Perspectives of Positively Charged Nanocrystals of Tedizolid Phosphate as a Topical Ocular Application in Rabbits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Nanocrystals of Tedizolid Phosphate
2.2.2. Sterilization and Sterility Testing
2.2.3. Antimicrobial Study
2.2.4. In Vivo Animal Study
Eye Irritation
Ocular Pharmacokinetics (PK)
Chromatography of TDZ and Mass Spectrometric Conditions (LC-MS/MS)
2.2.5. Transcorneal Permeation
2.2.6. Statistical Analysis
3. Results and Discussion
3.1. Formulation and Characterization of the Optimized Formulation
3.2. Interpretation of Sterility Testing
3.3. Antimicrobial Activity
3.4. Eye Irritation
3.5. Ocular Pharmacokinetics
3.6. Transcorneal Permeation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TZP | Tedizolid Phosphate |
TDZ | Tedizolid |
NCs | Nanocrystals |
MRSA | Methicillin Resistant Staphylococcus aureus |
TDZ | Tedizolid |
MRT | Mean Residence Time |
Tmax | Time at which maximum concentration (Cmax) was achieved |
AUC | Area Under Concentration versus Time Curve |
PVA | Polyvinyl alcohol |
ZP | Zeta Potential |
PDI | Polydispersity Index |
STF | Simulated Tear Fluid |
SLS | Sodium Lauryl Sulfate |
BKC | Benzalkonium chloride |
AqS | Aqueous Suspension |
MHA | Mueller–Hinton Agar |
PK | Pharmacokinetics |
AqH | Aqueous Humor |
AqS | Aqueous Suspension |
References
- Loscher, M.; Hurst, J.; Strudel, L.; Spitzer, M.S.; Schnichels, S. Nanoparticles as drug delivery systems in ophthalmology. Ophthalmologe 2018, 115, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Kayser, O.; Lemke, A.; Hernandez-Trejo, N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr. Pharm. Biotechnol. 2005, 6, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Abul Kalam, M.; Sultana, Y.; Ali, A.; Aqil, M.; Mishra, A.K.; Aljuffali, I.A.; Alshamsan, A. Part I: Development and optimization of solid-lipid nanoparticles using Box-Behnken statistical design for ocular delivery of gatifloxacin. J. Biomed. Mater. Res. A 2013, 101, 1813–1827. [Google Scholar] [CrossRef]
- Gan, L.; Gan, Y.; Zhu, C.; Zhang, X.; Zhu, J. Novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of lipophilic cyclosporine A: In vitro and in vivo results. Int. J. Pharm. 2009, 365, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Wang, J.; Jiang, M.; Bartlett, H.; Ouyang, D.; Eperjesi, F.; Liu, J.; Gan, Y. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov. Today 2013, 18, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Romero, G.B.; Keck, C.M.; Muller, R.H.; Bou-Chacra, N.A. Development of cationic nanocrystals for ocular delivery. Eur. J. Pharm. Biopharm. 2016, 107, 215–222. [Google Scholar] [CrossRef]
- Sharma, O.P.; Patel, V.; Mehta, T. Nanocrystal for ocular drug delivery: Hope or hype. Drug Deliv. Transl. Res. 2016, 6, 399–413. [Google Scholar] [CrossRef]
- Araújo, J.; Gonzalez, E.; Egea, M.A.; Garcia, M.L.; Souto, E.B. Nanomedicines for ocular NSAIDs: Safety on drug delivery. Nanomed. Nanotechnol. Biol. Med. 2009, 5, 394–401. [Google Scholar] [CrossRef]
- Ammar, H.O.; Salama, H.A.; Ghorab, M.; Mahmoud, A.A. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech 2009, 10, 808–819. [Google Scholar] [CrossRef] [Green Version]
- 1Dhahir, R.K.; Al-Nima, A.M.; Al-Bazzaz, F.Y. Nanoemulsions as Ophthalmic Drug Delivery Systems. Turk. J. Pharm. Sci. 2021, 18, 652–664. [Google Scholar] [CrossRef]
- Vandamme, T.F. Microemulsions as ocular drug delivery systems: Recent developments and future challenges. Prog. Retin. Eye Res. 2002, 21, 15–34. [Google Scholar] [CrossRef]
- Kalam, M.A.; Alshamsan, A.; Aljuffali, I.A.; Mishra, A.K.; Sultana, Y. Delivery of gatifloxacin using microemulsion as vehicle: Formulation, evaluation, transcorneal permeation and aqueous humor drug determination. Drug Deliv. 2016, 23, 896–907. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Cano, J.J.; Gonzalez-Cela-Casamayor, M.A.; Andres-Guerrero, V.; Herrero-Vanrell, R.; Molina-Martinez, I.T. Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection. Expert Opin. Drug Deliv. 2021, 18, 819–847. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, A.; Das, P.J.; Adhikari, P.; Marbaniang, D.; Pal, P.; Ray, S.; Mazumder, B. Novel drug delivery systems for ocular therapy: With special reference to liposomal ocular delivery. Eur. J. Ophthalmol. 2019, 29, 113–126. [Google Scholar] [CrossRef]
- Abdelbary, G.; El-Gendy, N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech 2008, 9, 740–747. [Google Scholar] [CrossRef]
- Durak, S.; Esmaeili Rad, M.; Alp Yetisgin, A.; Eda Sutova, H.; Kutlu, O.; Cetinel, S.; Zarrabi, A. Niosomal Drug Delivery Systems for Ocular Disease-Recent Advances and Future Prospects. Nanomaterials 2020, 10, 1191. [Google Scholar] [CrossRef]
- Kalam, M.A.; Alshamsan, A. Poly (d, l-lactide-co-glycolide) nanoparticles for sustained release of tacrolimus in rabbit eyes. Biomed. Pharmacother. 2017, 94, 402–411. [Google Scholar] [CrossRef]
- Aksungur, P.; Demirbilek, M.; Denkbaş, E.B.; Vandervoort, J.; Ludwig, A.; Ünlü, N. Development and characterization of Cyclosporine A loaded nanoparticles for ocular drug delivery: Cellular toxicity, uptake, and kinetic studies. J. Control. Release 2011, 151, 286–294. [Google Scholar] [CrossRef]
- Kambhampati, S.P.; Kannan, R.M. Therapeutics, Dendrimer nanoparticles for ocular drug delivery. J. Ocul. Pharmacol. 2013, 29, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Lancina, M.G., 3rd; Yang, H. Dendrimers for Ocular Drug Delivery. Can.J. Chem 2017, 95, 897–902. [Google Scholar] [CrossRef]
- Seyfoddin, A.; Shaw, J.; Al-Kassas, R. Solid lipid nanoparticles for ocular drug delivery. Drug Deliv. 2010, 17, 467–489. [Google Scholar] [CrossRef] [PubMed]
- Binkhathlan, Z.; Alomrani, A.H.; Hoxha, O.; Ali, R.; Kalam, M.A.; Alshamsan, A. Development and Characterization of PEGylated Fatty Acid-Block-Poly(ε-caprolactone) Novel Block Copolymers and Their Self-Assembled Nanostructures for Ocular Delivery of Cyclosporine A. Polymers 2022, 14, 1635. [Google Scholar] [CrossRef] [PubMed]
- Alshamsan, A.; Abul Kalam, M.; Vakili, M.R.; Binkhathlan, Z.; Raish, M.; Ali, R.; Alturki, T.A.; Safaei Nikouei, N.; Lavasanifar, A. Treatment of endotoxin-induced uveitis by topical application of cyclosporine a-loaded PolyGel in rabbit eyes. Int. J. Pharm. 2019, 569, 118573. [Google Scholar] [CrossRef]
- Alami-Milani, M.; Zakeri-Milani, P.; Valizadeh, H.; Salehi, R.; Salatin, S.; Naderinia, A.; Jelvehgari, M. Novel Pentablock Copolymers as Thermosensitive Self-Assembling Micelles for Ocular Drug Delivery. Adv. Pharm. Bull. 2017, 7, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Gokce, E.H.; Sandri, G.; Bonferoni, M.C.; Rossi, S.; Ferrari, F.; Guneri, T.; Caramella, C. Cyclosporine A loaded SLNs: Evaluation of cellular uptake and corneal cytotoxicity. Int. J. Pharm. 2008, 364, 76–86. [Google Scholar] [CrossRef]
- Kalam, M.A.; Iqbal, M.; Alshememry, A.; Alkholief, M.; Alshamsan, A. Development and Evaluation of Chitosan Nanoparticles for Ocular Delivery of Tedizolid Phosphate. Molecules 2022, 27, 2326. [Google Scholar] [CrossRef]
- Sakurai, E.; Ozeki, H.; Kunou, N.; Ogura, Y. Effect of particle size of polymeric nanospheres on intravitreal kinetics. Ophthalmic Res. 2001, 33, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Kalam, M.A. The potential application of hyaluronic acid coated chitosan nanoparticles in ocular delivery of dexamethasone. Int. J. Biol. Macromol. 2016, 89, 559–568. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, L.; Liu, J.; Huang, G. Construction and evaluation in vitro and in vivo of tedizolid phosphate loaded cationic liposomes. J. Liposome Res. 2018, 28, 322–330. [Google Scholar] [CrossRef]
- Schlosser, M.J.; Hosako, H.; Radovsky, A.; Butt, M.T.; Draganov, D.; Vija, J.; Oleson, F. Lack of neuropathological changes in rats administered tedizolid phosphate for nine months. Antimicrob. Agents Chemother. 2015, 59, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Das, D.; Tulkens, P.M.; Mehra, P.; Fang, E.; Prokocimer, P. Tedizolid Phosphate for the Management of Acute Bacterial Skin and Skin Structure Infections: Safety Summary. Clin. Infect. Dis. 2014, 58 (Suppl. 1), S51–S57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrandez, O.; Urbina, O.; Grau, S. Critical role of tedizolid in the treatment of acute bacterial skin and skin structure infections. Drug Des. Dev. Ther. 2017, 11, 65–82. [Google Scholar] [CrossRef] [Green Version]
- Zhanel, G.G.; Love, R.; Adam, H.; Golden, A.; Zelenitsky, S.; Schweizer, F.; Gorityala, B.; Lagace-Wiens, P.R.; Rubinstein, E.; Walkty, A.; et al. Tedizolid: A novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens. Drugs 2015, 75, 253–270. [Google Scholar] [CrossRef]
- Kisgen, J.J.; Mansour, H.; Unger, N.R.; Childs, L.M. Tedizolid: A new oxazolidinone antimicrobial. Am. J. Health Syst. Pharm. 2014, 71, 621–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leach, K.L.; Swaney, S.M.; Colca, J.R.; McDonald, W.G.; Blinn, J.R.; Thomasco, L.M.; Gadwood, R.C.; Shinabarger, D.; Xiong, L.; Mankin, A.S. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol. Cell 2007, 26, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Kalam, M.A.; Iqbal, M.; Alshememry, A.; Alkholief, M.; Alshamsan, A. UPLC-MS/MS assay of Tedizolid in rabbit aqueous humor: Application to ocular pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1171, 122621. [Google Scholar] [CrossRef]
- Kalam, M.A.; Iqbal, M.; Alshememry, A.; Alkholief, M.; Alshamsan, A. Fabrication and Characterization of Tedizolid Phosphate Nanocrystals for Topical Ocular Application: Improved Solubilization and In Vitro Drug Release. Pharmaceutics 2022, 14, 1328. [Google Scholar] [CrossRef]
- Annex, E. European Sterile Products Guidance Under Review; Good Manufacturing Practice: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Food, U.; Administration, D. Guideline on Sterile Drug Products Produced by Aseptic Processing; FDA: Rockville, MD, USA, 2004. [Google Scholar]
- Sandle, T. Sterile ophthalmic preparations and contamination control. J. GXP Compliance 2014, 18, 1–5. [Google Scholar]
- Sixth Interim Revision Announcement: <71> STERILITY TESTS. Available online: https://www.usp.org/sites/default/files/usp/document/harmonization/gen-method/q11_pf_ira_34_6_2008.pdf (accessed on 30 June 2022).
- Alangari, A.; Alqahtani, M.S.; Mateen, A.; Kalam, M.A.; Alshememry, A.; Ali, R.; Kazi, M.; AlGhamdi, K.M.; Syed, R. Iron Oxide Nanoparticles: Preparation, Characterization, and Assessment of Antimicrobial and Anticancer Activity. Adsorpt. Sci. Technol. 2022, 2022, 1562051. [Google Scholar] [CrossRef]
- Draize, J.H.; Woodard, G.; Calvery, H.O. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J. Pharmacol. Exp. Ther. 1944, 82, 377–390. [Google Scholar]
- Lee, M.; Hwang, J.-H.; Lim, K.-M. Alternatives to in vivo Draize rabbit eye and skin irritation tests with a focus on 3D reconstructed human cornea-like epithelium and epidermis models. Toxicol. Res. 2017, 33, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Diebold, Y.; Jarrin, M.; Saez, V.; Carvalho, E.L.; Orea, M.; Calonge, M.; Seijo, B.; Alonso, M.J. Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials 2007, 28, 1553–1564. [Google Scholar] [CrossRef] [PubMed]
- Falahee, K.J.; Rose, C.S.; Olin, S.S.; Seifried, H.E. Eye Irritation Testing: An Assessment of Methods and Guidelines for Testing Materials for Eye Irritancy; Office of Pesticides and Toxic Substances: Washington, DC, USA; U.S. Environmental Protection Agency: Washington, DC, USA, 1981. [Google Scholar]
- Kay, J.; Calandra, I. Interpretation of Eye Irritation Test. J. Soc. Cosmet. Chem. 1962, 13, 281–289. [Google Scholar]
- Furrer, P.; Plazonnet, B.; Mayer, J.M.; Gurny, R. Application of in vivo confocal microscopy to the objective evaluation of ocular irritation induced by surfactants. Int. J. Pharm. 2000, 207, 89–98. [Google Scholar] [CrossRef]
- Iqbal, M. A highly sensitive and efficient UPLC-MS/MS assay for rapid analysis of tedizolid (a novel oxazolidinone antibiotic) in plasma sample. Biomed. Chromatogr. 2016, 30, 1750–1756. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Pan, W.; Nie, S.; Zhang, L.; Yang, X.; Li, J. Preparation and evaluation of sustained ophthalmic gel of enoxacin. Drug Dev. Ind. Pharm. 2005, 31, 969–975. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Mehdawi, I.M.; Young, A. Antibacterial composite restorative materials for dental applications. In Non-Metallic Biomaterials for Tooth Repair and Replacement; Elsevier/Woodhead Publishing: Sawston, UK, 2013; pp. 270–293. [Google Scholar]
- Li, Y.; Wang, Y.; Li, J. Antibacterial activity of polyvinyl alcohol (PVA)/ε-polylysine packaging films and the effect on longan fruit. Food Sci. Technol. 2020, 40, 838–843. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.N.; Nierhaus, K.H. The oxazolidinone class of drugs find their orientation on the ribosome. Mol. Cell 2007, 26, 460–462. [Google Scholar] [CrossRef]
- Kennah, H.E., 2nd; Hignet, S.; Laux, P.E.; Dorko, J.D.; Barrow, C.S. An objective procedure for quantitating eye irritation based upon changes of corneal thickness. Fundam. Appl. Toxicol. 1989, 12, 258–268. [Google Scholar] [CrossRef]
- Kassem, M.A.; Abdel Rahman, A.A.; Ghorab, M.M.; Ahmed, M.B.; Khalil, R.M. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int. J. Pharm. 2007, 340, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Kokate, A.; Li, X.; Jasti, B. Effect of drug lipophilicity and ionization on permeability across the buccal mucosa: A technical note. AAPS PharmSciTech 2008, 9, 501–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurice, D.; Mishima, S. Ocular pharmacokinetics. In Pharmacology of the Eye; Springer: Berlin/Heidelberg, Germany, 1984; pp. 19–116. [Google Scholar]
Ingredients | TZP-NC1-AqS (% w/v) | Conventional TZP-AqS (Prepared in-House) (% w/v) |
---|---|---|
Tedizolid Phosphate | 0.1 | 0.1 |
Ploxamer-188 | 1.0 | - |
Benzalkonium chloride | 0.01 | - |
Stearylamine | 0.2 | - |
Mannitol | 1.0 | - |
Polyvinyl alcohol | - | 0.5 |
Dextrose (5%, w/v solution) | q. s. to 10 mL | q. s. to 10 mL |
Microorganisms | Diameters of the Zone of Inhibition (mm), Mean ± SD, n = 3 | ||
---|---|---|---|
TPZ-NC1-AqS | TPZ-AqS | Blank-AqS | |
B. subtilis | 36.43 ± 1.81 | 28.17 ± 1.32 | 7.36 ± 0.54 |
S. pneumoniae | 37.13 ± 1.93 | 27.03 ± 1.15 | 7.53 ± 0.58 |
S. aureus | 40.33 ± 1.11 | 26.35 ± 1.04 | 7.73 ± 0.46 |
MRSA (SA 6538) | 36.77 ± 1.37 | 25.13 ± 1.28 | 7.09 ± 0.29 |
Statistical analysis by one-way ANOVA | |||
Tukey’s multiple comparison test | p < 0.05 | 95% CI * of difference | |
TPZ-NC1 vs. TZP-AqS | Yes | 8.469 to 13.53 | |
TPZ-NC1 vs. Blank-AqS | Yes | 27.70 to 32.77 | |
TZP-AqS vs. Blank-AqS | Yes | 16.70 to 21.77 |
Lesions in the Treated Eyes | Individual Scores for Eye Irritation by | |||||
---|---|---|---|---|---|---|
TZP-AqS | TZP-NC1-AqS | |||||
In Rabbit | In Rabbit | |||||
Ist | IInd | IIIrd | Ist | IInd | IIIrd | |
Cornea | ||||||
a. Opacity | 0 | 0 | 1 | 0 | 0 | 0 |
b. Involved area of cornea | 4 | 4 | 4 | 4 | 4 | 4 |
Total scores = (a × b × 5) = | 0 | 0 | 20 | 0 | 0 | 0 |
Iris | ||||||
a. Lesion values | 0 | 0 | 0 | 0 | 0 | 0 |
Total scores = (a × 5) = | 0 | 0 | 0 | 0 | 0 | 0 |
Conjunctiva | ||||||
a. Redness | 0 | 0 | 1 | 0 | 1 | 0 |
b. Chemosis | 0 | 0 | 0 | 0 | 0 | 0 |
c. Mucoidal discharge | 0 | 0 | 1 | 0 | 1 | 0 |
Total scores = (a + b + c) × 2 = | 0 | 0 | 4 | 0 | 4 | 0 |
TZP-AqS (Conventional) | |||||
---|---|---|---|---|---|
In Rabbit | Ist | IInd | IIIrd | SUM | Average (SUM/3) |
Cornea | 0 | 0 | 20 | 20 | 6.67 |
Iris | 0 | 0 | 0 | 0 | 0.00 |
Conjunctiva | 0 | 0 | 4 | 4 | 1.33 |
SUM total = | 0 | 0 | 24 | 24 | 8.00 |
TZP-NC1-AqS | |||||
In rabbit | Ist | IInd | IIIrd | SUM | Average (SUM/3) |
Cornea | 0 | 0 | 0 | 0 | 0.00 |
Iris | 0 | 0 | 0 | 0 | 0.00 |
Conjunctiva | 0 | 4 | 0 | 4 | 4.00 |
SUM total = | 0 | 4 | 0 | 4 | 1.33 |
Parameter | For Conventional TZP-AqS (Mean ± SEM) | For TZP-NC1-AqS (Mean ± SEM) | Enhancement Ratios |
---|---|---|---|
t1/2 (h) | 2.66 ± 0.12 | 4.45 ± 0.18 # | 1.67 |
Tmax (h) | 2.00 ± 0.00 | 2.00 ± 0.00 | Same |
Cmax (ngmL−1) | 580.92 ± 45.48 | 829.21 ± 38.27 # | 1.43 |
AUC0–24h (ngmL−1h) | 3401.68 ± 355.52 | 6651.25 ± 259.51 # | 1.96 |
AUC0–∞ (ngmL−1h) | 3581.99 ± 382.76 | 6826.34 ± 256.32 # | 1.91 |
AUMC0–∞ (ngmL−1h2) | 18,127.47 ± 2123.36 | 48,677.57 ± 1697.92 # | 2.69 |
MRT0–∞ (h) | 5.05 ± 0.054 | 7.13 ± 0.02 # | 1.41 |
Cl/F (mLh−1) | 11.43 ± 1.25# | 5.88 ± 0.22 | 1.95 |
Parameters | TZP-AqS (Conventional) | TZP-NC1-AqS |
---|---|---|
Cumulative amount of drug permeated (µgcm−2) at 4th h | 44.32 ± 1.74 | 70.43 ± 3.52 |
Steady-state flux, J (µgcm−2h−1) | 19.18 ± 1.03 | 31.65 ± 2.39 |
Permeability coefficient, Papp (cmh−1) | (1.92 ± 0.11) × 10−2 | (3.16 ± 0.24) × 10−2 |
pH | 6.18 ± 0.46 | 7.03 ± 0.35 |
Corneal hydration level (%) | 77.29 ± 1.23 | 78.05 ± 1.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshememry, A.; Alkholief, M.; Abul Kalam, M.; Raish, M.; Ali, R.; Alhudaithi, S.S.; Iqbal, M.; Alshamsan, A. Perspectives of Positively Charged Nanocrystals of Tedizolid Phosphate as a Topical Ocular Application in Rabbits. Molecules 2022, 27, 4619. https://doi.org/10.3390/molecules27144619
Alshememry A, Alkholief M, Abul Kalam M, Raish M, Ali R, Alhudaithi SS, Iqbal M, Alshamsan A. Perspectives of Positively Charged Nanocrystals of Tedizolid Phosphate as a Topical Ocular Application in Rabbits. Molecules. 2022; 27(14):4619. https://doi.org/10.3390/molecules27144619
Chicago/Turabian StyleAlshememry, Abdullah, Musaed Alkholief, Mohd Abul Kalam, Mohammad Raish, Raisuddin Ali, Sulaiman S. Alhudaithi, Muzaffar Iqbal, and Aws Alshamsan. 2022. "Perspectives of Positively Charged Nanocrystals of Tedizolid Phosphate as a Topical Ocular Application in Rabbits" Molecules 27, no. 14: 4619. https://doi.org/10.3390/molecules27144619
APA StyleAlshememry, A., Alkholief, M., Abul Kalam, M., Raish, M., Ali, R., Alhudaithi, S. S., Iqbal, M., & Alshamsan, A. (2022). Perspectives of Positively Charged Nanocrystals of Tedizolid Phosphate as a Topical Ocular Application in Rabbits. Molecules, 27(14), 4619. https://doi.org/10.3390/molecules27144619