas Hydrate-Reactor Experiments and Models. Ph.D. Thesis, Fakultet for Ingeniørvitenskap og Teknologi, Norwegian University of Science and Technology, Trondheim, Norway, 2002. [Google Scholar]
- Longinos, S.N.; Parlaktuna, M. Examination of methane hydrate formation by the use of dual impeller combinations. React. Kinet. Mech. Catal. 2021, 133, 729–740. [Google Scholar] [CrossRef]
- Longinos, S.N.; Parlaktuna, M. Kinetic analysis of arginine, glycine and valine on methane (95%)–propane (5%) hydrate formation. React. Kinet. Mech. Catal. 2021, 133, 741–751. [Google Scholar] [CrossRef]
- Douïeb, S.; Fradette, L.; Bertrand, F.; Haut, B. Impact of the fluid flow conditions on the formation rate of carbon dioxide hydrates in a semi-batch stirred tank reactor. AIChE J. 2015, 61, 4387–4401. [Google Scholar] [CrossRef]
- Rezaei, M.; Azimian, A.R.; Toghraie, D. Molecular dynamics study of an electro-kinetic fluid transport in a charged nanochannel based on the role of the stern layer. Phys. A Stat. Mech. Its Appl. 2015, 426, 25–34. [Google Scholar] [CrossRef]
- Toghraie, D. Numerical thermal analysis of water’s boiling heat transfer based on a turbulent jet impingement on heated surface. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 84, 454–465. [Google Scholar] [CrossRef]
- Cai, W.; Sabetvand, R.; Abed, A.M.; Toghraie, D.; Hekmatifar, M.; Rahbari, A.; Yasin, G.; Abdulkadhim, A.H.; Smaisim, G.F. Thermal analysis of hydration process in the vicinity of the Copper matrix using molecular dynamics simulation for application in thermal engineering. Energy Rep. 2022, 8, 7468–7475. [Google Scholar] [CrossRef]
- Atiemo-Obeng, V.A.; Kresta, S.M.; Paul, E.L. (Eds.) Handbook of Industrial Mixing; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Kresta, S.M.; Etchells, A.W., III; Dickey, D.S.; Atiemo-Obeng, V.A. (Eds.) Advances in Industrial Mixing: A Companion to the Handbook of Industrial Mixing; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Adamiak, R.; Karcz, J. Efects of type and number of impellers and liquid viscosity on the power characteristics of mechanically agitated gas—Liquid systems. Chem. Pap. 2007, 61, 16–23. [Google Scholar] [CrossRef]
- Birch, D.; Ahmed, N. The infuence of sparger design and location on gas dispersion in stirred vessels. Chem. Eng. Res. Des. 1997, 75, 487–496. [Google Scholar] [CrossRef]
- Kamali, R.; Mansoorifar, A.; Manshadi, M.D. Effect of baffle geometry on mixing performance in the passive micromixers. Iran J. Sci. Technol. Trans. Mech. Eng. 2014, 38, 351. [Google Scholar]
- Stoots, C.M.; Calabrese, R.V. Mean velocity feld relative to a Rushton turbine blade. AIChE J. 1995, 41, 1–11. [Google Scholar] [CrossRef]
- Yoon, H.S.; Hill, D.F.; Balachandar, S.; Adrian, R.J.; Ha, M.Y. Reynolds number scaling of fowin a Rushton turbine stirred tank. Part I—Mean fow, circular jet and tip vortex scaling. Chem. Eng. Sci. 2005, 60, 3169–3183. [Google Scholar] [CrossRef] [Green Version]
- Youcef, S.; Bouzit, M.; Ameur, H.; Kamla, Y.; Youcef, A. Efect of some design parameters on the fow felds and power consumption in a vessel stirred by a Rushton turbine. Chem. Process Eng. 2013, 34, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Ayatzhan, A.; Tashenov, A.; Nurgeldi, A.; Zhanar, O.; Zhexenbek, T.; Kaldibek, A.; Nuraje, N. P(DADMAAC-co-DMAA): Synthesis, thermal stability, and kinetics. Polym. Adv. Technol. 2021, 32, 2669–2675. [Google Scholar] [CrossRef]
- Houari, A.; Mohamed, B.; Abdellah, G. Numerical study of the performance of multistage Scaba 6SRGT impellers for the agitation of yield stress fuids in cylindrical tanks. J. Hydrodyn. 2015, 27, 436–442. [Google Scholar]
- Ameur, H.; Kamla, Y.; Sahel, D. CFD simulations of mixing characteristics of radial impellers in cylindrical reactors. ChemistrySelect 2016, 1, 2548–2551. [Google Scholar] [CrossRef]
- Longinos, S.N.; Longinou, D.D.; Celebi, E.; Toktarbay, Z.; Parlaktuna, M. Kinetic study of methane hydrate formation with the use of a surface baffle. React. Kinet. Mech. Catal. 2021, 134, 75–86. [Google Scholar] [CrossRef]
- Lee, B.I.; Kesler, M.G. A generalized thermodynamic correlation based on three-parameter corresponding states. AIChE J. 1975, 21, 510–527. [Google Scholar] [CrossRef]
System | Induction Time (Hours–Minutes) | Period of Hydrate Formation (Hours) | Hydrate Growth Rate for 30 Minutes, R30 (10−8 mol/s) | Hydrate Yield/Conversion of Water to Hydrate (mol%) | Standard Error |
---|---|---|---|---|---|
SI-BT-FB | 2 min | 3 h | 7.74 | 3.35 | 1.25/1.01 |
SI-BT-HB | 1 h and 20 min | 3 h | 19.90 | 5.80 | 1.47/1.09 |
SI-BT-SB | 1 h and 21 min | 3 h | 42.0 | 9.75 | 1.35/1.28 |
SI-BT-NB | 10 h and 36 min | 3 h | 20.50 | 5.92 | 1.68/1.11 |
DI-BT-FB | 2 min | 3 h | 11.0 | 1.83 | 1.59/1.04 |
DI-BT-HB | 1 h and 58 min | 3 h | 28.80 | 2.20 | 1.85/1.28 |
DI-BT-SB | 4 h and 2 min | 3 h | 23.0 | 2.65 | 1.77/1.14 |
DI-BT-NB | 2 h and 6 min | 3 h | 13.70 | 2.03 | 1.92/1.35 |
Time (s) | 1 | 600 | 1200 | 1800 |
---|---|---|---|---|
Hydrate formation rate (mole/s) | 10−8 | 10−8 | 10−8 | 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longinos, S.N.; Longinou, D.D.; Myrzakhmetova, N.; Akimbayeva, N.; Zhursumbaeva, M.; Abdiyev, K.; Toktarbay, Z.; Parlaktuna, M. Kinetic Analysis of Methane Hydrate Formation with Butterfly Turbine Impellers. Molecules 2022, 27, 4388. https://doi.org/10.3390/molecules27144388
Longinos SN, Longinou DD, Myrzakhmetova N, Akimbayeva N, Zhursumbaeva M, Abdiyev K, Toktarbay Z, Parlaktuna M. Kinetic Analysis of Methane Hydrate Formation with Butterfly Turbine Impellers. Molecules. 2022; 27(14):4388. https://doi.org/10.3390/molecules27144388
Chicago/Turabian StyleLonginos, Sotirios Nik., Dionisia Dimitra Longinou, Nurbala Myrzakhmetova, Nazgul Akimbayeva, Mariamkul Zhursumbaeva, Kaldibek Abdiyev, Zhexenbek Toktarbay, and Mahmut Parlaktuna. 2022. "Kinetic Analysis of Methane Hydrate Formation with Butterfly Turbine Impellers" Molecules 27, no. 14: 4388. https://doi.org/10.3390/molecules27144388
APA StyleLonginos, S. N., Longinou, D. D., Myrzakhmetova, N., Akimbayeva, N., Zhursumbaeva, M., Abdiyev, K., Toktarbay, Z., & Parlaktuna, M. (2022). Kinetic Analysis of Methane Hydrate Formation with Butterfly Turbine Impellers. Molecules, 27(14), 4388. https://doi.org/10.3390/molecules27144388