Synthesis of Cobalt Bis(Dicarbollide)—Curcumin Conjugates for Potential Use in Boron Neutron Capture Therapy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Cobalt Bis(Dicarbollide)—Curcumin Conjugates 4–7
2.2. Cell Viability Assay
2.3. Intracellular Drug Accumulation
3. Materials and Methods
3.1. General Methods
3.2. Synthesis of (8-[(H(CH2[COCH=CH(OCH3)C6H3O]2))-((CH2)2O)2]-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11))K (4)
3.3. Synthesis of (8-[(H(CH2[COCH=CH(OCH3)C6H3O]2))-(CH2)5O]-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11))K (5)
3.4. Synthesis of (8-[(H(CH2[COCH=CH(OCH3)C6H3O]2))-((CH2)2O)2]-{3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)}2)K2 (6)
3.5. Synthesis of (8-[(H(CH2[COCH=CH(OCH3)C6H3O]2))-(CH2)5O]-{3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)}2)K2 (7)
3.6. Biological Testing
3.6.1. Cell Cultures and Viability Assay
3.6.2. Intracellular Drug Accumulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miyatake, S.-I.; Kawabata, S.; Goto, H.; Narita, Y.; Suzuki, M.; Hirose, K.; Takai, Y.; Ono, K.; Ohnishi, T.; Tanaka, H.; et al. Accelerator-based BNCT in rescue treatment of patients with recurrent GBM: A multicenter phase II study. J. Clin. Oncol. 2020, 38, 2536. [Google Scholar] [CrossRef]
- Kato, T.; Hirose, K.; Tanaka, H.; Mitsumoto, T.; Motoyanagi, T.; Arai, K.; Harada, T.; Takeuchi, A.; Kato, R.; Yajima, S.; et al. Design and construction of an accelerator-based boron neutron capture therapy (AB-BNCT) facility with multiple treatment rooms at the Southern Tohoku BNCT Research Center. Appl. Radiat. Isot. 2019, 156, 108961. [Google Scholar] [CrossRef] [PubMed]
- Bregadze, V.I.; Sivaev, I.B. Boron Science: New Technologies and Applications; Hosmane, N.S., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 181–207. ISBN 9781439826621. [Google Scholar]
- Barth, R.F.; Zhang, Z.; Liu, T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun. 2018, 38, 36–37. [Google Scholar] [CrossRef] [Green Version]
- Barth, R.F.; Mi, P.; Yang, W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun. 2018, 38, 35. [Google Scholar] [CrossRef] [Green Version]
- Mishima, Y.; Ichihashi, M.; Hatta, S.; Honda, C.; Yamamura, K.; Nakagawa, T. New Thermal Neutron Capture Therapy for Malignant Melanoma: Melanogenesis-Seeking 10B Molecule-Melanoma Cell Interaction From In Vitro to First Clinical Trial. Pigment Cell Res. 1989, 2, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Suzuki, A.; Yoshino, K.; Kakihana, H. Complex Formation of p-Boronophenylalanine with Some Monosaccharides. Pigment Cell Res. 1989, 2, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Bregadze, V.I.; Sivaev, I.B.; Glazun, S.A. Polyhedral Boron Compounds as Potential Diagnostic and Therapeutic Antitumor Agents. Anti-Cancer Agents Med. Chem. 2006, 6, 75–109. [Google Scholar] [CrossRef]
- Ichikawa, H.; Taniguchi, E.; Fujimoto, T.; Fukumori, Y. Biodistribution of BPA and BSH after single, repeated and simultaneous administrations for neutron-capture therapy of cancer. Appl. Radiat. Isot. 2009, 67, S111–S114. [Google Scholar] [CrossRef]
- Tsurubuchi, T.; Shirakawa, M.; Kurosawa, W.; Matsumoto, K.; Ubagai, R.; Umishio, H.; Suga, Y.; Yamazaki, J.; Arakawa, A.; Maruyama, Y.; et al. Evaluation of a Novel Boron-Containing α-d-Mannopyranoside for BNCT. Cells 2020, 9, 1277. [Google Scholar] [CrossRef]
- Nomoto, T.; Inoue, Y.; Yao, Y.; Suzuki, M.; Kanamori, K.; Takemoto, H.; Matsui, M.; Tomoda, K.; Nishiyama, N. Poly(vinyl alcohol) boosting therapeutic potential of p-boronophenylalanine in neutron capture therapy by modulating metabolism. Sci. Adv. 2020, 6, eaaz1722. [Google Scholar] [CrossRef] [Green Version]
- Nuez-Martinez, M.; Pinto, C.I.G.; Guerreiro, J.F.; Mendes, F.; Marques, F.; Muñoz-Juan, A.; Xavier, J.A.M.; Laromaine, A.; Bitonto, V.; Protti, N.; et al. Cobaltabis(dicarbollide) ([o-COSAN]−) as Multifunctional Chemotherapeutics: A Prospective Application in Boron Neutron Capture Therapy (BNCT) for Glioblastoma. Cancers 2021, 13, 6367. [Google Scholar] [CrossRef] [PubMed]
- Srb, P.; Svoboda, M.; Benda, L.; Lepsik, M.; Tarabek, J.; Sicha, V.; Gruner, B.; Grantz-Saskova, K.; Brynda, J.; Řezáčová, P.; et al. Capturing a dynamically interacting inhibitor by paramagnetic NMR spectroscopy. Phys. Chem. Chem. Phys. 2019, 21, 5661–5673. [Google Scholar] [CrossRef] [PubMed]
- Ilinova, A.; Semioshkin, A.; Lobanova, I.; Bregadze, V.I.; Mironov, A.F.; Paradowska, E.; Studzińska, M.; Jabłońska, A.; Białek-Pietras, M.; Leśnikowski, Z.J. Synthesis, cytotoxicity and antiviral activity studies of the conjugates of cobalt bis(1,2-dicarbollide)(-I) with 5-ethynyl-2′-deoxyuridine and its cyclic derivatives. Tetrahedron 2014, 70, 5704–5710. [Google Scholar] [CrossRef]
- Grin, M.A.; Titeev, R.A.; Bakieva, O.M.; Brittal, D.I.; Lobanova, I.A.; Sivaev, I.B.; Bregadze, V.I.; Mironov, A.F. New boron-containing bacteriochlorin p cycloimide conjugate. Bull. Acad. Sci. USSR Div. Chem. Sci. 2008, 57, 2230–2232. [Google Scholar] [CrossRef]
- Bregadze, V.I.; Sivaev, I.B.; Dubey, R.D.; Semioshkin, A.; Shmal’Ko, A.V.; Kosenko, I.D.; Lebedeva, K.V.; Mandal, S.; Sreejyothi, P.; Sarkar, A.; et al. Boron-Containing Lipids and Liposomes: New Conjugates of Cholesterol with Polyhedral Boron Hydrides. Chem. A Eur. J. 2020, 26, 13832–13841. [Google Scholar] [CrossRef]
- Dash, B.P.; Satapathy, R.; Swain, B.R.; Mahanta, C.S.; Jena, B.B.; Hosmane, N.S. Cobalt bis(dicarbollide) anion and its derivatives. J. Organomet. Chem. 2017, 849-850, 170–194. [Google Scholar] [CrossRef]
- Hawthorne, M.F.; Maderna, A. Applications of Radiolabeled Boron Clusters to the Diagnosis and Treatment of Cancer. Chem. Rev. 1999, 99, 3421–3434. [Google Scholar] [CrossRef]
- Gozzi, M.; Schwarze, B.; Hey-Hawkins, E. Half- and mixed-sandwich metallacarboranes for potential applications in medicine. Pure Appl. Chem. 2019, 91, 563–573. [Google Scholar] [CrossRef]
- Bauduin, P.; Prevost, S.; Farràs, P.; Teixidor, F.; Diat, O.; Zemb, T. Inside Cover: A Theta-Shaped Amphiphilic Cobaltabisdicarbollide Anion: Transition From Monolayer Vesicles to Micelles. Angew. Chem. Int. Ed. 2011, 50, 5298–5300. [Google Scholar] [CrossRef]
- Malaspina, D.C.; Viñas, C.; Teixidor, F.; Faraudo, J. Atomistic Simulations of COSAN: Amphiphiles without a Head-and-Tail Design Display “Head and Tail” Surfactant Behavior. Angew. Chem. Int. Ed. 2019, 59, 3088–3092. [Google Scholar] [CrossRef]
- Fuentes, I.; García-Mendiola, T.; Sato, S.; Pita, M.; Nakamura, H.; Lorenzo, E.; Teixidor, F.; Marques, F.; Viñas, C. Metallacarboranes on the Road to Anticancer Therapies: Cellular Uptake, DNA Interaction, and Biological Evaluation of Cobaltabisdicarbollide [COSAN]−. Chem. A Eur. J. 2018, 24, 17239–17254. [Google Scholar] [CrossRef]
- Tarrés, M.; Canetta, E.; Paul, E.; Forbes, J.; Azzouni, K.; Viñas, C.; Teixidor, F.; Harwood, A.J. Biological interaction of living cells with COSAN-based synthetic vesicles. Sci. Rep. 2015, 5, 7804. [Google Scholar] [CrossRef] [PubMed]
- Spryshkova, R.A.; Karaseva, L.I.; Brattsev, V.A.; Serebriakov, N.G. Toxicity of functional derivatives of polyhedral carboranes. Med. Radiol. 1981, 26, 62–64. [Google Scholar] [PubMed]
- Verdiá-Báguena, C.; Alcaraz, A.; Aguilella, V.M.; Cioran, A.M.; Tachikawa, S.; Nakamura, H.; Teixidor, F.; Viñas, C. Amphiphilic COSAN and I2-COSAN crossing synthetic lipid membranes: Planar bilayers and liposomes. Chem. Commun. 2014, 50, 6700–6703. [Google Scholar] [CrossRef] [Green Version]
- Rokitskaya, T.I.; Kosenko, I.D.; Sivaev, I.B.; Antonenko, Y.N.; Bregadze, V.I. Fast flip–flop of halogenated cobalt bis(dicarbollide) anion in a lipid bilayer membrane. Phys. Chem. Chem. Phys. 2017, 19, 25122–25128. [Google Scholar] [CrossRef] [Green Version]
- Assaf, K.I.; Begaj, B.; Frank, A.; Nilam, M.; Mougharbel, A.S.; Kortz, U.; Nekvinda, J.; Grüner, B.; Gabel, D.; Nau, W.M. High-Affinity Binding of Metallacarborane Cobalt Bis(dicarbollide) Anions to Cyclodextrins and Application to Membrane Translocation. J. Org. Chem. 2019, 84, 11790–11798. [Google Scholar] [CrossRef] [PubMed]
- Tarrés, M.; Canetta, E.; Viñas, C.; Teixidor, F.; Harwood, A.J. Imaging in living cells using νB–H Raman spectroscopy: Monitoring COSAN uptake. Chem. Commun. 2014, 50, 3370–3372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: The Indian solid gold. In The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–75. [Google Scholar]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin: Miniperspective. J. Med. Chem. 2017, 60, 1620–1637. [Google Scholar] [CrossRef]
- Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. In The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2007; pp. 105–125. [Google Scholar]
- Srivastava, G.; Mehta, J.L. Currying the Heart: Curcumin and Cardioprotection. J. Cardiovasc. Pharmacol. Ther. 2009, 14, 22–27. [Google Scholar] [CrossRef]
- Mythri, R.B.; Srinivas Bharath, M.M. Curcumin: A potential neuroprotective agent in Parkinson’s disease. Curr. Pharm. Des. 2012, 18, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer. Res. 2003, 23, 363–398. [Google Scholar] [PubMed]
- Ahmed, T.; Gilani, A. Therapeutic Potential of Turmeric in Alzheimer’s Disease: Curcumin or Curcuminoids? Phytother. Res. 2013, 28, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Li, H.; Ma, J.-F.; Tan, Y.-Y.; Xiao, Q.; Ding, J.-Q.; Chen, S.-D. Curcumin inhibition of JNKs prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease through suppressing mitochondria dysfunction. Transl. Neurodegener. 2012, 1, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Perry, M.-C.; Demeule, M.; Régina, A.; Moumdjian, R.; Béliveau, R. Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Mol. Nutr. Food Res. 2010, 54, 1192–1201. [Google Scholar] [CrossRef]
- Alberti, D.; Protti, N.; Franck, M.; Stefania, R.; Bortolussi, S.; Altieri, S.; Deagostino, A.; Aime, S.; Crich, S.G. “Theranostic” nanoparticles loaded with imaging probes and rubrocurcumin for a combined cancer therapy by folate receptor targeting. ChemMedChem 2017, 12, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Druzina, A.A.; Grammatikova, N.E.; Zhidkova, O.B.; Nekrasova, N.A.; Dudarova, N.V.; Kosenko, I.D.; Grin, M.A.; Bregadze, V.I. Synthesis and Antibacterial Activity Studies of the Conjugates of Curcumin with closo-Dodecaborate and Cobalt Bis(Dicarbollide) Boron Clusters. Molecules 2022, 27, 2920. [Google Scholar] [CrossRef] [PubMed]
- Druzina, A.A.; Shmalko, A.V.; Sivaev, I.B.; Bregadze, V.I. Cyclic oxonium derivatives of cobalt and iron bis(dicarbollides) and their use in organic synthesis. Russ. Chem. Rev. 2021, 90, 785–830. [Google Scholar] [CrossRef]
- Druzina, A.; Zhidkova, O.B.; Dudarova, N.V.; Kosenko, I.D.; Ananyev, I.V.; Timofeev, S.V.; Bregadze, V.I. Synthesis and Structure of Nido-Carboranyl Azide and Its “Click” Reactions. Molecules 2021, 26, 530. [Google Scholar] [CrossRef]
- Valliant, J.F.; Guenther, K.J.; King, A.S.; Morel, P.; Schaffer, P.; O Sogbein, O.; A Stephenson, K. The medicinal chemistry of carboranes. Co-ord. Chem. Rev. 2002, 232, 173–230. [Google Scholar] [CrossRef]
- Šícha, V.; Farràs, P.; Štíbr, B.; Teixidor, F.; Grüner, B.; Viñas, C. Syntheses of C-substituted icosahedral dicarbaboranes bearing the 8-dioxane-cobalt bisdicarbollide moiety. J. Organomet. Chem. 2009, 694, 1599–1601. [Google Scholar] [CrossRef]
- Teixidor, F.; Pedrajas, J.; Rojo, I.; Viñas, C.; Kivekäs, R.; Sillanpää, R.; Sivaev, I.; Bregadze, V.; Sjöberg, S. Generation of the Highly Uncommon S(thioether)−Na Bond. Organometallics 2003, 22, 3414–3423. [Google Scholar] [CrossRef]
- Llop, J.; Masalles, C.; Viñas, C.; Teixidor, F.; Sillanpää, R.; Kivekäs, R. The [3,3′-Co(1,2-C2B9H11)2]– anion as a platform for new materials: Synthesis of its functionalized monosubstituted derivatives incorporating synthons for conducting organic polymers. Dalton Trans. 2003, 556–561. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
Cell Line | IC50, µM | |||||
---|---|---|---|---|---|---|
Curcumin | 4 | 5 | 6 | 7 | Dox (Control) | |
K562 | 17.0 ± 2.0 a | >50 | >50 | >50 | >50 | 0.20 ± 0.02 |
Fibroblasts | 23.0 ± 2.5 | >50 | >50 | >50 | >50 | 0.30 ± 0.04 |
HCT116 | 11.5 ± 1.4 | >50 | >50 | >50 | >50 | 0.40 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dezhenkova, L.G.; Druzina, A.A.; Volodina, Y.L.; Dudarova, N.V.; Nekrasova, N.A.; Zhidkova, O.B.; Grin, M.A.; Bregadze, V.I. Synthesis of Cobalt Bis(Dicarbollide)—Curcumin Conjugates for Potential Use in Boron Neutron Capture Therapy. Molecules 2022, 27, 4658. https://doi.org/10.3390/molecules27144658
Dezhenkova LG, Druzina AA, Volodina YL, Dudarova NV, Nekrasova NA, Zhidkova OB, Grin MA, Bregadze VI. Synthesis of Cobalt Bis(Dicarbollide)—Curcumin Conjugates for Potential Use in Boron Neutron Capture Therapy. Molecules. 2022; 27(14):4658. https://doi.org/10.3390/molecules27144658
Chicago/Turabian StyleDezhenkova, Lyubov G., Anna A. Druzina, Yulia L. Volodina, Nadezhda V. Dudarova, Natalia A. Nekrasova, Olga B. Zhidkova, Mikhail A. Grin, and Vladimir I. Bregadze. 2022. "Synthesis of Cobalt Bis(Dicarbollide)—Curcumin Conjugates for Potential Use in Boron Neutron Capture Therapy" Molecules 27, no. 14: 4658. https://doi.org/10.3390/molecules27144658
APA StyleDezhenkova, L. G., Druzina, A. A., Volodina, Y. L., Dudarova, N. V., Nekrasova, N. A., Zhidkova, O. B., Grin, M. A., & Bregadze, V. I. (2022). Synthesis of Cobalt Bis(Dicarbollide)—Curcumin Conjugates for Potential Use in Boron Neutron Capture Therapy. Molecules, 27(14), 4658. https://doi.org/10.3390/molecules27144658