Formulation and Optimization of Alogliptin-Loaded Polymeric Nanoparticles: In Vitro to In Vivo Assessment
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Methods
2.2.1. Optimization
2.2.2. Development of ALG-NPs
2.3. Characterization
2.3.1. Particle Characterization
2.3.2. ALG Entrapment
2.3.3. FTIR Analysis
2.3.4. Differential Scanning Calorimetry
2.3.5. X-ray Diffraction Analysis
2.4. Drug Release
Animal Handling
2.5. Ex Vivo Permeation Study
2.6. Pharmacokinetic Study
2.7. Induction of Diabetes
2.8. Antidiabetic Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Optimization
3.2. Effect of Variables on Y1
3.3. Effect of Formulation Variables on Y2
3.4. Optimized ALG-NPs
3.5. Particle Characterization
FTIR Analysis
3.6. Differential Scanning Calorimetry
3.7. X-ray Diffraction Analysis
3.8. In Vitro Drug Release Study
3.9. Permeation Study
3.10. Pharmacokinetic Study
3.11. Anti-Diabetic Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ozougwu, J.; Obimba, K.; Belonwu, C.; Unakalamba, C. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J. Physiol. Pathophysiol. 2013, 4, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Covington, P.; Christopher, R.; Davenport, M.; Fleck, P.; Mekki, Q.A.; Wann, E.R.; Karim, A. Pharmacokinetic, pharmacodynamic, and tolerability profiles of the dipeptidyl peptidase-4 inhibitor alogliptin: A randomized, double-blind, placebo-controlled, multiple-dose study in adult patients with type 2 diabetes. Clin. Ther. 2008, 30, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Said, S.; Nwosu, A.; Mukherjee, D.; Hernandez, G. Alogliptin—A review of a new dipeptidyl peptidase-4 (DPP-4) inhibitor for the treatment of type 2 diabetes mellitus. Cardiovasc. Hematol. Disord. -Drug Targets 2014, 14, 64–70. [Google Scholar] [CrossRef]
- Uppal, S.; Italiya, K.S.; Chitkara, D.; Mittal, A. Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: An emerging paradigm for effective therapy. Acta Biomater. 2018, 81, 20–42. [Google Scholar] [CrossRef]
- Bhakay, A.; Rahman, M.; Dave, R.N.; Bilgili, E. Bioavailability Enhancement of Poorly Water-Soluble Drugs via Nanocomposites: Formulation-Processing Aspects and Challenges. Pharmaceutics 2018, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Kwok, P.C.; Chan, H.K. Nanotechnology versus other techniques in improving drug dissolution. Curr. Pharm. Des. 2014, 20, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Raghavan, S.L.; Schuessel, K.; Davis, A.; Hadgraft, J. Formation and stabilisation of triclosan colloidal suspensions using supersaturated systems. Int. J. Pharm. 2003, 261, 153–158. [Google Scholar] [CrossRef]
- Hecq, J.; Amighi, K.; Goole, J. Development and evaluation of insulin-loaded cationic solid lipid nanoparticles for oral delivery. J. Drug Deliv. Sci. Technol. 2016, 36, 192–200. [Google Scholar] [CrossRef]
- Yin, J.; Hou, Y.; Yin, Y.; Song, X. Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect. Int. J. Nanomed. 2017, 12, 8671–8680. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wei, C.; Weng, W.; Bao, R.; Adu-Frimpong, M.; Toreniyazov, E.; Ji, H.; Xu, X.-M.; Yu, J. Enhancement of oral bioavailability and hypoglycemic activity of liquiritin-loaded precursor liposome. Int. J. Pharm. 2021, 592, 120036. [Google Scholar] [CrossRef]
- Dandamudi, M.; McLoughlin, P.; Behl, G.; Rani, S.; Coffey, L.; Chauhan, A.; Kent, D.; Fitzhenry, L. Chitosan-Coated PLGA Nanoparticles Encapsulating Triamcinolone Acetonide as a Potential Candidate for Sustained Ocular Drug Delivery. Pharmaceutics 2021, 13, 1590. [Google Scholar] [CrossRef] [PubMed]
- Pawar, P.; Duduskar, A.; Waydande, S. Design and Evaluation of Eudragit RS-100 Based Itraconazole Nanosuspension for Ophthalmic Application. Curr. Drug Res. Rev. 2021, 13, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Garg, R. Current advances in colloidal based delivery systems for Tacrolimus. J. Drug Deliv. Sci. Technol. 2022, 68, 103108. [Google Scholar] [CrossRef]
- Rao, M.R.P.; Godbole, R.V.; Borate, S.G.; Mahajan, S.; Gangwal, T. Nanosuspension coated multiparticulates for controlled delivery of albendazole. Drug Dev. Ind. Pharm. 2021, 47, 367–376. [Google Scholar] [CrossRef]
- Kashif, P.M.; Madni, A.; Ashfaq, M.; Rehman, M.; Mahmood, M.A.; Khan, M.I.; Tahir, N. Development of Eudragit RS 100 Microparticles Loaded with Ropinirole: Optimization and In Vitro Evaluation Studies. AAPS PharmSciTech 2017, 18, 1810–1822. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.K.; Mishra, S.; Mishra, B. Eudragit-based nanosuspension of poorly water-soluble drug: Formulation and in vitro-in vivo evaluation. AAPS PharmSciTech 2012, 13, 1031–1044. [Google Scholar] [CrossRef] [Green Version]
- Devarajan, P.V.; Sonavane, G.S. Preparation and in vitro/in vivo evaluation of gliclazide loaded Eudragit nanoparticles as a sustained release carriers. Drug Dev. Ind. Pharm. 2007, 33, 101–111. [Google Scholar] [CrossRef]
- Salatin, S.; Barar, J.; Barzegar-Jalali, M.; Adibkia, K.; Kiafar, F.; Jelvehgari, M. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Res. Pharm. Sci. 2017, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.; Rastogi, V.; Verma, A. Application of Box–Behnken design and desirability function in the development and optimisation of self-nanoemulsifying drug delivery system for enhanced dissolution of ezetimibe. Future J. Pharm. Sci. 2020, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Naseef, H.; Moqadi, R.; Qurt, M. Development and Validation of an HPLC Method for Determination of Antidiabetic Drug Alogliptin Benzoate in Bulk and Tablets. J. Anal. Methods Chem. 2018, 2018, 1902510. [Google Scholar] [CrossRef] [Green Version]
- Deeds, M.C.; Anderson, J.M.; Armstrong, A.S.; Gastineau, D.A.; Hiddinga, H.J.; Jahangir, A.; Eberhardt, N.L.; Kudva, Y.C. Single dose streptozotocin-induced diabetes: Considerations for study design in islet transplantation models. Lab. Anim. 2011, 45, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trunov, D.; Francisco Wilson, J.; Ježková, M.; Šrom, O.; Beranek, J.; Dammer, O.; Šoóš, M. Monitoring of particle sizes distribution during Valsartan precipitation in the presence of nonionic surfactant. Int. J. Pharm. 2021, 600, 120515. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.K.A.; Azad, A.K.; Nawaz, A.; Ullah, S.; Latif, M.S.; Rahman, H.; Alsharif, K.F.; Alzahrani, K.J.; El-Kott, A.F.; Albrakati, A.; et al. Formulation Development, Characterization and Antifungal Evaluation of Chitosan NPs for Topical Delivery of Voriconazole In Vitro and Ex Vivo. Polymers 2022, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Telange, D.R.; Patil, A.T.; Pethe, A.M.; Fegade, H.; Anand, S.; Dave, V.S. Formulation and characterization of an Apigenin phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. Eur. J. Pharm. Sci. 2017, 108, 36–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh, D.F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Joseph, E.; Singhvi, G. Multifunctional nanocrystals for cancer therapy: A potential nanocarriers, Chapter 4. Nanomater. Drug Deliv. Ther. 2019, 91–116. [Google Scholar]
- Shao, B.; Cui, C.; Ji, H.; Tang, J.; Wang, Z.; Liu, H.; Qin, M.; Li, X.; Wu, L. Enhanced oral bioavailability of piperine by selfemulsifying drug delivery systems: In-vitro, in-vivo and in-situ intestinal permeability studies. Drug Deliv. 2015, 22, 740–747. [Google Scholar] [CrossRef] [Green Version]
- Bertol, C.D.; Pereira, R.N.; Mendes, C.; Paulino, A.S.; Silva, M.A.S.; Froehlich, P.E. Physicochemical characterization of dipeptidyl peptidase-4 inhibitor alogliptin in physical mixtures with excipients. J. Therm. Anal. Calorim. 2017, 130, 1575–1584. [Google Scholar] [CrossRef]
- Hoobakht, F.; Ganji, F.; Vasheghani-Farahani, E.; Mousavi, S.M. Eudragit RS PO nanoparticles for sustained release of pyridostigmine bromide. J. Nanoparticle Res. 2013, 15, 1912. [Google Scholar] [CrossRef]
- Cortesi, R.; Ravani, L.; Menegatti, E.; Esposito, E.; Ronconi, F. Eudragit® microparticles for the release of budesonide: A comparative study. Indian J. Pharm. Sci. 2012, 74, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.; Vishakante, G.D.; Bathool, A. Development and characterization of pilocarpine loaded Eudragit nanosuspensions for ocular drug delivery. J. Biomed. Nanotechnol. 2013, 9, 124–131. [Google Scholar] [CrossRef]
- Cornaire, G.; Woodley, J.; Hermann, P.; Cloarec, A.; Arellano, C.; Houin, G. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int. J. Pharm. 2004, 278, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, M.; Sadeghi, F.; Garekani, H.A. Thermal treating as a tool to produce plastic pellets based on Eudragit RS PO and RL PO aimed for tableting. Eur. J. Pharm. Biopharm. 2007, 67, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Sayed, E.; Karavasili, C.; Ruparelia, K.; Haj-Ahmad, R.; Charalambopoulou, G.; Steriotis, T.; Giasafaki, D.; Cox, P.; Singh, N.; Giassafaki, L.-P.N.; et al. Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: In vitro and ex vivo evaluation. J. Control. Release 2018, 278, 142–155. [Google Scholar] [CrossRef] [PubMed]
Independent Variables | Units | Level | ||
---|---|---|---|---|
Low (−) | Medium (0) | High (+) | ||
Eudragit RSPO (A) | (% w/v) | 2 | 3.5 | 5 |
Surfactant (B) | (%) | 2 | 4.5 | 7 |
Sonication time (C) | (min) | 3 | 4 | 5 |
Dependent variables | ||||
Hydrodynamic diameter (Y1) | nm | |||
Entrapment efficiency (Y2) | % |
Formulation | Eudragit RSPO | Surfactant (%) | Sonication Time (min) | Hydrodynamic Diameter (nm) | Entrapment Efficiency (%) |
---|---|---|---|---|---|
A | B | C | Y1 | Y2 | |
F1 | − | − | 0 | 367.37 | 83.52 |
F2 | + | − | 0 | 482.65 | 89.21 |
F3 | − | + | 0 | 272.34 | 64.43 |
F4 | + | + | 0 | 397.63 | 84.43 |
F5 | − | 0 | − | 340.21 | 75.57 |
F6 | + | 0 | − | 443.15 | 87.03 |
F7 | − | 0 | + | 288.84 | 67.43 |
F8 | + | 0 | + | 430.43 | 87.44 |
F9 | 0 | − | 0 | 452.75 | 89.21 |
F10 | 0 | + | 0 | 364.41 | 75.59 |
F11 | 0 | − | + | 420.54 | 85.88 |
F12 | 0 | + | + | 332.25 | 70.02 |
F13 | 0 | 0 | 0 | 395.91 | 82.21 |
F14 | 0 | 0 | 0 | 393.24 | 82.43 |
F15 | 0 | 0 | 0 | 394.47 | 81.23 |
F16 | 0 | 0 | 0 | 394.65 | 82.02 |
F17 | 0 | 0 | 0 | 390.12 | 81.92 |
Hydrodynamic Diameter(Y1) | ||||
Source | SD | R-squared | Adjusted R2 | Predicted R2 |
Linear | 10.39 | 0.9712 | 0.9645 | 0.9455 |
2FI | 10.08 | 0.9791 | 0.9666 | 0.9171 |
Quadratic | 1.61 | 0.9996 | 0.9991 | 0.9984 |
Entrapment efficiency (Y2) | ||||
Linear | 2.13 | 0.9428 | 0.9296 | 0.8862 |
2FI | 1.48 | 0.9786 | 0.9657 | 0.9145 |
Quadratic | 0.38 | 0.9990 | 0.9977 | 0.9957 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohanty, D.; Gilani, S.J.; Zafar, A.; Imam, S.S.; Kumar, L.A.; Ahmed, M.M.; Jahangir, M.A.; Bakshi, V.; Ahmad, W.; Eltayib, E.M. Formulation and Optimization of Alogliptin-Loaded Polymeric Nanoparticles: In Vitro to In Vivo Assessment. Molecules 2022, 27, 4470. https://doi.org/10.3390/molecules27144470
Mohanty D, Gilani SJ, Zafar A, Imam SS, Kumar LA, Ahmed MM, Jahangir MA, Bakshi V, Ahmad W, Eltayib EM. Formulation and Optimization of Alogliptin-Loaded Polymeric Nanoparticles: In Vitro to In Vivo Assessment. Molecules. 2022; 27(14):4470. https://doi.org/10.3390/molecules27144470
Chicago/Turabian StyleMohanty, Dibyalochan, Sadaf Jamal Gilani, Ameeduzzafar Zafar, Syed Sarim Imam, Ladi Alik Kumar, Mohammed Muqtader Ahmed, Mohammed Asadullah Jahangir, Vasudha Bakshi, Wasim Ahmad, and Eyman Mohamed Eltayib. 2022. "Formulation and Optimization of Alogliptin-Loaded Polymeric Nanoparticles: In Vitro to In Vivo Assessment" Molecules 27, no. 14: 4470. https://doi.org/10.3390/molecules27144470
APA StyleMohanty, D., Gilani, S. J., Zafar, A., Imam, S. S., Kumar, L. A., Ahmed, M. M., Jahangir, M. A., Bakshi, V., Ahmad, W., & Eltayib, E. M. (2022). Formulation and Optimization of Alogliptin-Loaded Polymeric Nanoparticles: In Vitro to In Vivo Assessment. Molecules, 27(14), 4470. https://doi.org/10.3390/molecules27144470