The Influence of Tyrosol-Enriched Rhodiola sachalinensis Extracts Bioconverted by the Mycelium of Bovista plumbe on Scopolamine-Induced Cognitive, Behavioral, and Physiological Responses in Mice
Abstract
:1. Introduction
2. Results
2.1. Measurement of Total Polyphenol and Flavonoid Contents of Bio-RSE
2.2. Analysis of Aglycone Content Change Using HPLC
2.3. Assessment of Antioxidant Activity through DPPH and ABTS Radical-Scavenging Ability
2.4. Effect of Bio-RSE on the Body Weight and Brain Weight of Sco-Injected Mice
2.5. Effect of Bio-RSE on the Activity of Transaminase, Creatine, and BUN in Sco-Injected Mice
2.6. Effect of Bio-RSE on Antioxidant Activity in Blood
2.7. Effect of Bio-RSE on MDA Activity in Brain Tissue
2.8. Effect of Bio-HKC on Acetylcholinesterase (AChE) Activity in Brain Tissue
2.9. Improvement of Memory and Learning Ability in a Y-Maze Experiment
2.10. Improvement of Memory and Learning Ability in a Water Maze Experiment
2.11. Improvement of Memory and Learning Ability in a Passive Avoidance Experiment
2.12. Effect of Bio-RSE on Aβ Levels in Serum and Brain Tissue
2.13. Effect of Bio-RSE on Nrf2/HO-1 and Aβ/APP Protein Expression
3. Discussion
4. Materials and Methods
4.1. Preparation of Fermented Extract of R. sacchalinensis Using Mycelium Culture and Bovista plumbea Mycelium
4.2. Estimation of Total Phenolic and Flavonoid Content
4.3. DPPH and ABTS Free-Radical-Scavenging Assay
4.4. Analysis of Content Changes of Salidroside and Tyrosol Using HPLC
4.5. Animals and Experimental Protocols
4.6. Y-Maze Test
4.7. Morris Water Maze Test
4.8. Passive Avoidance Test
4.9. Measurement of Antioxidant Defense System in Serum
4.10. Determination of Malondialdehyde (MDA) Content in Brain Tissue
4.11. Determination of AChE Content in Brain Tissue
4.12. ELISA for the Measurement of Aβ Levels
4.13. Western Blot Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Agostinho, P.; Cunha, R.A.; Oliveira, C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr. Pharm. Des. 2010, 16, 2766–2778. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, A.; Ekavali. A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. Rep. 2015, 67, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol. 2018, 25, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting free radicals in oxidative stressrelated human diseases. Trends Pharmacol. Sci. 2017, 38, 592–607. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, D.A.; Drake, J.; Pocernich, C.; Castegna, A. Evidence of oxidative damage in Alzheimer’s disease brain: Central role for amyloid beta-peptide. Trends Mol. Med. 2001, 7, 548–555. [Google Scholar] [CrossRef]
- Kamat, P.K.; Kalani, A.; Rai, S.; Swarnkar, S.; Tota, S.; Nath, C.; Tyagi, N. Mechanism of oxidative stress and dynapse dysfunction in the pathogenesis of Alzheimer’s disease: Understanding the therapeutics strategies. Mol. Neurobiol. 2014, 50, 852–865. [Google Scholar] [CrossRef] [PubMed]
- Goure, W.F.; Krafft, G.A.; Jerecic, J.; Hefti, F. Targeting the proper amyloid-beta neuronal toxins: A path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res. Ther. 2014, 6, 42. [Google Scholar] [CrossRef] [Green Version]
- Buendia, I.; Michalska, P.; Navarro, E.; Gameiro, I.; Egea, J.; Leon, R. Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol. Ther. 2016, 157, 84–104. [Google Scholar] [CrossRef]
- Silverberg, G.D.; Mayo, M.; Saul, T.; Carvalho, J.; McGuire, D. Novel ventriculo-peritoneal shunt in Alzheimer’s disease cerebrospinal fluid biomarkers. Expert Rev. Neurother. 2004, 4, 97–107. [Google Scholar] [CrossRef]
- Chung, Y.K.; Heo, H.J.; Kim, E.K.; Kim, H.K.; Huh, T.L.; Lim, Y.; Kim, S.K.; Shin, D.H. Inhibitory effect of ursolic acid purified from Oiganum majorana L on the acetylcholinesterase. Mol. Cells 2001, 11, 137–143. [Google Scholar]
- Papandreou, M.A.; Dimakopoulou, A.; Linardaki, Z.I.; Cordopatis, P.; Klimis-Zacas, D.; Margarity, M.; Lamari, F.N. Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetyl-cholinesterase activity. Behav. Brain Res. 2009, 198, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Fayuk, D.; Yakel, J.L. Regulation of nicotinic acetylcholine receptor channel function by acetylcholinesterase inhibitors in rat hippocampal CA1 interneurons. Mol. Pharmacol. 2002, 66, 658–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Ryu, J.D.; Lee, H.G.; Park, J.H.; Moon, G.S.; Choi, H.S.; Song, Y.O. Effect of Kimchi on production of free radicals and anti-oxidative enzyme activities in the brain of SAM. J. Korean Soc. Food Sci. Nutr. 2002, 31, 117–123. [Google Scholar]
- Ming, D.S.; Hillhouse, B.J.; Guns, E.S.; Ebrding, A.; Xie, S.; Vimalanathan, S.; Towers, G.H. Bioactivecompounds from Rhodiola rosea (Crassulaceae). Phytother. Res. 2005, 19, 740–743. [Google Scholar] [CrossRef]
- Panossian, A.; Wikman, G.; Sarris, J. Rosenroot (Rhodiola rosea): Traditional use, chemial composition, pharmacology and clinical efficacy. Phytomedicine 2010, 17, 481–493. [Google Scholar] [CrossRef]
- Chen, L.; Teng, H.; Xie, Z.L.; Cao, H.; Cheang, W.S.; Skalicka-Woniak, K.; Georgiev, M.I.; Xiao, J.B. Modifications of dietary flavonoids towards improved bioactivity: An update on structure-activity relationship. Crit. Rev. Food Sci. Nutr. 2018, 58, 513–527. [Google Scholar] [CrossRef]
- Cropely, M.; Banks, A.P.; Boyle, J. The effects of Rhodiola rosea L. extract on anxiety, stress, cognition and othermood symptoms. Phytother. Res. 2015, 29, 1934–1939. [Google Scholar] [CrossRef]
- Chandramohan, R.; Pari, L.; Rathinam, A.; Sheikh, B.A. Tyrosol, a phenolic compound, ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats. Chem. Biol. Interact. 2015, 229, 44–54. [Google Scholar] [CrossRef]
- Jose Pedro, D.L.C.; Ruiz-Moreno, M.I.; Gureereo, A.; Reyes, J.J.; Benitez-Guerrero, A.; Espartero, J.L.; Gonzalez-Correa, J.A. Differences in the neuroprotective effect of orally administered virgin olive oil (Olea europaea) polyphenol tyrosol and hydroxytyrosol in rat. J. Agric. Food Chem. 2015, 62, 5957–5963. [Google Scholar]
- Marotti, I.A.; Bonetti, B.; Biavati, P.; Catizone, P.; Dinelli, D. Biotransformation of common bean (Phaseolus vulgaris L.) flavonoid glycosides by bifidobacterium species from human intestinal origin. J. Agric. Food Chem. 2007, 55, 3913–3919. [Google Scholar] [CrossRef]
- Nielsen, I.L.; Chee, W.S.; Poulsen, L.; Offord-Cavin, E.; Tasmussen, S.E.; Grederiksen, H.; Enslen, M.; Barron, D.; Horcajada, M.N.; Williamson, G. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: Arandomized, double-blind, crossover trial. J. Nutr. 2006, 136, 404–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otirno, D.O.; Shah, N.P. A comparision of changes in the transormation of isoflavones in soymilk using varying concentrations of exogenous and probiotic derived endogenous β-glucosidases. J. Appl. Microbiol. 2007, 103, 601–612. [Google Scholar]
- Miura, T.; Yuan, L.; Sun, B.; Fujii, H.; Yoshida, M.; Wakame, K.; Kosuna, K. Isoflavone aglycone produced by culture of soybean extracts with basidiomycetes and its antiangiogenic activity. Biosci. Biotechnol. Biochem. 2000, 66, 2626–2631. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Lim, D.K.; Hyung, S.W.; Kim, M.S.; Kim, M.N.; Lee, K.K.; Ha, Y.K. Inhibition of lipid auto oxidation by the extract of the submerged-liquid culture of mushroom in the medium containing mulberry tree power. J. Korean Sco. Food Sci. Nutr. 2004, 33, 249–254. [Google Scholar]
- Park, C.H.; Kim, S.H.; Choi, W.; Lee, Y.J.; Kim, J.S.; Kang, S.S.; Suh, Y.H. Novel anticholinesterase and antiamnesic activities of dehydroevodiamine, a constituent of Evodia rutaecarpa. Plants Med. 1996, 62, 405–409. [Google Scholar] [CrossRef] [PubMed]
- De Strooper, B.; Karran, E. The cellular phase of Alzheimer’s disease. Cell 2016, 164, 306–615. [Google Scholar] [CrossRef] [Green Version]
- Stuchlik, A. Dynamic learning and memory, synaptic plasticity and neurogenesis: An update. Front. Behav. Neurosci. 2014, 8, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Srivastava, P.; Seth, A.; Tripathi, P.N.; Banerjee, A.G.; Shrivastava, S.K. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog. Neurobiol. 2019, 174, 53–89. [Google Scholar] [CrossRef]
- Jiang, T.; Sun, Q.; Chen, S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol. 2016, 147, 1–19. [Google Scholar] [CrossRef]
- Young, C.N.; Koepke, J.L.; Terlechy, L.J.; Borkin, M.S.; Boyd, S.L.; Terlechy, S.R. Reactive oxygen species in tumor necrosis fector-α activated primary human keratinocytes: Implecations for poriasis and inflammatory skin disease. J. Investig. Dermatol. 2008, 128, 2606–2614. [Google Scholar] [CrossRef] [Green Version]
- McMahon, M.; Itoh, K.; Yamamoto, M.; Chanas, S.A.; Henderson, C.J.; McLellan, L.I.; Wolf, C.R.; Cavin, C.; Hayes, J.D. The Cap ‘n’Collar basic leucine zipper transcription factor Nrf2 controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res. 2011, 61, 3299–3307. [Google Scholar]
- Reisman, S.A.; Lee, C.Y.; Meyer, C.J.; Proksch, J.W.; Ward, K.W. Topical application of the synthetic triterpenoid RTA 408 activates Nrf2 and induces cytoprotective genes in rat skin. Arch. Dermatol. Res. 2014, 306, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, N.; Slocum, S.L.; Skoko, J.J.; Shin, S.; Kensler, T.W. When Nrg2 talks, who’s listening? Antioxid. Redox Signal. 2010, 13, 1649–1663. [Google Scholar] [CrossRef] [Green Version]
- Monzani, E.; Nicolis, S.; DellAcqua, S.; Capucciati, A.; Bacchella, C.; Zucca, F.A.; Mosharov, E.V.; Sulzer, D.; Zecca, L.; Casella, L. Dopamine, oxidative stress and protein-quinone modifications in parkinson’s and other neurodegenerative diseases. Angew. Chem. Int. Ed. 2019, 13, 6512–6527. [Google Scholar] [CrossRef] [PubMed]
- Cervellati, C.; Cremonini, E.; Bosi, C.; Magon, S.; Zurlo, A.; Bergamini, C.M.; Zuliani, G. Systemic oxidative stress in older patients with mild cognitive impairment or late onset Alzheimer’s disease. Curr. Alzheimer Res. 2013, 1, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Mesulam, M.M.; Cuella, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef] [PubMed]
- Baghel, M.S.; Thakur, M.K. Vdac1 downregulation causes mitochondrial disintegration leading to hippocampal neurodegernation in scopolamine-induced amnesic mice. Mol. Neurobiol. 2019, 56, 1707–1718. [Google Scholar] [CrossRef]
- Liu, W.; Rabinovich, A.; Nash, Y.; Frenkel, D.; Wang, Y.; Youdim, M.B.H.; Weinreb, O. Anti-imflammatory and protective effects of MT-031, a novel multitarget MAO-A and AChE/BuChE inhibitor in scopolamine mouse model and inflammatory cells. Neuropharmacology 2017, 113, 445–456. [Google Scholar] [CrossRef]
- Jeong, J.H.; Lee, K.E.; Lee, S.Y. Optimization of submerged cultivation of Hericium erinaceum. Korean J. Biotechnol. Bioeng. 2006, 21, 96–102. [Google Scholar]
- Khodanovich, M.Y.; Kisel, A.A.; Chernysheva, G.A.; Smolyakova, V.I.; Kudabaeva, M.S.; Krutenkova, E.P.; Tyumentseva, Y.A.; Plotnikov, M.B. p-Tyrosol enhances the production of new neurons in the hippocampal CA1 field ater transient global cerebral ischemia in rats. Bull. Exp. Biol. Med. 2019, 168, 224–228. [Google Scholar] [CrossRef]
- Taniguchi, K.; Yamamoto, F.; Arai, T.; Yang, T.; Yang, J.; Sakai, Y.; Itoh, M.; Mamada, N.; Sekiguchi, M.; Yamada, D.; et al. Tyrosol reduces amyloid-β oligomer neurotoxicity and alleviates synaptic, oxidative and cognitive disturbances in Alzheimer’s disease model mice. J. Alzheimer’s Dis. 2019, 70, 937–952. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; He, Y.; Chen, S.; Qi, S.; Shen, J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol. Res. 2020, 158, 104877. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Choi, J.Y.; Yu, M.; Kim, M.Y.; Lee, S.H.; Lee, B.H. Total polyphenols, total flavonoid contents and antioxidant activity of Korean natural and medicinal plants. Korean J. Food Sci. Technol. 2012, 44, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.J.; Kim, M.J.; Heo, H.J.; Jun, W.J.; Kim, E.K.; Kim, M.O.; Choi, H.; Hwang, H.J.; Kim, Y.J.; Shin, D.H. Ameliorative effect of 1,2-benzene dicarboxylic acid dinonyl ester against amyloid beta peptide-induced neurotoxicity. Amyloid 2009, 16, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Choi, S.J.; Lim, S.T.; Kim, H.K.; Heo, H.J.; Kim, E.K.; Jun, W.J.; Choi, H.Y.; Shin, D.H. Ferulic and supplementation prevent trimethyltin-induced cognitive deficits in mice. Biosci. Biotechnol. Biochem. 2007, 71, 1063–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araki, W.; Oda, A.; Motoki, K.; Hattori, K.; Itoh, M.; Yuasa, S.; Konishi, Y.; Shin, R.W.; Tamaoka, A.; Ogino, K. Reduction of β-amyloid accumulation by reticulon 3 in transgenic mice. Curr. Alzheimer Res. 2013, 10, 135–142. [Google Scholar] [CrossRef] [PubMed]
Sample | Total Polyphenol (μg/mL) | Total Flavonoid (μg/mL) |
---|---|---|
RSE | 382.7 ± 0.32 | 47.8 ± 0.41 |
Bio-RSE | 827.8 ± 0.22 | 82.9 ± 0.37 |
DPPH (SC50, ug/mL) | ABTS (SC50, ug/mL) | |
---|---|---|
Bio-RSE | 13.7 ± 0.82 | 3.14 ± 0.23 |
Vitamin C | 1.52 ± 0.75 | - |
BHA | - | 1.63 ± 0.82 |
Groups (1) | Body Weight (g) | Brain Weight (g) |
---|---|---|
Normal | 34.2 ± 0.5 | 0.45 ± 0.17 |
Control | 32.7 ± 0.7 | 0.42 ± 0.07 |
Bio-RSE 50 mg/kg + Sco | 33.8 ± 0.3 | 0.44 ± 0.10 |
Bio-RSE 100 mg/kg + Sco | 33.4 ± 0.4 | 0.43 ± 0.06 |
Bio-RSE 200 mg/kg + Sco | 34.1 ± 0.6 | 0.44 ± 0.04 |
DNPZ | 33.8 ± 0.3 | 0.46 ± 0.05 |
Groups (1) | GOT (U/L) | GPT (U/L) | Creatine (mg/dL) | BUN (mg/dL) |
---|---|---|---|---|
Normal | 39.24 ± 2.3 | 39.24 ± 2.3 | 0.62 ± 0.02 | 19.5 ± 1.8 |
Control | 41.16 ± 1.3 | 39.26 ± 1.8 | 0.65 ± 0.01 | 22.2 ± 1.3 |
Bio-RSE 50 mg/kg + Sco | 40.09 ± 1.7 | 38.16 ± 2.1 | 0.61 ± 0.02 | 20.5 ± 1.7 |
Bio-RSE 100 mg/kg + Sco | 41.09 ± 0.8 | 39.11 ± 2.3 | 0.61 ± 0.02 | 19.2 ± 1.4 |
Bio-RSE 200 mg/kg + Sco | 39.14 ± 1.1 | 38.38 ± 2.3 | 0.62 ± 0.01 | 19.9 ± 1.1 |
DNPZ | 42.31 ± 1.3 | 41.24 ± 2.3 | 0.61 ± 0.02 | 20.5 ± 1.3 |
Groups (1) | SOD (unit/mL) | Catalase (unit/g Protein) |
---|---|---|
Normal | 287.84 ± 45.36 | 4.56 ± 0.05 |
Control | 262.56 ± 35.26 | 4.21 ± 0.03 |
Bio-RSE 50 mg/kg + Sco | 277.29 ± 40.11 | 4.23 ± 0.04 |
Bio-RSE 100 mg/kg + Sco | 281.35 ± 38.39 | 4.32 ± 0.05 |
Bio-RSE 200 mg/kg + Sco | 284.65 ± 36.98 | 4.51 ± 0.03 |
DNPZ | 276.49 ± 41.22 | 4.46 ± 0.05 |
Groups (1) | MDA (nmol/mg Protein) | AChE (%mg Protein) |
---|---|---|
Normal | 8.23 ± 0.13 | 101.86 ± 4.21 |
Control | 16.17 ± 1.18 ** | 128.46 ± 2.19 * |
Bio-RSE 50 mg/kg + Sco | 14.99 ± 0.78 | 121.32 ± 2.23 |
Bio-RSE 100 mg/kg + Sco | 12.93 ± 1.08 # | 116.54 ± 1.19 # |
Bio-RSE 200 mg/kg + Sco | 10.91 ± 0.09 # | 108.65 ± 1.99 # |
DNPZ | 13.69 ± 1.15 # | 115.68 ± 2.56 # |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, M.-J.; Lee, J.-W.; Kim, K.-S.; Chen, H.; Cui, C.-B.; Lee, G.W.; Cho, Y.H. The Influence of Tyrosol-Enriched Rhodiola sachalinensis Extracts Bioconverted by the Mycelium of Bovista plumbe on Scopolamine-Induced Cognitive, Behavioral, and Physiological Responses in Mice. Molecules 2022, 27, 4455. https://doi.org/10.3390/molecules27144455
Kwon M-J, Lee J-W, Kim K-S, Chen H, Cui C-B, Lee GW, Cho YH. The Influence of Tyrosol-Enriched Rhodiola sachalinensis Extracts Bioconverted by the Mycelium of Bovista plumbe on Scopolamine-Induced Cognitive, Behavioral, and Physiological Responses in Mice. Molecules. 2022; 27(14):4455. https://doi.org/10.3390/molecules27144455
Chicago/Turabian StyleKwon, Mi-Jin, Ju-Woon Lee, Kwan-Soo Kim, Hao Chen, Cheng-Bi Cui, Gye Won Lee, and Young Ho Cho. 2022. "The Influence of Tyrosol-Enriched Rhodiola sachalinensis Extracts Bioconverted by the Mycelium of Bovista plumbe on Scopolamine-Induced Cognitive, Behavioral, and Physiological Responses in Mice" Molecules 27, no. 14: 4455. https://doi.org/10.3390/molecules27144455
APA StyleKwon, M. -J., Lee, J. -W., Kim, K. -S., Chen, H., Cui, C. -B., Lee, G. W., & Cho, Y. H. (2022). The Influence of Tyrosol-Enriched Rhodiola sachalinensis Extracts Bioconverted by the Mycelium of Bovista plumbe on Scopolamine-Induced Cognitive, Behavioral, and Physiological Responses in Mice. Molecules, 27(14), 4455. https://doi.org/10.3390/molecules27144455