Qualitative Analysis and Componential Differences of Chemical Constituents in Lysimachiae Herba from Different Habitats (Sichuan Basin) by UFLC-Triple TOF-MS/MS
Abstract
:1. Introduction
2. Results
2.1. Optimization of Extraction Conditions
2.2. Optimization of UFLC-Triple TOF-MS/MS Conditions
2.3. Identification of the Constituents in LH
2.3.1. Identification of Flavonoids and Their Glycosides
2.3.2. Identification of Phenolic Acids
2.3.3. Identification of Amino Acids
2.3.4. Identification of Tannins
2.3.5. Identification of Fatty Acids
2.3.6. Identification of Coumarins
2.4. Analysis of the Differential Constituents of LH from Different Habitats
2.4.1. PCA of the Samples
2.4.2. PLS-DA of the Samples
2.4.3. Identification of the Differential Chemical Constituents
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Materials
4.3. UFLC-Triple TOF-MS/MS Analysis of LH
4.3.1. Preparation of Standard and Sample Solutions
4.3.2. UFLC-Triple TOF-MS/MS Conditions
4.3.3. Identification of Chemical Constituents
4.4. Analysis of the Differential Constituents in LH from Different Habitats
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- National Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China. Part I; Chemical Industry Press: Beijing, China, 2020; p. 229. [Google Scholar]
- Liu, X.C.; Fan, X.Y.; Wang, X.; Liu, R.N.; Meng, C.F.; Wang, C.Y. Structural characterization and screening of chemical markers of flavonoids in Lysimachiae Herba and Desmodii Styracifolii Herba by ultra high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry based metabolomics approach. J. Pharm. Biomed. Anal. 2019, 171, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.X.; Dong, L.H.; Guo, P.P.; Shi, X.W.; Ren, Y.P.; Jiang, X.J.; Li, W.X.; Wang, C.Y.; Qiao, W. Simultaneous detection of flavonoids and phenolic acids in Herba Lysimachiae and Herba Desmodii Styracifolii using liquid chromatography tandem mass spectrometry. Food Chem. 2013, 138, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.N. Study on the Chemical Constituents and Structure Identification of Lysimachia Christinae Hance; Yunnan University of Chinese Medicine: Kunming, China, 2020. [Google Scholar]
- Wang, Y. Study on the Active Ingredient and Pharmacological Action of Lysimachia Christinae Hance; Qinghai Normal University: Xining, China, 2018. [Google Scholar]
- Tian, S.Y.; Liao, Z.H.; Zhou, Z.W. Research progress and prospects for the use of plant metabolomics in quality evaluation of traditional Chinese medicinal materials. Acta Pharmacol. Sin. 2022, 57, 1734–1749. [Google Scholar]
- Wang, J.Y.; Chen, X.L.; Li, M.H. Research progress of LC-MS database technology and application in the field of traditional Chinese medicine analysis. Chin. J. Pharm. Anal. 2021, 41, 1107–1113. [Google Scholar]
- Ji-ye, A.; He, J.; Sun, R.B. Multivariate statistical analysis for metabolomic data: The key points in principal component analysis. Acta Pharmacol. Sin. 2018, 53, 929–937. [Google Scholar]
- Zhang, S.H.; Cai, P.; Chen, L. Identification of chemical constituents in Ophiocordycep sxuefengensis sp. nov. by HPLC-Q-TOF-MS/MS. Chin. Herb. Med. 2015, 46, 817–821. [Google Scholar]
- Yan, D.; Yang, X.Y. Analysis of amino acid composition and evaluation of nutritional quality in Cordyceps sinensis from diferent regions of Tibet. Chin. Agric. Sci. Bull. 2014, 30, 281–284. [Google Scholar]
- Wang, F.; Liigand, J.; Tian, S.; Arndt, D.; Greiner, R.; Wishart, D.S. CFM-ID 4.0: More Accurate ESI-MS/MS Spectral Prediction and Compound Identification. Anal. Chem. 2021, 93, 11692–11700. [Google Scholar] [CrossRef]
- Allen, F.; Greiner, R.; Wishart, D. Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 2015, 11, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.B.; Kong, L.J.; Gu, W.; Li, C.; Qiu, R.L.; Chao, X.G.; Pei, L.F.; Guo, Y.F. Chemical composition analysis of Taraxacum mongolicum based on UFLC-Triple TOF-MS/MS and network pharmacology study on its anticancer mechanism. Nat. Prod. Res. Dev. 2022, 34, 305–314. [Google Scholar]
- Cai, R.X. Study of RAF Antioxidant Mechanism of Phenolic Acids from Chinese Herbal Medicines Based on UPLC-ESI-Q-TOF-MS/MS Technology; Guangzhou University of Chinese Medicine: Guangzhou, China, 2020. [Google Scholar]
- Hong, S.Z. The Clinical Literature Review, Procyanidins Extraction Methods Development and Antioxidant Acticity Evaluation in Tripterygium Wilfordii Hook; Zhejiang Chinese Medical University: Hangzhou, China, 2021. [Google Scholar]
- Qin, W.H.; Liu, F.; Liu, X.; Zhang, X.M.; Yang, Y.; Hua, L. Study on Chemical Compositions in Cordyceps jiangxiensis by UPLC-Q-TOF-MS. J. Chin. Med. Mater. 2017, 40, 1339–1344. [Google Scholar]
- Shi, F.; Liao, X.; Lu, K.K.; Zheng, S.J.; Xiao, X.N.; Wu, S.R.; Ming, J. Analysis of Phenolic Compounds in Morchella angusticeps Peck by Ultra Performance Liquid Chromatography Diode Array Detector/Electrospray Ionization-Time of Fight-Mass Spectrometr. Food Sci. 2017, 38, 115–121. [Google Scholar]
- Yang, C.D.; Zhang, J.H.; Song, L.H.; Liu, Y. Analysis of Tea Polyphenols in Four Kinds of Tea. Food Sci. 2009, 30, 307–309. [Google Scholar]
- Liu, J.T.; Zhang, Y.; Pu, R.Z.; Zhao, H.P.; Zhao, Y.; Zhang, H.B.; Xu, J.; Zhang, T.J.; Wang, L.; Liu, C.X. Identification of chemical components and blood components of Biqi Capsules by UPLC-Q/TOF-MS. Chin. Tradit. Herb. Drugs. 2021, 52, 5496–5513. [Google Scholar]
- Sanjeev, S.; Murthy, M.K.; Sunita Devi, M.; Khushboo, M.; Renthlei, Z.; Ibrahim, K.S.; Senthil Kumar, N.; Kumar Roy, V.; Gurusubramanian, G. Isolation, characterization and therapeutic activity of bergenin from marlberry (Ardisia colorata Roxb.) leaf on diabetic testicular complications in Wistar albino rats. Environ. Sci. Pollut. Res. 2019, 26, 7082–7101. [Google Scholar] [CrossRef]
- Huan, X.H.; Li, M.L.; Xing, J.G.; Cheng, X.M.; Mu, D.D.; Li, W.Y.; Wang, C.H. Analysis and identification of the chemical composition of compound Munizi based on chromatography-mass spectrometry. Chin. Tradit. Pat. Med. 2021, 43, 1366–1375. [Google Scholar]
- Li, L.Y. The Study on Metabolism In Vitro and In Vivo and Pharmacokinetics of Eupatorin and Eriocitrin Based on LC-MS/MS Technology; Hebei Medical University: Shijiazhuang, China, 2020. [Google Scholar]
- Ren, M.M.; Xia, Y.; Feng, Z.W.; Zhuo, B.Y.; Wei, S.L. Analysis of flavonoids in Coreopsis tinctoria by integrating 2D-TLC and HPLC-IT-TOF-MS. China J. Chin. Mater. Med. 2019, 44, 1403–1409. [Google Scholar]
- Xie, H.; Chen, Y.; Liang, J.S. Analysis and determination of phenolic compounds in the monofloral honey of Stevia rebaudiana Bertoni. China Food Addit. 2021, 32, 193–199. [Google Scholar]
- Lin, Y.Y.; Zheng, Z.H.; Li, M.H. Analysis on Chemical Components and Metabolites in Rat Renal Tissues after Oral Administration of Desmodium styracifoLium based on UPLC-Q-TOF-MS. Pharm. Today. 2021, 31, 433–437. [Google Scholar]
- Lin, M.Y.; Yuan, Z.Y.; Zeng, Q.; He, Y.; Xiao, B.X. Analysis of Chemical Constituent of Lilium broumii by UPLC-Q-TOF-MSE. J. Hunan Univ. Chin. Med. 2020, 40, 964–973. [Google Scholar]
- Zhao, S.; Zhong, L.L.; Zhou, H.; Li, X.; Leu, X.Y.; Huang, S.Q.; Zheng, X.G.; Feng, J.Y.; Lei, S.R.; Guo, L.A. Identification and Analysis of Phenolic Acids in Rice Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Sci. Agric. Sin. 2020, 53, 612–631. [Google Scholar]
- Zhang, Y.; Deng, Q.; Wei, M.; Fu, C.Q.; Zhang, X. Rapid Identification Chemical Constituents in Angelica keiskei based on UPLC-Q-Orbitrap HRMS Technology. Asia Pac. Trad. Med. 2022, 18, 40–49. [Google Scholar]
- Lei, X.; Cai, L.Y.; Chen, R.; Huang, S.W.; Zhang, J.; Wu, H.; Long, F.; Lyu, G.H. Determination of bioactive compounds belonging to flavonoids and phenolic acids in Synotis solidaginea by HPLC. Chin. Tradit. Herb. Drugs. 2021, 52, 2414–2420. [Google Scholar]
- Li, W.K.; Wang, Y.G.; Zeng, L.S.; Zhang, G.F.; Lin, Y. Characterization of Flavonoids from Five Species of Ardisia Using UHPLC-Q-Orbitrap-MS/MS. Tradit. Drug Res. Clin. Pharmacol. 2022, 33, 91–96. [Google Scholar]
- Yu, P.; Zhang, H. Simultaneous analysis of 17 compounds from the extract of Giant knotweed R. by HPLC-ESI-MS. J. Shenyang Pharm. Univ. 2011, 28, 963–968. [Google Scholar]
- Xue, C.; Wu, D.; Gong, Z.P.; Chen, S.Y.; Tang, J. Study on Metabolism of Miao Medicine Laportea bulbifera Extract in Isolated Human Intestinal Flora. China Pharm. 2020, 31, 1683–1690. [Google Scholar]
- Huang, J.J.; Huang, Z.L.; Chen, H.G.; Liu, K.; Wang, L.K.; Zhi, H.; Ding, L.J.; Zheng, J.X. Analysis of polyphenols from Mesona chinensis by UPLC-Q-TOF-MS/MS. Nat. Prod. Res. Dev. 2021, 33, 758–766. [Google Scholar]
No. | tR min | Molecular formula | [M − H]− 1 | MS2 | Error (ppm) | Compound | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2.90 | C4H9NO3 | 118.0522 | 74.028 [M − H − CO2]− | 4.90 | Threonine 1 | + | + | + | + | + | + | − | − | [9] |
2 | 2.92 | C5H9NO4 | 146.0466 | 56.0548 [M − H − CO2 − CO − H2O]−, 84.0464 [M − H − CO2 − H2O]− | 4.60 | Glutamic acid 1 | + | + | + | + | + | + | + | + | [10] |
3 | 3.03 | C6H12O7 | 195.0543 | 59.0177, 75.0119, 129.0218, 177.0436 [M − H − H2O]− | 0.36 | d-Mannonic acid | + | + | + | + | + | + | + | + | [11] |
4 | 3.47 | C5H10O5 | 149.0486 | 73.0329 [M − H − H2O − CO2 − CH2]−, 89.0273 [M − H − H2O − C3H6]−, 105.0218 [M − H − CO2]− | 4.36 | 2-Deoxypentonic acid | + | + | + | + | + | + | + | + | [12] |
5 | 3.76 | C4H6O5 | 133.0176 | 71.0165 [M − H − H2O − CO2]−, 115.0060 [M − H − H2O]− | 4.98 | Malic acid | + | − | + | + | + | + | + | + | [13] |
6 | 4.87 | C30H26O14 | 609.1355 | 177.0235 [M − H − C15H12O6 − C6H8O3]−, 305.0714 [M − H − C15H12O6]−, 423.0776 [M − H − C8H10O5]− | −1.62 | Prodelphinidin B1 | + | − | − | − | + | − | − | − | [12] |
7 | 5.35 | C7H6O5 | 169.0143 | 69.0390 [M − H − CO2 − 2CO]−, 97.0322 [M − H − CO2 − CO]−, 107.0141 [M − H − CO2 − H2O]−, 125.0248 [M − H − CO2]− | 3.25 | Gallic acid 1 | + | + | + | + | + | + | + | + | [14] |
8 | 5.74 | C30H26O12 | 577.1444 | 125.0277 [1,4A]−, 179.0721 [M − H − C15H12O6 − C6H5O2]−, 245.0743 [M − H − C15H12O6 − CO2]−, 289.0749 [M − H − C15H12O6]−, 407.0931 [M − H − C8H8O3 − H2O]−, 425.0829 [M − H − C8H8O3]−, 451.0986 [M − H − H2O − C6H5O2]−, 559.1335 [M − H − H2O]− | −1.65 | Procyanidin B1 | + | + | + | + | − | + | + | + | [15] |
9 | 6.04 | C9H11NO2 | 164.0723 | 103.0595 [M − H − NH3]−, 147.0471 [M − H − NH3 − CO2]− | 1.71 | Phenylalanine 1 | + | + | + | + | + | + | + | + | [16] |
10 | 6.15 | C7H6O4 | 153.0199 | 81.0361 [M − H − CO − CO2]−, 91.0197 [M − H − CO2 − H2O]−, 109.0298 [M − H − CO2]−, 125.0323 [M − H − CO]− | 1.70 | Protocatechuic acid 1 | + | + | + | + | + | + | + | + | [17] |
11 | 6.66 | C15H14O7 | 305.0661 | 125.0275 [1,4A]−, 137.0266 [1,3A]−, 167.0339 [1,2A]− | −0.95 | Epigallocatechin | + | + | + | + | + | + | + | + | [18] |
12 | 6.70 | C16H18O9 | 353.0868 | 135.0478 [M − H − C7H10O5 − CO2]−, 179.0391 [M − H − C7H10O5]−, 191.0596 [M − H − caffeoyl]− | −2.86 | Neochlorogenic acid 1 | + | + | + | + | + | + | + | + | [19] |
13 | 7.17 | C7H6O5 | 169.0146 | 83.0170 [M − H − CO2 − 2H2O]−, 125.0271 [M − H − CO2]−, 151.0064 [M − H − H2O]− | 2.07 | 2,3,4-Trihydroxybenzoic acid | + | + | + | + | + | + | + | + | [20] |
14 | 7.24 | C13H14O12 | 361.0108 | 125.0278, 151.0065, 169.0177 | −1.11 | 2-O-Galloylgalactaric acid | + | + | + | + | + | + | + | + | [11] |
15 | 8.22 | C16H18O9 | 353.0872 | 85.0311, 161.0231 [M − H − C7H10O5 − H2O]−, 179.0391 [M − H − C7H10O5]−, 191.0596 [M − H − caffeoyl]− | −1.73 | Chlorogenic acid 1 | + | + | + | + | + | + | + | + | [21] |
16 | 8.67 | C27H32O15 | 595.1673 | 269.0876 [M − H − RG − H2O]−, 287.0995 [M − H − RG]− | 0.77 | Eriocitrin | + | + | + | + | + | + | + | + | [22] |
17 | 9.97 | C21H22O11 | 449.1063 | 269.0498 [M − H − Glc − H2O]−, 287.0599 [M − H − Glc]− | −4.16 | Marein | + | + | − | + | + | + | + | + | [23] |
18 | 10.29 | C9H6O4 | 177.0221 | 121.0327 [M − H − 2CO]−, 149.0269 [M − H − CO]− | 3.78 | 6,7-Dihydroxycoumarin | + | + | + | + | + | + | + | + | [12] |
19 | 10.49 | C9H8O4 | 179.0351 | 89.0413 [M − H − CO2 − CO − H2O]−, 109.0440 [M − H − CO2 − CO]−, 135.0449 [M − H − CO2]− | 0.22 | Caffeic acid 1 | + | + | + | + | + | + | + | + | [21] |
20 | 11.37 | C9H10O5 | 197.0460 | 123.0073 [M − H − C3H6O2]−, 167.0022 [M − H − CH2O]− | 2.28 | Syringic acid 1 | + | + | + | + | + | + | + | + | [24] |
21 | 11.60 | C13H12O8 | 295.0464 | 115.0060, 133.0167 | 1.56 | Caffeoylmalic acid | + | + | + | + | + | − | − | + | [11] |
22 | 12.65 | C15H10O5 | 269.0564 | 107.0192 [1,3A − CO2]−, 117.0345 [M − H − C7H4O4]−, 151.0072 [1,3A]−, 225.0652 [M − H − CO2]− | 4.70 | Apigenin | + | + | + | − | − | + | + | − | [21] |
23 | 13.52 | C26H28O14 | 563.1391 | 383.0761 [M − H − 2C3H6O3]−, 443.0970 [M − H − C4H8O4]−, 473.1079 [M − H − C3H6O3]− | −2.70 | Schaftoside 1 | + | + | + | + | + | + | + | + | [25] |
24 | 14.39 | C33H40O20 | 755.2041 | 255.0334, 271.0286, 301.0402 [M − H − RG − Rha]− | 0.11 | Quercetin 3-O-beta-robinoside 7-O-alpha-l-rhamnopyranoside | + | + | + | + | + | + | + | + | [11] |
25 | 15.05 | C9H8O3 | 163.0405 | 93.0356 [M − H − C3H2O2]−, 119.0508 [M − H − CO2]− | 2.64 | p-Coumaric acid 1 | + | + | + | + | + | + | + | + | [26] |
26 | 15.23 | C21H20O13 | 479.0825 | 271.0294, 287.0249, 317.0366 [M − H − Gal]− | −1.27 | Myricetin-3-galactoside | + | + | + | + | + | + | + | + | [12] |
27 | 15.59 | C32H38O20 | 741.1854 | 179.0022 [M − H − RG − Xyl − H2O]−, 301.0404 [M − H − RG − Xyl]− | −1.82 | Quercetin 3-O-xylosyl-rutinoside | + | + | + | + | + | + | + | + | [11] |
28 | 15.8 | C10H10O4 | 193.0507 | 133.0319 [M − H − C2H4O2]− | 0.71 | Ferulic acid 1 | + | + | + | + | + | + | + | + | [27] |
29 | 16.12 | C21H20O10 | 431.0986 | 311.0594 [M − H − C4H8O4]−, 341.1187 [M − H − C3H6O3]− | 0.53 | Vitexin 1 | + | + | − | + | + | + | + | + | [28] |
30 | 16.18 | C26H28O14 | 563.1393 | 383.0765 [M − H − 2C3H6O3]−, 443.0971 [M − H − C4H8O4]− | −3.60 | Isoschaftoside 1 | + | + | + | − | + | + | + | + | [21] |
31 | 16.76 | C33H40O19 | 739.2051 | 227.0382, 255.0329, 285.0431 [M − H − RG − Rha]− | −3.66 | Kaempferol 3-rutinosyl 7-O-alpha-l-rhamnoside | + | + | + | + | + | + | + | + | [12] |
32 | 17.56 | C21H20O10 | 431.0982 | 269.0495 [M − H − Rha]−, 311.0590 [M − H − C4H8O4]−, 341.0688 [M − H − C3H6O3]− | 0.39 | Isovitexin 1 | + | + | − | + | + | + | + | + | [25] |
33 | 17.97 | C27H30O15 | 593.1495 | 285.0393 [M − H − RG]− | −2.85 | Kaempferol 3-O-rutinoside 1 | + | + | + | + | + | + | + | + | [29] |
34 | 18.65 | C21H20O12 | 463.0872 | 301.0408 [M − H − Gal]− | −2.16 | Hyperoside 1 | + | + | + | + | + | + | + | + | [21] |
35 | 18.82 | C27H30O16 | 609.1461 | 151.0035 [1,3A]−, 301.0353 [M − H − RG]− | −0.02 | Rutin 1 | + | + | + | + | + | + | + | + | [21] |
36 | 18.94 | C21H20O12 | 463.0887 | 301.0498 [M − H − Glc]− | −2.26 | Isoquercetin 1 | + | + | + | + | + | + | + | + | [21] |
37 | 21.22 | C21H20O10 | 431.0963 | 151.0073 [1,3A]−, 269.0489 [M − H − Rha]−, 413.2366 [M − H − H2O]− | −4.80 | Afzelin | + | + | + | + | + | + | + | + | [30] |
38 | 21.74 | C21H20O11 | 447.0902 | 151.0070 [1,3A]−, 285.0447 [M − H − Gal]− | −3.17 | Kaempferol 3-O-galactoside 1 | + | + | + | + | + | + | + | + | [31] |
39 | 21.84 | C21H20O11 | 447.0901 | 301.0402 [M − H − Rha]− | −3.65 | Quercitrin | + | + | + | + | + | + | + | + | [32] |
40 | 22.76 | C21H20O11 | 447.0894 | 151.0065 [1,3A]−, 285.0450 [M − H − Glc]− | −3.80 | Astragalin 1 | + | + | + | + | + | + | + | + | [33] |
41 | 23.33 | C10H18O4 | 201.1172 | 111.0852 [M − H − CO2 − H2O − CO]−, 139.1161 [M − H − CO2 − H2O]−, 183.1056 [M − H − H2O]− | 4.17 | 3-Methylazelaic acid | + | + | + | + | + | + | + | + | [11] |
42 | 26.35 | C15H10O6 | 285.0404 | 227.0409 [M − H − 2CHO]− | 0.10 | Luteolin | + | + | + | + | + | − | − | + | [28] |
43 | 26.38 | C16H12O6 | 299.0561 | 284.0307 [M − H − CH3]− | −0.21 | Kaempferide | + | − | − | + | − | + | + | − | [21] |
44 | 27.21 | C15H10O7 | 301.0348 | 107.0172 [0,4A]−, 121.0483 [M − H − 1,3A]−, 151.0034 [1,3A]−, 179.0341 [1,2A]−, 193.0287 [M − H − B ring]−, 257.0401 [M − H − CO2]−, 273.0393 [M − H − CO]− | −1.93 | Quercetin 1 | + | + | + | + | + | + | + | + | [21] |
45 | 28.34 | C15H10O6 | 285.0401 | 133.0295 [1,3A − H2O]−, 151.0044 [1,3A]−, 162.8200 [0,2A]−, | −1.22 | Kaempferol 1 | + | + | + | + | + | + | + | + | [21] |
46 | 28.43 | C15H12O5 | 271.0610 | 119.0529 [M − H − C7H4O4]−, 151.0073 [1,3A]− | 0.61 | Naringenin | + | + | − | − | + | − | + | − | [30] |
Samples | Model Verification Results | Permutation Results | Number of Characteristic Peaks with VIP > 1 | |||
---|---|---|---|---|---|---|
R2X (cum) | R2Y (cum) | Q2 (cum) | R2 | Q2 | ||
S1, S2 | 0.888 | 0.996 | 0.990 | 0.460 | −0.225 | 67 |
S1, S3 | 0.905 | 0.996 | 0.990 | 0.143 | −0.273 | 73 |
S1, S4 | 0.871 | 0.969 | 0.960 | 0.099 | −0.243 | 63 |
S1, S5 | 0.794 | 0.892 | 0.835 | 0.453 | −0.082 | 71 |
S1, S6 | 0.680 | 0.930 | 0.903 | 0.239 | −0.215 | 64 |
S1, S7 | 0.789 | 0.995 | 0.922 | 0.300 | −0.230 | 56 |
S1, S8 | 0.842 | 0.990 | 0.981 | 0.312 | −0.244 | 43 |
No. | Sichuan Habitats | Longitude and Latitude |
---|---|---|
S1 | Yuxi Town, Enyang District, Bazhong City | N: 31°49′00.16″ E: 106°29′12.02″ |
S2 | Puan Town, Jiange County, Guangyuan City | N: 32°01′59.82″ E: 105°28′12.96″ |
S3 | Zhuhai Town, Changning County, Yibin City | N: 28°29′56.84″ E: 104°55′57.69″ |
S4 | Dongjia Town, Rong County, Zigong City | N: 29°18′15.09″ E: 104°10′48.66″ |
S5 | Taian Town, Zhongjiang County, Deyang City | N: 30°37′33.17″ E: 104°57′17.13″ |
S6 | Qunli Town, Pengxi County, Suining City | N: 30°22′59.82″ E: 105°58′30.98″ |
S7 | Mata Town, Jingyan County, Leshan City | N: 29°31′20.89″ E: 103°59′48.30″ |
S8 | Daqiao Town, Nanbu County, Nanchong City | N: 31°21′34.50″ E: 105°46′57.72″ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Chen, H.; Xue, J.; Yuan, J.; Cai, Z.; Wu, N.; Zou, L.; Yin, S.; Yang, W.; Liu, X.; et al. Qualitative Analysis and Componential Differences of Chemical Constituents in Lysimachiae Herba from Different Habitats (Sichuan Basin) by UFLC-Triple TOF-MS/MS. Molecules 2022, 27, 4600. https://doi.org/10.3390/molecules27144600
Zhou Y, Chen H, Xue J, Yuan J, Cai Z, Wu N, Zou L, Yin S, Yang W, Liu X, et al. Qualitative Analysis and Componential Differences of Chemical Constituents in Lysimachiae Herba from Different Habitats (Sichuan Basin) by UFLC-Triple TOF-MS/MS. Molecules. 2022; 27(14):4600. https://doi.org/10.3390/molecules27144600
Chicago/Turabian StyleZhou, Yongyi, Haijie Chen, Jia Xue, Jiahuan Yuan, Zhichen Cai, Nan Wu, Lisi Zou, Shengxin Yin, Wei Yang, Xunhong Liu, and et al. 2022. "Qualitative Analysis and Componential Differences of Chemical Constituents in Lysimachiae Herba from Different Habitats (Sichuan Basin) by UFLC-Triple TOF-MS/MS" Molecules 27, no. 14: 4600. https://doi.org/10.3390/molecules27144600
APA StyleZhou, Y., Chen, H., Xue, J., Yuan, J., Cai, Z., Wu, N., Zou, L., Yin, S., Yang, W., Liu, X., Chen, J., & Liu, F. (2022). Qualitative Analysis and Componential Differences of Chemical Constituents in Lysimachiae Herba from Different Habitats (Sichuan Basin) by UFLC-Triple TOF-MS/MS. Molecules, 27(14), 4600. https://doi.org/10.3390/molecules27144600