Recent Advances in Self-Assembly and Application of Para-Aramids
Abstract
:1. Introduction
2. Self-Assembly of PPTA
2.1. Self-Assembly of Modified PPTA
2.2. Polymerization-Induced Self-Assembly of PPTA
3. The Assembly of PPTA Nanofibers and the Applications
3.1. Para-Aramid Paper
3.2. All-Aramid Structural Materials
3.3. Para-Aramid Aerogel
3.4. PANF/Polymer Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tanner, D.; Fitzgerald, J.A.; Phillips, B.R. The Kevlar story-an advanced materials case study. Angew. Chem. Int. Ed. Engl. 1989, 28, 649–654. [Google Scholar] [CrossRef]
- Chae, H.G.; Kumar, S. Rigid-rod polymeric fibers. J. Appl. Polym. Sci. 2006, 100, 791–802. [Google Scholar] [CrossRef]
- Garcia, J.M.; Garcia, F.C.; Serna, F.; de la Pena, J.L. High-performance aromatic polyamides. Prog. Polym. Sci. 2010, 35, 623–686. [Google Scholar] [CrossRef]
- Khodadadi, A.; Liaghat, G.; Vahid, S.; Sabet, A.R.; Hadavinia, H. Ballistic performance of Kevlar fabric impregnated with nanosilica/PEG shear thickening fluid. Compos. Part B 2019, 162, 643–652. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.; Li, X.; Lv, J.W.; Liu, Y.; Liu, X.Y. Constructing a new tear-resistant skin for aramid fiber to enhance composites interfacial performance based on the interfacial shear stability. Appl. Surf. Sci. 2021, 544, 148935. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421. [Google Scholar] [CrossRef] [Green Version]
- Qiu, H.; Hudson, Z.M.; Winnik, M.A.; Manners, I. Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles. Science 2015, 347, 1329–1332. [Google Scholar] [CrossRef] [Green Version]
- Philp, D.; Stoddart, J.F. Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. 1996, 35, 1154–1196. [Google Scholar] [CrossRef]
- O’Leary, L.E.R.; Fallas, J.A.; Bakota, E.L.; Kang, M.K.; Hartgerink, J.D. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat. Chem. 2011, 3, 821–828. [Google Scholar] [CrossRef]
- Lopes, W.A.; Jaeger, H.M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 2001, 414, 735–738. [Google Scholar] [CrossRef]
- Graham, J.F.; McCague, C.; Warren, O.L.; Norton, P.R. Spatially resolved nanomechanical properties of kevlar® fibers. Polymer 2000, 41, 4761–4764. [Google Scholar] [CrossRef]
- Rebouillat, S.; Peng, J.C.M.; Donnet, J.B. Surface structure of kevlar® fiber studied by atomic force microscopy and inverse gas chromatography. Polymer 1999, 40, 7341–7350. [Google Scholar] [CrossRef]
- Du, S.; Wang, W.; Yan, Y.; Zhang, J.; Tian, M.; Zhang, L.; Wan, X. A facile synthetic route to poly(p-phenylene terephthalamide) with dual functional groups. Chem. Commun. 2014, 50, 9929–9931. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, S.; Zhao, N.; Xu, J.; Shen, Z.; Fan, X.-H.; Zhou, Q.-F. Facile synthesis and characterization of soluble aramid containing polar hydroxyl side group. Polymer 2022, 238, 124411. [Google Scholar] [CrossRef]
- Sheng, S.-R.; Pei, X.-L.; Huang, Z.-Z.; Liu, X.-L.; Song, C.-S. Novel soluble fluorinated aromatic polyamides derived from 2-(4-trifluoromethylphenoxy)terephthaloyl chloride with various aromatic diamines. Eur. Polym. J. 2009, 45, 230–236. [Google Scholar] [CrossRef]
- Wang, W.; Qi, X.; Guan, Y.; Zhang, F.; Zhang, J.; Yan, C.; Zhu, Y.; Wan, X. Synthesis and properties of poly(p-phenylene terephthalamide) bearing both polar and unsaturated substituents introduced via claisen rearrangement reaction. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 2050–2059. [Google Scholar] [CrossRef]
- Takayanagi, M.; Goto, K. Preparation and properties of graft and block copolymers of poly(p-phenylene terephthalamide) with polybutadiene. J. Appl. Polym. Sci. 1984, 29, 2057–2067. [Google Scholar] [CrossRef]
- Moore, D.R.; Mathias, L.J. Molecular composites via in situ polymerization: Poly(phenylene terephthalamide)–nylon 3. J. Appl. Polym. Sci. 1986, 32, 6299–6315. [Google Scholar] [CrossRef]
- More, A.S.; Pasale, S.K.; Wadgaonkar, P.P. Synthesis and characterization of polyamides containing pendant pentadecyl chains. Eur. Polym. J. 2010, 46, 557–567. [Google Scholar] [CrossRef]
- Liu, B.-W.; Long, J.-W.; Chen, L.; Xiao, X.-X.; Lin, X.-B.; Wang, Y.-Z. Semi-aromatic polyamides containing fluorenyl pendent toward excellent thermal stability, mechanical properties and dielectric performance. Polymer 2021, 224, 123757. [Google Scholar] [CrossRef]
- Hsiao, S.-H.; Lin, K.-H. Soluble aromatic polyamides bearing asymmetrical diaryl ether groups. Polymer 2004, 45, 7877–7885. [Google Scholar] [CrossRef]
- Patil, A.S.; Medhi, M.; Sadavarte, N.V.; Wadgaonkar, P.P.; Maldar, N.N. Synthesis and characterization of novel aromatic–aliphatic polyamides from bis-[(4-aminobenzyl)-4-benzamide] ether. Mater. Sci. Eng. B 2010, 168, 111–116. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, M.; Wang, R.; Ping, J.; Zhang, X.; Zhao, N.; Xu, J.; Shen, Z.; Fan, X. Synthesis and characterization of new aramids based on o-(m-triphenyl)-terephthaloyl chloride and m-(m-triphenyl)-isophthaloyl chloride. Polymer 2017, 109, 49–57. [Google Scholar] [CrossRef]
- Du, S.; Zhang, J.; Guan, Y.; Wan, X. Sequence effects on properties of the poly(p-phenylene terephthalamide)-based macroinitiators and their comb-like copolymers grafted by polystyrene side chains. Aust. J. Chem. 2014, 67, 39–48. [Google Scholar] [CrossRef]
- Yun, H.C.; Chu, E.Y.; Han, Y.K.; Lee, J.L.; Kwei, T.K.; Okamoto, Y. Gelation of sulfonated rigid polymers. Macromolecules 1997, 30, 2185–2186. [Google Scholar] [CrossRef]
- Viale, S.; Jager, W.F.; Picken, S.J. Synthesis and characterization of a water-soluble rigid-rod polymer. Polymer 2003, 44, 7843–7850. [Google Scholar] [CrossRef]
- Viale, S.; Best, A.S.; Mendes, E.; Jager, W.F.; Picken, S.J. A supramolecular nematic phase in sulfonated polyaramides. Chem. Commun. 2004, 10, 1596–1597. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-C.; Wang, K.-L.; Chang, C.-H.; Liao, Y.-A.; Liaw, D.-J.; Lee, K.-R.; Lai, J.-Y. Solvent response and protonation effects of novel aramides containing pyridine and unsymmetrical carbazole moieties. Macromolecules 2013, 46, 7443–7450. [Google Scholar] [CrossRef]
- Liang, Q.; Liu, P.; Liu, C.; Jian, X.; Hong, D.; Li, Y. Synthesis and properties of lyotropic liquid crystalline copolyamides containing phthalazinone moiety and ether linkages. Polymer 2005, 46, 6258–6265. [Google Scholar] [CrossRef]
- Seyler, H.; Kilbinger, A.F.M. Hairy aramide rod−coil copolymers. Macromolecules 2010, 43, 5659–5664. [Google Scholar] [CrossRef]
- Schleuss, T.W.; Abbel, R.; Gross, M.; Schollmeyer, D.; Frey, H.; Maskos, M.; Berger, R.; Kilbinger, A.F.M. Hockey-puck micelles from oligo(p-benzamide)-b-PEG rod–coil block copolymers. Angew. Chem. Int. Ed. 2006, 45, 2969–2975. [Google Scholar] [CrossRef] [PubMed]
- Bohle, A.; Brunklaus, G.; Hansen, M.R.; Schleuss, T.W.; Kilbinger, A.F.M.; Seltmann, J.; Spiess, H.W. Hydrogen-bonded aggregates of oligoaramide−poly(ethylene glycol) block copolymers. Macromolecules 2010, 43, 4978–4985. [Google Scholar] [CrossRef]
- Abbel, R.; Schleuss, T.W.; Frey, H.; Kilbinger, A.F.M. Rod-length dependent aggregation in a series of oligo(p-benzamide)-block-poly(ethylene glycol) rod-coil copolymers. Macromol. Chem. Phys. 2005, 206, 2067–2074. [Google Scholar] [CrossRef] [Green Version]
- Badoux, M.; Drechsler, S.; Pal, S.; Kilbinger, A.F.M. Facile synthesis of a high molecular weight amphiphilic aramid–romp block copolymer. Macromolecules 2017, 50, 9307–9314. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, T.; Ohishi, T.; Yokozawa, T.; Ikehara, T. Aggregation, gelation instability, and morphologies of diblock copolymers consisting of poly(p-benzamide) and poly(m-benzamide). J. Polym. Sci. Part B Polym. Phys. 2010, 48, 1732–1739. [Google Scholar] [CrossRef]
- Seyler, H.; Storz, C.; Abbel, R.; Kilbinger, A.F.M. A facile synthesis of aramide–peptide amphiphiles. Soft Matter 2009, 5, 2543–2545. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, D.; Xu, L.; Cong, Y.; Li, J.; Li, L. Multiscale fibers via supramolecular self-assembly of a fully rigid, discotic aromatic aramid molecule. Eur. Polym. J. 2013, 49, 1682–1687. [Google Scholar] [CrossRef]
- Christoff-Tempesta, T.; Cho, Y.; Kim, D.-Y.; Geri, M.; Lamour, G.; Lew, A.J.; Zuo, X.; Lindemann, W.R.; Ortony, J.H. Self-assembly of aramid amphiphiles into ultra-stable nanoribbons and aligned nanoribbon threads. Nat. Nanotechnol. 2021, 16, 447–454. [Google Scholar] [CrossRef]
- Yoon, H.S.; Son, T.W. Highly Oriented Aromatic Polyaimde Short Fiber. U.S. Patent 4,511,623, 16 April 1985. Ep0104410. [Google Scholar]
- Yoon, H.S. Synthesis of fibres by growth-packing. Nature 1987, 326, 580–582. [Google Scholar] [CrossRef]
- Yan, H.; Li, J.; Tian, W.; He, L.; Tuo, X.; Qiu, T. A new approach to the preparation of poly(p-phenylene terephthalamide) nanofibers. RSC Adv. 2016, 6, 26599–26605. [Google Scholar] [CrossRef]
- Xie, C.; He, L.; Shi, Y.; Guo, Z.-X.; Qiu, T.; Tuo, X. From monomers to a lasagna-like aerogel monolith: An assembling strategy for aramid nanofibers. ACS Nano 2019, 13, 7811–7824. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Guo, Z.-X.; Qiu, T.; Tuo, X. Construction of aramid engineering materials via polymerization-induced para-aramid nanofiber hydrogel. Adv. Mater. 2021, 33, 2101280. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Qiu, T.; Tuo, X. The bottom-up synthesis for aramid nanofibers: The influence of copolymerization. J. Appl. Polym. Sci. 2020, 137, 49589. [Google Scholar] [CrossRef]
- Shi, Y.; Tuo, X. Synthesis of heterocyclic aramid nanofibers and high performance nanopaper. Mater. Adv. 2020, 1, 595–598. [Google Scholar] [CrossRef]
- Yang, M.; Cao, K.Q.; Sui, L.; Qi, Y.; Zhu, J.; Waas, A.; Arruda, E.M.; Kieffer, J.; Thouless, M.D.; Kotov, N.A. Dispersions of aramid nanofibers: A new nanoscale building block. ACS Nano 2011, 5, 6945–6954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeager, M.P.; Hoffman, C.M., Jr.; Xia, Z.Y.; Trexler, M.M. Method for the synthesis of para-aramid nanofibers. J. Appl. Polym. Sci. 2016, 133, 44082. [Google Scholar] [CrossRef]
- Ifuku, S.; Maeta, H.; Izawa, H.; Morimoto, M.; Saimoto, H. Facile preparation of aramid nanofibers from Twaron fibers by a downsizing process. RSC Adv. 2014, 4, 40377–40380. [Google Scholar] [CrossRef]
- Gonzalez, G.M.; Ward, J.; Song, J.; Swana, K.; Fossey, S.A.; Palmer, J.L.; Zhang, F.W.; Lucian, V.M.; Cera, L.; Zimmerman, J.F.; et al. para-Aramid fiber sheets for simultaneous mechanical and thermal protection in extreme environments. Matter 2020, 3, 742–758. [Google Scholar] [CrossRef]
- Yang, B.; Wang, L.; Zhang, M.Y.; Luo, J.J.; Lu, Z.Q.; Ding, X.Y. Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 2020, 30, 2000186. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, W.C.; Tian, M.; Ning, N.Y.; Zhang, L.Q. Preparation of aramid nanofiber and its application in polymer rein-forcement: A review. Eur. Polym. J. 2020, 139, 109996. [Google Scholar] [CrossRef]
- Fan, Y.Y.; Li, Z.H.; Wei, J.C. Application of aramid nanofibers in nanocomposites: A brief review. Polymers 2021, 13, 3071. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.Q.; Si, L.M.; Dang, W.B.; Zhao, Y.S. Transparent and mechanically robust poly (Para-phenylene terephthamide) PPTA nanopaper toward electrical insulation based on nanoscale fibrillated aramid-fibers. Compos. Part A 2018, 115, 321–330. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, M.Y.; Lu, Z.Q.; Luo, J.J.; Song, S.X.; Tan, J.; Zhang, Q.Y. Toward improved performances of para-aramid (PPTA) paper-based nanomaterials via aramid nanofibers (ANFs) and ANFs-film. Compos. Part B 2018, 154, 166–174. [Google Scholar] [CrossRef]
- Lu, Z.Q.; Dang, W.B.; Zhao, Y.S.; Wang, L.M.; Zhang, M.Y.; Liu, G.D. Toward high-performance poly (para-phenylene terephthalamide) (PPTA)-based composite paper via hot-pressing: The key role of partial fibrillation and surface activation. RSC Adv. 2017, 12, 7293–7302. [Google Scholar] [CrossRef] [Green Version]
- Bitzer, T. Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing, 1st ed.; Chapman & Hall: London, UK, 1997; pp. 10–42. [Google Scholar] [CrossRef]
- Aktay, L.; Johnson, A.F.; Kroeplin, B.-H. Numerical modelling of honeycomb core crush behaviour. Eng. Fract. Mech. 2008, 75, 2616–2630. [Google Scholar] [CrossRef]
- Liu, L.Q.; Wang, H.; Guan, Z.W. Experimental and numerical study on the mechanical response of Nomex honeycomb core under transverse loading. Compos. Struct. 2015, 121, 304–314. [Google Scholar] [CrossRef]
- Tian, W.T.; Qiu, T.; Shi, Y.F.; He, L.Y.; Tuo, X.H. The facile preparation of aramid insulation paper from the bottom-up nanofiber synthesis. Mater. Lett. 2017, 202, 158–161. [Google Scholar] [CrossRef]
- Tung, S.O.; Ho, S.; Yang, M.; Zhang, R.; Kotov, N.A. A dendrite-suppressing composite ion conductor from aramid nanofibres. Nat. Commun. 2015, 6, 6152. [Google Scholar] [CrossRef]
- Tung, S.O.; Fisher, S.L.; Kotov, N.A.; Thompson, L.T. Nanoporous aramid nanofibre separators for nonaqueous redox flow batteries. Nat. Commun. 2018, 9, 4193. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; He, L.; Zhu, C.C.; Qian, Y.C.; Wen, L.P.; Jiang, L. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Commun. 2020, 11, 875. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.Q.; Emre, A.E.; Kim, J.Y.; Huang, Y.T.; Liu, L.; Cecen, V.; Huang, Y.D.; Kotov, N.A. Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters. Nat. Commun. 2022, 13, 278. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Tian, W.T.; Yan, H.C.; He, L.Y.; Tuo, X.L. Preparation and performance of aramid nanofiber membrane for separator of lithium ion battery. J. Appl. Polym. Sci. 2016, 133, 43623. [Google Scholar] [CrossRef]
- Li, T.; Zhai, Y.; He, S.M.; Gan, W.T.; Wei, Z.Y.; Heidarinejad, M.; Dalgo, D.; Mi, R.Y.; Zhao, X.P.; Song, J.W.; et al. A radiative cooling structural material. Science 2019, 364, 760–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, J.C.; Starke, E.A. Progress in structural materials for aerospace systems. Acta Mater. 2003, 51, 5775–5799. [Google Scholar] [CrossRef]
- Wegst, U.G.K.; Bai, H.; Saiz, E.; Tomsia, A.P.; Ritchie, R.O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36. [Google Scholar] [CrossRef]
- Song, J.W.; Chen, C.J.; Zhu, S.Z.; Zhu, M.W.; Dai, J.Q.; Ray, U.; Li, Y.J.; Kuang, Y.D.; Li, Y.F.; Quispe, N.; et al. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224–228. [Google Scholar] [CrossRef]
- Ge, J.; Zhao, H.Y.; Zhu, H.W.; Huang, J.; Shi, L.A.; Yu, S.H. Advanced sorbents for oil-spill cleanup: Recent advances and future perspectives. Adv. Mater. 2016, 28, 10459–10490. [Google Scholar] [CrossRef]
- Wang, F.; Dai, J.W.; Huang, L.Q.; Si, Y.; Yu, J.Y.; Ding, B. Biomimetic and superelastic silica nanofibrous aerogels with rechargeable bactericidal function for antifouling water disinfection. ACS Nano 2020, 14, 8975–8984. [Google Scholar] [CrossRef]
- Jia, C.; Li, L.; Liu, Y.; Fang, B.; Ding, H.; Song, J.N.; Liu, Y.B.; Xiang, K.J.; Lin, S.; Lin, Z.W.; et al. Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat. Commun. 2020, 11, 3732. [Google Scholar] [CrossRef]
- Liang, H.W.; Guan, Q.F.; Chen, L.F.; Zhu, Z.; Zhang, W.J.; Yu, S.J. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem. Int. Ed. 2012, 51, 5101–5105. [Google Scholar] [CrossRef]
- Wang, F.; Si, Y.; Yu, J.Y.; Ding, B. Tailoring nanonets-engineered superflexible nanofibrous aerogels with hierarchical cage-like architecture enables renewable antimicrobial air filtration. Adv. Funct. Mater. 2021, 31, 2107223. [Google Scholar] [CrossRef]
- Li, L.; Jia, C.; Liu, Y.; Fang, B.; Zhu, W.; Li, X.; Schaefer, L.A.; Li, Z.; Zhang, F.; Feng, X.; et al. Nanograin–glass dual-phasic, elasto-flexible, fatigue-tolerant, and heat-insulating ceramic sponges at large scales. Mater. Today 2022, 54, 72–82. [Google Scholar] [CrossRef]
- Williams, J.C.; Nguyen, B.N.; McCorkle, L.; Scheiman, D.; Griffin, J.S.; Steiner, S.A.; Meador, M.A.B. Highly porous, rigid-rod polyamide aerogels with superior mechanical properties and unusually high thermal conductivity. ACS Appl. Mater. Interfaces 2017, 9, 1801–1809. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yang, M.; Emre, A.; Bahng, J.H.; Xu, L.Z.; Yeom, J.; Yeom, B.; Kim, Y.; Johnson, K.; Green, P.; et al. Branched aramid nanofibers. Angew. Chem. Int. Ed. 2017, 56, 11744–11748. [Google Scholar] [CrossRef]
- Liu, Z.; Lyu, J.; Fang, D.; Zhang, X. Nanofibrous Kevlar aerogel threads for thermal insulation in harsh environments. ACS Nano 2019, 13, 5703–5711. [Google Scholar] [CrossRef]
- Zhang, X.K.; Li, N.; Hu, Z.M.; Yu, J.R.; Wang, Y.; Zhu, J. Direct fabrication of poly (p-phenylene terephthalamide) aerogel and its composites with great thermal insulation and infrared stealth. Chem. Eng. J. 2020, 388, 124310. [Google Scholar] [CrossRef]
- Xie, C.J.; Liu, S.Y.; Zhang, Q.G.; Ma, H.X.; Yang, S.X.; Guo, Z.X.; Qiu, T.; Tuo, X.L. Macroscopic-scale preparation of aramid nanofiber aerogel by modified freezing-drying method. ACS Nano 2021, 15, 10000–10009. [Google Scholar] [CrossRef]
- He, L.Y.; Qiu, T.; Xie, C.J.; Tuo, X.L. A phase separation method toward PPTA-polypropylene nanocomposite separator for safe lithium ion batteries. J. Appl. Polym. Sci. 2018, 135, 46697. [Google Scholar] [CrossRef]
- Xie, C.J.; Qiu, T.; Li, J.L.; Zhang, H.L.; Li, X.Y.; Tuo, X.L. Nanoaramid dressed latex particles: The direct synthesis via pickering emulsion polymerization. Langmuir 2017, 33, 8043–8051. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Xie, C.J.; Tuo, X.L. Laminated aramid nanofiber aerogel reinforced epoxy resin composite. Mater. Today Commun. 2022, 31, 10337. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, C.; Yang, S.; He, R.; Liu, J.; Chen, Y.; Guo, Y.; Guo, Z.; Qiu, T.; Tuo, X. Recent Advances in Self-Assembly and Application of Para-Aramids. Molecules 2022, 27, 4413. https://doi.org/10.3390/molecules27144413
Xie C, Yang S, He R, Liu J, Chen Y, Guo Y, Guo Z, Qiu T, Tuo X. Recent Advances in Self-Assembly and Application of Para-Aramids. Molecules. 2022; 27(14):4413. https://doi.org/10.3390/molecules27144413
Chicago/Turabian StyleXie, Chunjie, Shixuan Yang, Ran He, Jianning Liu, Yuexi Chen, Yongyi Guo, Zhaoxia Guo, Teng Qiu, and Xinlin Tuo. 2022. "Recent Advances in Self-Assembly and Application of Para-Aramids" Molecules 27, no. 14: 4413. https://doi.org/10.3390/molecules27144413
APA StyleXie, C., Yang, S., He, R., Liu, J., Chen, Y., Guo, Y., Guo, Z., Qiu, T., & Tuo, X. (2022). Recent Advances in Self-Assembly and Application of Para-Aramids. Molecules, 27(14), 4413. https://doi.org/10.3390/molecules27144413