Determination of Osimertinib, Aumolertinib, and Furmonertinib in Human Plasma for Therapeutic Drug Monitoring by UPLC-MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development and Optimization
2.2. Analytical Method Validation
2.2.1. Selectivity
2.2.2. Calibration Curve and LLOQ
2.2.3. Precision and Accuracy
2.2.4. Matrix Effect and Extraction Recovery
2.2.5. Stability
2.2.6. Carry-Over
2.3. Clinical Application
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Chromatographic and Mass Spectrometric Determination Conditions
3.3. Preparation of Stock and Working Solutions
3.4. Plasma Sample Preparation
3.5. Method Validation
3.5.1. Selectivity
3.5.2. Calibration Curve and LLOQ
3.5.3. Precision and Accuracy
3.5.4. Matrix Effect and Extraction Recovery
3.5.5. Stability
3.5.6. Carry-Over
3.6. Clinical Samples Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet 2021, 398, 535–554. [Google Scholar] [CrossRef]
- Shi, Y.; Au, J.S.-K.; Thongprasert, S.; Srinivasan, S.; Tsai, C.-M.; Khoa, M.T.; Heeroma, K.; Itoh, Y.; Cornelio, G.; Yang, P.-C. A Prospective, Molecular Epidemiology Study of EGFR Mutations in Asian Patients with Advanced Non–Small-Cell Lung Cancer of Adenocarcinoma Histology (PIONEER). J. Thorac. Oncol. 2014, 9, 154–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Herbst, R.S.; Boshoff, C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat. Med. 2021, 27, 1345–1356. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, Y.; Gan, C.; Wang, X.; Liu, Y.; Dong, C.; He, R.; Yang, J. Three Third-Generation Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer: Similarities and Differences. Cancer Investig. 2022, 1–14. [Google Scholar] [CrossRef]
- Di Noia, V.; D’Aveni, A.; D’Argento, E.; Rossi, S.; Ghirardelli, P.; Bortolotti, L.; Vavassori, V.; Bria, E.; Ceresoli, G. Treating disease progression with osimertinib in EGFR-mutated non-small-cell lung cancer: Novel targeted agents and combination strategies. ESMO Open 2021, 6, 100280. [Google Scholar] [CrossRef]
- Su, P.-L.; Tsai, J.-S.; Yang, S.-C.; Wu, Y.-L.; Tseng, Y.-L.; Chang, C.-C.; Yen, Y.-T.; Lin, C.-Y.; Lin, C.-C.; Wang, C.-C.; et al. Survival benefit of osimertinib combination therapy in patients with T790M-positive non-small-cell lung cancer refractory to osimertinib treatment. Lung Cancer 2021, 158, 137–145. [Google Scholar] [CrossRef]
- Nagasaka, M.; Zhu, V.W.; Lim, S.M.; Greco, M.; Wu, F.; Ou, S.-H.I. Beyond Osimertinib: The Development of Third-Generation EGFR Tyrosine Kinase Inhibitors For Advanced EGFR+ NSCLC. J. Thorac. Oncol. 2020, 16, 740–763. [Google Scholar] [CrossRef]
- Yang, J.C.-H.; Camidge, D.R.; Yang, C.-T.; Zhou, J.; Guo, R.; Chiu, C.-H.; Chang, G.-C.; Shiah, H.-S.; Chen, Y.; Wang, C.-C.; et al. Safety, Efficacy, and Pharmacokinetics of Almonertinib (HS-10296) in Pretreated Patients with EGFR-Mutated Advanced NSCLC: A Multicenter, Open-label, Phase 1 Trial. J. Thorac. Oncol. 2020, 15, 1907–1918. [Google Scholar] [CrossRef]
- Lu, S.; Wang, Q.; Zhang, G.; Dong, X.; Yang, C.-T.; Song, Y.; Chang, G.-C.; Lu, Y.; Pan, H.; Chiu, C.-H.; et al. Efficacy of Aumolertinib (HS-10296) in Patients With Advanced EGFR T790M+ NSCLC: Updated Post-National Medical Products Administration Approval Results From the APOLLO Registrational Trial. J. Thorac. Oncol. 2022, 17, 411–422. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, S.; Hu, X.; Feng, J.; Ma, Z.; Zhou, J.; Yang, N.; Wu, L.; Liao, W.; Zhong, D.; et al. Safety, Clinical Activity, and Pharmacokinetics of Alflutinib (AST2818) in Patients with Advanced NSCLC With EGFR T790M Mutation. J. Thorac. Oncol. 2020, 15, 1015–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Hu, X.; Zhang, S.; Lv, D.; Wu, L.; Yu, Q.; Zhang, Y.; Liu, L.; Wang, X.; Cheng, Y.; et al. Efficacy, safety, and genetic analysis of furmonertinib (AST2818) in patients with EGFR T790M mutated non-small-cell lung cancer: A phase 2b, multicentre, single-arm, open-label study. Lancet Respir. Med. 2021, 9, 829–839. [Google Scholar] [CrossRef]
- Deeks, E.D. Furmonertinib: First Approval. Drugs 2021, 81, 1775–1780. [Google Scholar] [CrossRef]
- Erickson, A.; Brastianos, P.K.; Das, S. Assessment of Effectiveness and Safety of Osimertinib for Patients With Intracranial Metastatic Disease: A Systematic Review and Meta-analysis. JAMA Netw. Open 2020, 3, e201617. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Luo, Y.; Wang, B. Almonertinib-induced interstitial lung disease: A case report. Medicine 2021, 100, e24393. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Steeghs, N.; Nijenhuis, C.M.; Schellens, J.H.M.; Beijnen, J.H.; Huitema, A.D.R. Practical Guidelines for Therapeutic Drug Monitoring of Anticancer Tyrosine Kinase Inhibitors: Focus on the Pharmacokinetic Targets. Clin. Pharm. 2014, 53, 305–325. [Google Scholar] [CrossRef] [PubMed]
- Vishwanathan, K.; Dickinson, P.A.; So, K.; Thomas, K.; Chen, Y.-M.; Carpeño, J.D.C.; Dingemans, A.-M.C.; Kim, H.R.; Kim, J.-H.; Krebs, M.G.; et al. The effect of itraconazole and rifampicin on the pharmacokinetics of osimertinib. Br. J. Clin. Pharmacol. 2018, 84, 1156–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Li, W.; Le Yang, L.; Guo, Z.-T.; Xue, H.; Xie, N.-J.; Chen, X.-Y. Itraconazole and rifampicin, as CYP3A modulators but not P-gp modulators, affect the pharmacokinetics of almonertinib and active metabolite HAS-719 in healthy volunteers. Acta Pharmacol. Sin. 2021, 43, 1082–1090. [Google Scholar] [CrossRef]
- Zhu, Y.-T.; Zhang, Y.-F.; Jiang, J.-F.; Yang, Y.; Guo, L.-X.; Bao, J.-J.; Zhong, D.-F. Effects of rifampicin on the pharmacokinetics of alflutinib, a selective third-generation EGFR kinase inhibitor, and its metabolite AST5902 in healthy volunteers. Investig. New Drugs 2021, 39, 1011–1018. [Google Scholar] [CrossRef]
- Liu, X.Y.; Guo, Z.T.; Chen, Z.D.; Zhang, Y.F.; Zhou, J.L.; Jiang, Y.; Zhao, Q.Y.; Diao, X.X.; Zhong, D.F. Alflutinib (AST2818), primarily metabolized by CYP3A4, is a potent CYP3A4 inducer. Acta Pharmacol. Sin. 2020, 41, 1366–1376. [Google Scholar] [CrossRef]
- Solassol, I.; Pinguet, F.; Quantin, X. FDA- and EMA-Approved Tyrosine Kinase Inhibitors in Advanced EGFR-Mutated Non-Small Cell Lung Cancer: Safety, Tolerability, Plasma Concentration Monitoring, and Management. Biomolecules 2019, 9, 668. [Google Scholar] [CrossRef] [Green Version]
- Herviou, P.; Thivat, E.; Richard, D.; Roche, L.; Dohou, J.; Pouget, M.; Eschalier, A.; Durando, X.; Authier, N. Therapeutic drug monitoring and tyrosine kinase inhibitors. Oncol. Lett. 2016, 12, 1223–1232. [Google Scholar] [CrossRef] [Green Version]
- Verheijen, R.B.; Yu, H.; Schellens, J.H.M.; Beijnen, J.H.; Steeghs, N.; Huitema, A.D.R. Practical Recommendations for Thera-peutic Drug Monitoring of Kinase Inhibitors in Oncology. Clin. Pharmacol. Ther. 2017, 102, 765–776. [Google Scholar] [CrossRef]
- Mueller-Schoell, A.; Groenland, S.L.; Scherf-Clavel, O.; van Dyk, M.; Huisinga, W.; Michelet, R.; Jaehde, U.; Steeghs, N.; Huitema, A.D.; Kloft, C. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur. J. Clin. Pharmacol. 2020, 77, 441–464. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, R.; Sumimoto, T.; Ogata, M.; Sato, Y.; Itoh, H. Successful determination of nilotinib dosage by therapeutic drug monitoring in a patient with chronic myeloid leukemia developing hepatic dysfunction: A case report. Clin. Case Rep. 2019, 7, 1419–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakahara, R.; Sumimoto, T.; Tanaka, R.; Ogata, M.; Itoh, H. Successful determination of imatinib re-administration dosage by therapeutic drug monitoring in a case of chronic myeloid leukemia initiating dialysis for acute renal dysfunction. Clin. Case Rep. 2021, 9, e04357. [Google Scholar] [CrossRef] [PubMed]
- Reis, R.; Labat, L.; Allard, M.; Boudou-Rouquette, P.; Chapron, J.; Bellesoeur, A.; Thomas-Schoemann, A.; Arrondeau, J.; Giraud, F.; Alexandre, J.; et al. Liquid chromatography-tandem mass spectrometric assay for therapeutic drug monitoring of the EGFR inhibitors afatinib, erlotinib and osimertinib, the ALK inhibitor crizotinib and the VEGFR inhibitor nintedanib in human plasma from non-small cell lung cancer patients. J. Pharm. Biomed. Anal. 2018, 158, 174–183. [Google Scholar]
- Zhou, L.; Wang, S.; Chen, M.; Huang, S.; Zhang, M.; Bao, W.; Bao, A.; Zhang, P.; Guo, H.; Liu, Z.; et al. Simultaneous and rapid determination of 12 tyrosine kinase inhibitors by LC-MS/MS in human plasma: Application to therapeutic drug monitoring in patients with non-small cell lung cancer. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1175, 122752. [Google Scholar] [CrossRef]
- Liu, X.; Li, W.; Zhang, Y.; Jiang, Y.; Zhao, Q.; Zhong, D. Simultaneous determination of alflutinib and its active metabolite in human plasma using liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 2019, 176, 112735. [Google Scholar] [CrossRef]
- Liu, L.; Yang, L.; Li, W.; Chen, X. Simultaneous determination of almonertinib and its active metabolite HAS-719 in human plasma by LC-MS/MS: Evaluation of pharmacokinetic interactions. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2022, 1197, 123231. [Google Scholar] [CrossRef]
- Ishikawa, E.; Yokoyama, Y.; Chishima, H.; Kuniyoshi, O.; Sato, I.; Nakaya, N.; Nakajima, H.; Kimura, M.; Hakamata, J.; Suehiro, N.; et al. Development and validation of a new liquid chromatography-tandem mass spectrometry assay for the simultaneous quantification of afatinib, dacomitinib, osimertinib, and the active metabolites of osimertinib in human serum. J. Chromatogr. B 2022, 1199, 123245. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Comisar, C.; Witjes, H.; Maringwa, J.; de Greef, R.; Vishwanathan, K.; Cantarini, M.; Cox, E. Population pharmaco-kinetics and exposure-response of osimertinib in patients with non-small cell lung cancer. Br. J. Clin. Pharmacol. 2017, 83, 1216–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickinson, P.A.; Cantarini, M.V.; Collier, J.; Frewer, P.; Martin, S.; Pickup, K.; Ballard, P. Metabolic Disposition of Osimertinib in Rat, Dog, and Man: Insights into a drug designed to bind covalently to a cysteine residue of EGFR. Drug Metab. Dispos. Biol. Fate Chem. 2016, 44, 1201–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Health and Human Services Food and Drug Administration. Bioanalytical Method Validation Guidance for Industry. 2018. Available online: https://www.fda.gov/media/70858/download (accessed on 17 October 2019).
Analyte | Spiked Conc. (ng/mL) | Intra-Day (n = 6) | Inter-Day (n = 18) | ||||
---|---|---|---|---|---|---|---|
Mean ± SD (ng/mL) | Precision (RSD%) | Accuracy (RE%) | Mean ± SD (ng/mL) | Precision (RSD%) | Accuracy (RE%) | ||
Osimertinib | 5.0 | 4.84 ± 0.25 | 5.3 | 96.9 | 4.78 ± 0.05 | 1.0 | 95.8 |
15.0 | 14.47 ± 0.42 | 2.9 | 96.4 | 14.49 ± 0.24 | 1.7 | 96.6 | |
150.0 | 145.0 ± 4.20 | 2.9 | 96.6 | 151.72 ± 5.92 | 3.9 | 101.1 | |
375.0 | 369.2 ± 20.58 | 5.6 | 98.3 | 382.39 ± 13.87 | 3.6 | 101.9 | |
Aumolertinib | 2.0 | 2.14 ± 0.06 | 3.0 | 95.8 | 2.06 ± 0.13 | 6.1 | 103.3 |
6.0 | 6.31 ± 0.30 | 4.8 | 105.1 | 6.23 ± 0.34 | 5.4 | 103.8 | |
150.0 | 157.8 ± 6.01 | 3.8 | 105.2 | 156.2 ± 5.18 | 3.3 | 104.1 | |
375.0 | 376.3 ± 17.60 | 4.7 | 100.4 | 380.8 ± 13.70 | 3.6 | 101.6 | |
Furmonertinib | 0.5 | 0.52 ± 0.03 | 5.6 | 104.1 | 0.51 ± 0.03 | 5.6 | 102.6 |
1.5 | 1.47 ± 0.08 | 5.2 | 97.8 | 1.42 ± 0.06 | 4.2 | 94.7 | |
50.0 | 52.1 ± 2.10 | 4.0 | 104.2 | 49.9 ± 1.97 | 4.0 | 99.9 | |
150.0 | 154.3 ± 4.80 | 3.1 | 102.9 | 151.8 ± 5.16 | 3.4 | 101.2 |
Analyte | Spiked Conc. (ng/mL) | Extraction Recovery | Matrix Effect | ||
---|---|---|---|---|---|
Mean ± SD (%) | RSD (%) | Mean ± SD (%) | RSD (%) | ||
Osimertinib | 15.0 | 98.78 ± 4.87 | 4.9 | 106.00 ± 4.89 | 4.6 |
150.0 | 102.81 ± 4.95 | 4.8 | / | / | |
375.0 | 101.67 ± 5.23 | 5.2 | 97.30 ± 4.93 | 5.1 | |
6.0 | 103.05 ± 9.14 | 8.9 | 103.33 ± 8.33 | 8.1 | |
Aumolertinib | 150.0 | 102.41 ± 5.87 | 5.7 | / | / |
375.0 | 102.32 ± 5.68 | 5.6 | 96.28 ± 1.88 | 2.0 | |
1.5 | 100.49 ± 5.62 | 5.6 | 92.34 ± 0.06 | 5.28 | |
Furmonertinib | 50.0 | 99.71 ± 4.50 | 4.5 | / | / |
150.0 | 99.56 ± 3.07 | 3.1 | 102.95 ± 0.05 | 5.25 |
Analyte | Spiked Conc. (ng/mL) | Room Temperature for 8 h in Human Plasma | −20 °C for 7 d in Human Plasma | 4 °C for 24 h in a Refrigerator | Placed in an Automatic Sampler at 4 °C for 24 h | 3 Freeze-Thaw Cycles, −20 °C to Room Temperature |
---|---|---|---|---|---|---|
Osimertinib | 15.0 | 96.42 ± 4.61 | 98.43 ± 4.68 | 98.37 ± 4.06 | 96.05 ± 3.54 | 100.18 ± 5.57 |
150.0 | 102.53 ± 2.96 | 101.53 ± 2.68 | 105.17 ± 4.67 | 100.97 ± 2.32 | 103.73 ± 2.75 | |
375.0 | 100.25 ± 4.38 | 101.23 ± 4.53 | 104.60 ± 4.51 | 102.03 ± 5.73 | 106.22 ± 4.16 | |
Aumolertinib | 6.0 | 98.05 ± 4.69 | 105.50 ± 3.51 | 101.11 ± 7.26 | 101.17 ± 5.34 | 101.38 ± 3.78 |
150.0 | 100.01 ± 3.36 | 105.00 ± 2.19 | 104.48 ± 4.58 | 97.70 ± 1.77 | 104.00 ± 3.69 | |
375.0 | 101.27 ± 5.06 | 103.18 ± 2.53 | 104.53 ± 7.20 | 98.48 ± 7.49 | 101.58 ± 3.90 | |
Furmonertinib | 1.5 | 96.60 ± 2.27 | 96.20 ± 3.74 | 100.00 ± 6.45 | 92.78 ± 5.16 | 101.93 ± 4.88 |
50.0 | 104.20 ± 5.10 | 99.98 ± 1.56 | 93.95 ± 2.18 | 105.58 ± 4.25 | 99.27 ± 4.40 | |
150.0 | 99.18 ± 2.83 | 97.35 ± 3.19 | 93.55 ± 1.44 | 102.17 ± 1.60 | 97.82 ± 2.22 |
Analyte | Dosage | Mean Plasma Concentration (ng/mL) | Concentration Range (ng/mL) |
---|---|---|---|
Osimertinib | 80 mg, qd | 139.98 (n = 10) | 6.19–380 |
Aumolertinib | 110 mg, qd | 155.5 (n = 2) | 131–180 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Meng, L.; Ma, Y.; Li, Y.; Xing, X.; Guo, C.; Dong, Z. Determination of Osimertinib, Aumolertinib, and Furmonertinib in Human Plasma for Therapeutic Drug Monitoring by UPLC-MS/MS. Molecules 2022, 27, 4474. https://doi.org/10.3390/molecules27144474
Li Y, Meng L, Ma Y, Li Y, Xing X, Guo C, Dong Z. Determination of Osimertinib, Aumolertinib, and Furmonertinib in Human Plasma for Therapeutic Drug Monitoring by UPLC-MS/MS. Molecules. 2022; 27(14):4474. https://doi.org/10.3390/molecules27144474
Chicago/Turabian StyleLi, Ying, Lu Meng, Yinling Ma, Yajing Li, Xiaoqing Xing, Caihui Guo, and Zhanjun Dong. 2022. "Determination of Osimertinib, Aumolertinib, and Furmonertinib in Human Plasma for Therapeutic Drug Monitoring by UPLC-MS/MS" Molecules 27, no. 14: 4474. https://doi.org/10.3390/molecules27144474
APA StyleLi, Y., Meng, L., Ma, Y., Li, Y., Xing, X., Guo, C., & Dong, Z. (2022). Determination of Osimertinib, Aumolertinib, and Furmonertinib in Human Plasma for Therapeutic Drug Monitoring by UPLC-MS/MS. Molecules, 27(14), 4474. https://doi.org/10.3390/molecules27144474