Supported Gold Nanoparticle-Catalyzed Selective Reduction of Multifunctional, Aromatic Nitro Precursors into Amines and Synthesis of 3,4-Dihydroquinoxalin-2-Ones
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Conditions Evaluation
2.2. Catalytic Application for the Sythesis of Several Multifunctional Amines
2.3. Synthetic Application towards the One-Pot Synthesis of 3,4-Dihydroquinoxalin-2-Ones
2.4. Library Analysis of the Dihydroquinoxalin-2-Ones
3. Conclusions
4. Materials and Methods
4.1. General and Aparatus
4.2. Synthesis of Nitro Compounds via the Ugi-Smiles MCR
4.3. Synthesis of Nitro Compounds via the Ugi-Tetrazole MCR
4.4. Synthesis of Nitro Compounds via the Ugi-Four MCR
4.5. Catalytic Reduction for Synthesis of the Corresponding Amines 1a–21a
4.6. Lab-Scale Reduction for Synthesis of 1a and 14a
4.7. One-Pot Process for Synthesis of the 3,4-Dihydroquinoxalin-2-Ones 16b–21b
4.8. Lab-Scale Synthesis of Dihydroquinoxalin-2-One 17b
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Orlandi, M.; Brenna, D.; Harms, R.; Jost, S.; Benaglia, M. Recent Developments in the Reduction of Aromatic and Aliphatic Nitro Compounds to Amines. Org. Process Res. Dev. 2018, 22, 430–445. [Google Scholar] [CrossRef]
- Blaser, H.-U.; Steiner, H.; Studer, M. Selective Catalytic Hydrogenation of Functionalized Nitroarenes: An Update. ChemCatChem 2009, 1, 210–221. [Google Scholar] [CrossRef]
- Takale, B.S.; Bao, M.; Yamamoto, Y. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis. Org. Biomol. Chem. 2014, 12, 2005–2027. [Google Scholar] [CrossRef]
- Liu, X.; He, L.; Liu, Y.-M.; Cao, Y. Supported Gold Catalysis: From Small Molecule Activation to Green Chemical Synthesis. Acc. Chem. Res. 2014, 47, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Mikami, Y.; Dhakshinamoorthy, A.; Alvaro, M.; García, H. Catalytic activity of unsupported gold nanoparticles. Catal. Sci. Technol. 2012, 3, 58–69. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008, 37, 2096–2126. [Google Scholar] [CrossRef] [PubMed]
- Mitsudome, T.; Kaneda, K. Gold nanoparticle catalysts for selective hydrogenations. Green Chem. 2013, 15, 2636–2654. [Google Scholar] [CrossRef]
- Stratakis, M.; Garcia, H. Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes. TL—112. Chem. Rev. 2012, 112, 4469–4506. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, X.; Shi, F.; Deng, Y. Nano-Gold Catalysis in Fine Chemical Synthesis. Chem. Rev. 2012, 112, 2467–2505. [Google Scholar] [CrossRef]
- Abbiati, G.; Rossi, E. Silver and gold-catalyzed multicomponent reactions. Beilstein J. Org. Chem. 2014, 10, 481–513. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.-Y.; Gao, Z.-W.; Yang, K.-F.; Zhang, W.-Q.; Xu, L.-W. Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal. Sci. Technol. 2015, 5, 2554–2574. [Google Scholar] [CrossRef]
- Bhosale, M.A.; Bhanage, B.M. Silver Nanoparticles: Synthesis, Characterization and their Application as a Sustainable Catalyst for Organic Transformations. Curr. Org. Chem. 2015, 19, 708–727. [Google Scholar] [CrossRef]
- Abou El-Nour, K.M.M.; Eftaiha, A.; Al-Warthan, A.; Ammar, R.A.A. Synthesis and Applications of Silver Nanoparticles. Arab. J. Chem. 2010, 3, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Díez-González, S.; Nolan, S.P. Copper, Silver, and Gold Complexes in Hydrosilylation Reactions. Acc. Chem. Res. 2008, 41, 349–358. [Google Scholar] [CrossRef]
- Jagadeesh, R.V.; Wienhöfer, G.; Westerhaus, F.A.; Surkus, A.E.; Pohl, M.M.; Junge, H.; Junge, K.; Beller, M. Efficient and Highly Selective Iron-Catalyzed Reduction of Nitroarenes. Chem. Commun. 2011, 47, 10972–10974. [Google Scholar] [CrossRef]
- Jagadeesh, R.V.; Surkus, A.E.; Junge, H.; Pohl, M.M.; Radnik, J.; Rabeah, J.; Huan, H.; Schünemann, V.; Brückner, A.; Beller, M. Nanoscale Fe2O3-Based Catalysts for Selective Hydrogenation of Nitroarenes to Anilines. Science 2013, 342, 1073–1076. [Google Scholar] [CrossRef]
- Jagadeesh, R.V.; Stemmler, T.; Surkus, A.E.; Junge, H.; Junge, K.; Beller, M. Hydrogenation Using Iron Oxide–Based Nanocatalysts for the Synthesis of Amines. Nat. Protoc. 2015, 10, 548–557. [Google Scholar] [CrossRef]
- Junge, K.; Wendt, B.; Shaikh, N.; Beller, M. Iron-Catalyzed Selective Reduction of Nitroarenes to Anilines Using Organosilanes. Chem. Commun. 2010, 46, 1769–1771. [Google Scholar] [CrossRef]
- Wienhöfer, G.; Baseda-Krüger, M.; Ziebart, C.; Westerhaus, F.A.; Baumann, W.; Jackstell, R.; Junge, K.; Beller, M. Hydrogenation of Nitroarenes Using Defined Iron–Phosphine Catalysts. Chem. Commun. 2013, 49, 9089–9091. [Google Scholar] [CrossRef]
- Jagadeesh, R.V.; Junge, H.; Beller, M. Green Synthesis of Nitriles Using Non-Noble Metal Oxides-Based Nanocatalysts. Nat. Commun. 2014, 51, 4123. [Google Scholar] [CrossRef] [Green Version]
- Westerhaus, F.A.; Jagadeesh, R.V.; Wienhöfer, G.; Pohl, M.M.; Radnik, J.; Surkus, A.E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M.; et al. Heterogenized Cobalt Oxide Catalysts for Nitroarene Reduction by Pyrolysis of Molecularly Defined Complexes. Nat. Chem. 2013, 5, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Renaud, J.L.; Gaillard, S. Recent Advances in Iron- and Cobalt-Complex-Catalyzed Tandem/Consecutive Processes Involving Hydrogenation. Synthesis 2016, 48, 3659–3683. [Google Scholar] [CrossRef]
- Pellissier, H.; Clavier, H. Enantioselective Cobalt-Catalyzed Transformations. Chem. Rev. 2014, 114, 2775–2823. [Google Scholar] [CrossRef] [PubMed]
- Filonenko, G.A.; Van Putten, R.; Hensen, E.J.M.; Pidko, E.A. Catalytic (de)Hydrogenation Promoted by Non-Precious Metals—Co, Fe and Mn: Recent Advances in an Emerging Field. Chem. Soc. Rev. 2018, 47, 1459–1483. [Google Scholar] [CrossRef] [Green Version]
- Trost, B.M. The Atom Economy—A Search for Synthetic Efficiency. Science 1991, 254, 1471–1477. [Google Scholar] [CrossRef]
- Kolesnikov, P.N.; Yagafarov, N.Z.; Usanov, D.L.; Maleev, V.I.; Chusov, D. Ruthenium-Catalyzed Reductive Amination without an External Hydrogen Source. Org. Lett. 2015, 17, 173–175. [Google Scholar] [CrossRef]
- Gkizis, P.L.; Stratakis, M.; Lykakis, I.N. Catalytic Activation of Hydrazine Hydrate by Gold Nanoparticles: Chemoselective Reduction of Nitro Compounds into Amines. Catal. Commun. 2013, 36, 48–51. [Google Scholar] [CrossRef]
- Vasilikogiannaki, E.; Gryparis, C.; Kotzabasaki, V.; Lykakis, I.N.; Stratakis, M. Facile Reduction of Nitroarenes into Anilines and Nitroalkanes into Hydroxylamines via the Rapid Activation of Ammonia⋅ Borane Complex by Supported Gold Nanoparticles. Adv. Synth. Catal. 2013, 355, 907–911. [Google Scholar] [CrossRef]
- Fountoulaki, S.; Daikopoulou, V.; Gkizis, P.L.; Tamiolakis, I.; Armatas, G.S.; Lykakis, I.N. Mechanistic Studies of the Reduction of Nitroarenes by NaBH4 or Hydrosilanes Catalyzed by Supported Gold Nanoparticles. ACS Catal. 2014, 4, 3504–3511. [Google Scholar] [CrossRef]
- Tzani, M.A.; Kallitsakis, M.G.; Symeonidis, T.S.; Lykakis, I.N. Alumina-Supported Gold Nanoparticles as a Bifunctional Catalyst for the Synthesis of 2-Amino-3-Arylimidazo[1,2-a]Pyridines. ACS Omega 2018, 3, 17947–17956. [Google Scholar] [CrossRef] [Green Version]
- Kallitsakis, M.G.; Ioannou, D.I.; Terzidis, M.A.; Kostakis, G.E.; Lykakis, I.N. Selective Photoinduced Reduction of Nitroarenes to N-Arylhydroxylamines. Org. Lett. 2020, 22, 4339–4343. [Google Scholar] [CrossRef] [PubMed]
- Andreou, D.; Iordanidou, D.; Tamiolakis, I.; Armatas, G.S.; Lykakis, I.N. Reduction of Nitroarenes into Aryl Amines and N-Aryl Hydroxylamines via Activation of NaBH4 and Ammonia-Borane Complexes by Ag/TiO2 Catalyst. Nanomaterials 2016, 6, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charistoudi, E.; Kallitsakis, M.G.; Charisteidis, I.; Triantafyllidis, K.S.; Lykakis, I.N. Selective Reduction of Azines to Benzyl Hydrazones with Sodium Borohydride Catalyzed by Mesoporous Silica-Supported Silver Nanoparticles: A Catalytic Route towards Pyrazole Synthesis. Adv. Synth. Catal. 2017, 359, 2949–2960. [Google Scholar] [CrossRef]
- Iordanidou, D.; Zarganes-Tzitzikas, T.; Neochoritis, C.G.; Dömling, A.; Lykakis, I.N. Application of Silver Nanoparticles in the Multicomponent Reaction Domain: A Combined Catalytic Reduction Methodology to Efficiently Access Potential Hypertension or Inflammation Inhibitors. ACS Omega 2018, 3, 16005–16013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dömling, A.; Wang, W.; Wang, K. Chemistry and Biology of Multicomponent Reactions. Chem. Rev. 2012, 112, 3083–3135. [Google Scholar] [CrossRef] [Green Version]
- Dömling, A. Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev. 2006, 106, 17–89. [Google Scholar] [CrossRef]
- Slobbe, P.; Ruijter, E.; Orru, R.V.A. Recent Applications of Multicomponent Reactions in Medicinal Chemistry. MedChemComm 2012, 3, 1189–1218. [Google Scholar] [CrossRef]
- Zarganes-Tzitzikas, T.; Chandgude, A.L.; Dömling, A. Multicomponent Reactions, Union of MCRs and Beyond. Chem. Rec. 2015, 15, 981–996. [Google Scholar] [CrossRef]
- Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent Reactions: Advanced Tools for Sustainable Organic Synthesis. Green Chem. 2014, 16, 2958–2975. [Google Scholar] [CrossRef]
- Touré, B.B.; Hall, D.G. Natural Product Synthesis Using Multicomponent Reaction Strategies. Chem. Rev. 2009, 109, 4439–4486. [Google Scholar] [CrossRef]
- Dömling, A.; Ugi, I. Multicomponent Reactions with Isocyanides. Angew. Chem. Int. Ed. 2000, 39, 3168–3210. [Google Scholar] [CrossRef]
- Galal, S.A.; Abdelsamie, A.S.; Soliman, S.M.; Mortier, J.; Wolber, G.; Ali, M.M.; Tokuda, H.; Suzuki, N.; Lida, A.; Ramadan, R.A.; et al. Design, Synthesis and Structure–Activity Relationship of Novel Quinoxaline Derivatives as Cancer Chemopreventive Agent by Inhibition of Tyrosine Kinase Receptor. Eur. J. Med. Chem. 2013, 69, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Tanimori, S.; Nishimura, T.; Kirihata, M. Synthesis of Novel Quinoxaline Derivatives and Its Cytotoxic Activities. Bioorg. Med. Chem. Lett. 2009, 19, 4119–4121. [Google Scholar] [CrossRef] [PubMed]
- Amano, Y.; Yamaguchi, T.; Tanabe, E. Structural Insights into Binding of Inhibitors to Soluble Epoxide Hydrolase Gained by Fragment Screening and X-Ray Crystallography. Bioorg. Med. Chem. 2014, 22, 2427–2434. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, L.; Xu, B.; Yang, L.Y.; Zhang, J.; Zhang, H.; Zhou, J. Design, Synthesis and Biological Evaluation of Dihydroquinoxalinone Derivatives as BRD4 Inhibitors. Bioorg. Chem. 2016, 68, 236–244. [Google Scholar] [CrossRef]
- Gitto, R.; Barreca, M.L.; De Luca, L.; Chimirri, A. New Trends in the Development of AMPA Receptor Antagonists. Expert Opin. Ther. Pat. 2004, 14, 1199–1213. [Google Scholar] [CrossRef]
- Wang, Y.; Wach, J.Y.; Sheehan, P.; Zhong, C.; Zhan, C.; Harris, R.; Almo, S.C.; Bishop, J.; Haggarty, S.J.; Ramek, A.; et al. Diversity-Oriented Synthesis as a Strategy for Fragment Evolution against GSK3β. ACS Med. Chem. Lett. 2016, 7, 852–856. [Google Scholar] [CrossRef] [Green Version]
- Kanyiva, K.S.; Horiuchi, M.; Shibata, T. Metal-Free N–H/C–H Coupling for Efficient Asymmetric Synthesis of Chiral Dihydroquinoxalinones from Readily Available α-Amino Acids. Eur. J. Org. Chem. 2018, 2018, 1067–1070. [Google Scholar] [CrossRef]
- Li, D.; Ollevier, T. Iron- or Zinc-Mediated Synthetic Approach to Enantiopure Dihydroquinoxalinones. Eur. J. Org. Chem. 2019, 2019, 1273–1280. [Google Scholar] [CrossRef]
- Jiang, Q.; Jiang, D.; Jiang, Y.; Fu, H.; Zhao, Y. A Mild and Efficient Method for Copper-Catalyzed Ullmann-Type N-Arylation of Aliphatic Amines and Amino Acids. Synlett 2007, 2007, 1836–1842. [Google Scholar] [CrossRef]
- Tanimori, S.; Kashiwagi, H.; Nishimura, T.; Kirihata, M. A General and Practical Access to Chiral Quinoxalinones with Low Copper-Catalyst Loading. Adv. Synth. Catal. 2010, 352, 2531–2537. [Google Scholar] [CrossRef]
- Neagoie, C.; Krchňák, V. Piperazine Amide Linker for Cyclative Cleavage from Solid Support: Traceless Synthesis of Dihydroquinoxalin-2-Ones. ACS Comb. Sci. 2012, 14, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Carbain, B.; Schütznerová, E.; Přibylka, A.; Krchňák, V. Solid-Phase Synthesis of 3,4-Dihydroquinoxalin-2(1H)-Ones via the Cyclative Cleavage of N-Arylated Carboxamides. Adv. Synth. Catal. 2016, 358, 701–706. [Google Scholar] [CrossRef]
- Dalvi, P.B.; Lin, S.F.; Paike, V.; Sun, C.M. Microwave-Assisted Multicomponent Synthesis of Dihydroquinoxalinones on Soluble Polymer Support. ACS Comb. Sci. 2015, 17, 421–425. [Google Scholar] [CrossRef]
- Xue, Z.Y.; Jiang, Y.; Peng, X.Z.; Yuan, W.C.; Zhang, X.M. The First General, Highly Enantioselective Lewis Base Organo- Catalyzed Hydrosilylation of Benzoxazinones and Quinoxalinones. Adv. Synth. Catal. 2010, 352, 2132–2136. [Google Scholar] [CrossRef]
- Rueping, M.; Tato, F.; Schoepke, F.R. The First General, Efficient and Highly Enantioselective Reduction of Quinoxalines and Quinoxalinones. Chem. Eur. J. 2010, 16, 2688–2691. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, B.; Xu, M.H. Rhodium-Catalyzed Asymmetric Arylation of N-and O-Containing Cyclic Aldimines: Facile and Efficient Access to Highly Optically Active 3,4-Dihydrobenzo[1,4]Oxazin-2-Ones and Dihydroquinoxalinones. Org. Chem. Front. 2016, 3, 944–948. [Google Scholar] [CrossRef]
- Zhao, Z.B.; Li, X.; Chen, M.W.; Zhao, Z.K.; Zhou, Y.G. Biomimetic Asymmetric Reduction of Benzoxazinones and Quinoxalinones Using Ureas as Transfer Catalysts. Chem. Commun. 2020, 56, 7309–7312. [Google Scholar] [CrossRef]
- Núñez-Rico, J.L.; Vidal-Ferran, A. [Ir(P-OP)]-Catalyzed Asymmetric Hydrogenation of Diversely Substituted C=N-Containing Heterocycles. Org. Lett. 2013, 15, 2066–2069. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, C.; Xu, X.; Zhao, H.; Han, J.; Li, H.; Xu, L.; Fan, Q.; Xiao, J. Metal-Free Tandem Cyclization/Hydrosilylation to Construct Tetrahydroquinoxalines. Green Chem. 2018, 20, 403–411. [Google Scholar] [CrossRef]
- Li, J.L.; Han, B.; Jiang, K.; Du, W.; Chen, Y.C. Organocatalytic Enantioselective Hetero-Diels–Alder Reaction of Aldehydes and o-Benzoquinone Diimide: Synthesis of Optically Active Hydroquinoxalines. Bioorg. Med. Chem. Lett. 2009, 19, 3952–3954. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Qiu, R.; Xue, X.; Pan, Y.; Xu, C.; Li, H.; Xu, L. Versatile (Pentamethylcyclopentadienyl)Rhodium-2,2′-Bipyridine (Cp*Rh-Bpy) Catalyst for Transfer Hydrogenation of N-Heterocycles in Water. Adv. Synth. Catal. 2015, 357, 3529–3537. [Google Scholar] [CrossRef]
- Chen, M.W.; Deng, Z.; Yang, Q.; Huang, J.; Peng, Y. Enantioselective Synthesis of Trifluoromethylated Dihydroquinoxalinones via Palladium-Catalyzed Hydrogenation. Org. Chem. Front. 2019, 6, 746–750. [Google Scholar] [CrossRef]
- Kamila, S.; Biehl, E.R. Synthetic Studies of Bioactive Quinoxalinones: A Facile Approach to Potent Euglycemic and Hypolipidemic Agents. Heterocycles 2006, 68, 1931–1939. [Google Scholar] [CrossRef]
- Lee, Y.M.; Park, Y.S. (S)-Mandelate-Mediated Dynamic Kinetic Resolution of α-Bromo Esters for Asymmetric Syntheses of Aminoflavones, Dihydroquinoxalinones and Dihydrobenzoxazinones. Heterocycles 2009, 78, 2233–2244. [Google Scholar] [CrossRef]
- Kim, Y.; Park, K.J.; Choi, Y.S.; Lee, M.S.; Park, Y.S. L-Lactate-Mediated Dynamic Kinetic Resolution of α-Bromo Esters for Asymmetric Syntheses of α-Amino Acid Derivatives. Bull. Korean Chem. Soc. 2013, 34, 2531–2534. [Google Scholar] [CrossRef] [Green Version]
- Volpe, C.; Meninno, S.; Crescenzi, C.; Mancinelli, M.; Mazzanti, A.; Lattanzi, A. Catalytic Enantioselective Access to Dihydroquinoxalinones via Formal α-Halo Acyl Halide Synthon in One Pot. Angew. Chem. Int. Ed. 2021, 60, 23819–23826. [Google Scholar] [CrossRef]
- Abraham, C.J.; Paull, D.H.; Scerba, M.T.; Grebinski, J.W.; Lectka, T. Catalytic, Enantioselective Bifunctional Inverse Electron Demand Hetero-Diels-Alder Reactions of Ketene Enolates and o-Benzoquinone Diimides. J. Am. Chem. Soc. 2006, 128, 13370–13371. [Google Scholar] [CrossRef]
- Huang, R.; Chen, X.; Mou, C.; Luo, G.; Li, Y.; Li, X.; Xue, W.; Jin, Z.; Chi, Y.R. Carbene-Catalyzed α-Carbon Amination of Chloroaldehydes for Enantioselective Access to Dihydroquinoxaline Derivatives. Org. Lett. 2019, 21, 4340–4344. [Google Scholar] [CrossRef]
- Rostoll-Berenguer, J.; Blay, G.; Muñoz, M.C.; Pedro, J.R.; Vila, C. A Combination of Visible-Light Organophotoredox Catalysis and Asymmetric Organocatalysis for the Enantioselective Mannich Reaction of Dihydroquinoxalinones with Ketones. Org. Lett. 2019, 21, 6011–6015. [Google Scholar] [CrossRef]
- Oble, J.; El Kaïm, L.; Gizzi, M.; Grimaud, L. Ugi-Smiles Access to Quinoxaline Derivatives. Heterocycles 2007, 73, 503–517. [Google Scholar] [CrossRef]
- Entwiste, I.D.; Johnstone, R.A.W.; Povall, T.J. Selective rapid transfer-hydrogenation of aromatic nitro-compounds. J. Chem. Soc. Perkin Trans. 1975, 1, 1300–1301. [Google Scholar] [CrossRef]
- Huang, Y.; Khoury, K.; Chanas, T.; Dömling, A. Multicomponent Synthesis of Diverse 1,4-Benzodiazepine Scaffolds. Org. Lett. 2012, 14, 5916–5919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulme, C.; Peng, J.; Morton, G.; Salvino, J.M.; Herpin, T.; Labaudiniere, R. Novel Safety-Catch Linker and Its Application with a Ugi/De-BOC/Cyclization (UDC) Strategy to Access Carboxylic Acids, 1,4-Benzodiazepines, Diketopiperazines, Ketopiperazines and Dihydroquinoxalinones. Tetrahedron Lett. 1998, 39, 7227–7230. [Google Scholar] [CrossRef]
- El Kaïm, L.; Grimaud, L.; Oble, J. Phenol Ugi–Smiles Systems: Strategies for the Multicomponent N-Arylation of Primary Amines with Isocyanides, Aldehydes, and Phenols. Angew. Chem. Int. Ed. 2005, 117, 8175–8178. [Google Scholar] [CrossRef]
- El Kaim, L.; Grimaud, L. Beyond the Ugi Reaction: Less Conventional Interactions between Isocyanides and Iminium Species. Tetrahedron 2009, 65, 2153–2171. [Google Scholar] [CrossRef]
- Neochoritis, C.G.; Dömling, A. Towards a Facile and Convenient Synthesis of Highly Functionalized Indole Derivatives Based on Multi-Component Reactions. Org. Biomol. Chem. 2014, 12, 1649–1651. [Google Scholar] [CrossRef] [Green Version]
- Ugi, I. Neuere Methoden Der Präparativen Organischen Chemie IV Mit Sekundär-Reaktionen Gekoppelte α-Additionen von Immonium-Ionen Und Anionen an Isonitrile. Angew. Chem. 1962, 74, 9–22. [Google Scholar] [CrossRef]
- Gunawan, S.; Hulme, C. Bifunctional Building Blocks in the Ugi-Azide Condensation Reaction: A General Strategy toward Exploration of New Molecular Diversity. Org. Biomol. Chem. 2013, 11, 6036–6046. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas-Galindo, L.E.; Islas-Jácome, A.; Alvarez-Rodríguez, N.V.; El Kaim, L.; Gámez-Montaño, R. Synthesis of 2-Tetrazolylmethyl-2,3,4,9-Tetrahydro-1H-β-Carbolines by a One-Pot Ugi-Azide/Pictet–Spengler Process. Synthesis 2014, 46, 49–56. [Google Scholar] [CrossRef]
- Zarganes-Tzitzikas, T.; Patil, P.; Khoury, K.; Herdtweck, E.; Dömling, A. Concise Synthesis of Tetrazole–Ketopiperazines by Two Consecutive Ugi Reactions. Eur. J. Org. Chem. 2015, 2015, 51–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, P.; Khoury, K.; Herdtweck, E.; Dömling, A. MCR Synthesis of a Tetracyclic Tetrazole Scaffold. Bioorg. Med. Chem. 2015, 23, 2699–2715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, P.; Zhang, J.; Kurpiewska, K.; Kalinowska-Tłuścik, J.; Dömling, A. Hydrazine in the Ugi Tetrazole Reaction. Synthesis 2016, 48, 1122–1130. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Patil, P.; Kurpiewska, K.; Kalinowska-Tluscik, J.; Dömling, A. Two Cycles with One Catch: Hydrazine in Ugi 4-CR and Its Postcyclizations. ACS Comb. Sci. 2017, 19, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Kotzabasaki, V.; Lykakis, I.N.; Gryparis, C.; Psyllaki, A.; Vasilikogiannaki, E.; Stratakis, M. Gold-Catalyzed Dehydrogenative Cycloaddition of Tethered 1,n-Dihydrodisilanes to Alkynes. Organometallics 2013, 32, 665–672. [Google Scholar] [CrossRef]
- Sander, T.; Freyss, J.; Von Korff, M.; Rufener, C. DataWarrior: An Open-Source Program for Chemistry Aware Data Visualization and Analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef]
- Kroon, E.; Kurpiewska, K.; Kalinowska-Tłuścik, J.; Dömling, A. Cleavable β-Cyanoethyl Isocyanide in the Ugi Tetrazole Reaction. Org. Lett. 2016, 18, 4762–4765. [Google Scholar] [CrossRef]
Entry | Catalyst [a] | Solvent [a] | Reducing Agent (eq.) [a] | Time (h) | 1%/1a% [b] |
---|---|---|---|---|---|
1 | - | THF/MeOH | NaBH4 or LiBH4 (2) | 18 | 100/0 |
2 | - | THF/MeOH | NH3BH3 (2) | 18 | 100/0 |
3 [c] | - | THF | LiAlH4 (2) | 18 | 43/0 |
4 [c] | - | THF | NaH (3) | 18 | 47/0 |
5 | Au/TiO2 | THF/MeOH | NH3BH3 (2) | 18 | 0/>99 (78) |
6 | Au/TiO2 | THF/MeOH | LiBH4 (2) | 1 | 0/>99 (62) |
7 | Au/TiO2 | THF/MeOH | NaBH4 (2) | 1 | 0/>99 (81) |
8 | Au/TiO2 | THF | NaBH4 (2) | 24 | 0/>99 (79) |
9 | Au/TiO2 | MeOH | NaBH4 (2) | 18 | 0/>99 (84) |
10 | Au/TiO2 | THF/MeOH | NaBH4 (1) | 18 | 40/60 (48) |
11 | - | THF/MeOH | TMDS (2) | 24 | 100/0 |
12 | Au/TiO2 | THF/MeOH | TMDS (2) | 1 | 0/>99 (89) |
13 | Au/TiO2 | THF/MeOH | TMDS (1) | 1 | 37/63 (55) |
14 | Au/TiO2 | MeOH | TMDS (2) | 24 | 0/>99 (85) |
15 | Au/TiO2 | THF/MeOH | DMPS (4) | 1 | 0/>99 (81) |
16 | Au/TiO2 | THF/MeOH | DPS (4) | 1.5 | 0/>99 (85) |
17 | Au/TiO2 | THF/MeOH | (EtO)3SiH (4) | 24 | 100/0 |
18 | Au/TiO2 | THF/MeOH | Et3SiH (4) | 1 | 0/>99 (92) |
19 | Au/TiO2 | THF/MeOH | (TMS)3SiH (4) | 2 | 27/73 (61) |
20 [c,d] | AuCl3 | THF/MeOH | Et3SiH (4) | 3 | 74/0 |
21 [c,d] | AuCl3 | THF/MeOH | TMDS (2) | 1 | 71/0 |
22 [c,d] | AuCl | THF/MeOH | Et3SiH (4) | 3 | 74/0 |
23 [c,d] | AuCl | THF/MeOH | TMDS (2) | 1 | 79/0 |
24 [c,d] | Ph3PAuNTf2 | THF/MeOH | Et3SiH (4) | 3 | 78/0 |
25 [c,d] | Ph3PAuNTf2 | THF/MeOH | TMDS (2) | 1 | 82/0 |
26 [c] | Au/Al2O3 | THF/MeOH | Et3SiH (4) | 2 | 0/80 (75) |
27 [c] | Au/Al2O3 | THF/MeOH | TMDS (2) | 2 | 0/83 (77) |
28 [c] | Au/ZnO | THF/MeOH | Et3SiH (4) | 3 | 81/0 |
29 | Au/ZnO | THF/MeOH | TMDS (2) | 3 | 97/3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iordanidou, D.; Kallitsakis, M.G.; Tzani, M.A.; Ioannou, D.I.; Zarganes-Tzitzikas, T.; Neochoritis, C.G.; Dömling, A.; Terzidis, M.A.; Lykakis, I.N. Supported Gold Nanoparticle-Catalyzed Selective Reduction of Multifunctional, Aromatic Nitro Precursors into Amines and Synthesis of 3,4-Dihydroquinoxalin-2-Ones. Molecules 2022, 27, 4395. https://doi.org/10.3390/molecules27144395
Iordanidou D, Kallitsakis MG, Tzani MA, Ioannou DI, Zarganes-Tzitzikas T, Neochoritis CG, Dömling A, Terzidis MA, Lykakis IN. Supported Gold Nanoparticle-Catalyzed Selective Reduction of Multifunctional, Aromatic Nitro Precursors into Amines and Synthesis of 3,4-Dihydroquinoxalin-2-Ones. Molecules. 2022; 27(14):4395. https://doi.org/10.3390/molecules27144395
Chicago/Turabian StyleIordanidou, Domna, Michael G. Kallitsakis, Marina A. Tzani, Dimitris I. Ioannou, Tryfon Zarganes-Tzitzikas, Constantinos G. Neochoritis, Alexander Dömling, Michael A. Terzidis, and Ioannis N. Lykakis. 2022. "Supported Gold Nanoparticle-Catalyzed Selective Reduction of Multifunctional, Aromatic Nitro Precursors into Amines and Synthesis of 3,4-Dihydroquinoxalin-2-Ones" Molecules 27, no. 14: 4395. https://doi.org/10.3390/molecules27144395
APA StyleIordanidou, D., Kallitsakis, M. G., Tzani, M. A., Ioannou, D. I., Zarganes-Tzitzikas, T., Neochoritis, C. G., Dömling, A., Terzidis, M. A., & Lykakis, I. N. (2022). Supported Gold Nanoparticle-Catalyzed Selective Reduction of Multifunctional, Aromatic Nitro Precursors into Amines and Synthesis of 3,4-Dihydroquinoxalin-2-Ones. Molecules, 27(14), 4395. https://doi.org/10.3390/molecules27144395