Beneficial Effect of Methanolic Extract of Frankincense (Boswellia Sacra) on Testis Mediated through Suppression of Oxidative Stress and Apoptosis
Abstract
:1. Introduction
2. Results
2.1. Analysis of the Extract
2.2. Effect on Testes in Rats
2.3. Effect on Human Leydig Cells (In Vitro)
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Preparation of Methanolic Extract of B. sacra
4.3. Analysis of the Extract
4.3.1. GC-MS Analysis
4.3.2. Determination of Boswellic Acids by HPLC
4.4. Animals
4.5. Effect on the Male Reproductive System in Rats
4.5.1. Sperm Parameters
4.5.2. Testis Parameters
4.6. Effect on Human Leydig Cells (In Vitro)
4.6.1. Cell Lines
4.6.2. MTT Viability Assay
4.6.3. Effect on Apoptotic Markers
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mills, J.; Yao, D. Male infertility: Lifestyle factors and holistic, complementary, and alternative therapies. Asian J. Androl. 2016, 18, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, N.; Zaid, A.N. Herbal remedies used for the treatment of infertility in males and females by traditional healers in the rural areas of the West Bank/Palestine. BMC Complement. Altern. Med. 2019, 19, 194. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Coscione, A.; Li, L.; Zeng, B.Y. Effect of Chinese Herbal Medicine on Male Infertility. In International Review of Neurobiology; Academic Press Inc.: Cambridge, UK, 2017; Volume 135, pp. 297–311. [Google Scholar]
- Miller, D.; Vukina, J. Recent advances in clinical diagnosis and treatment of male factor infertility. Postgrad. Med. 2020, 132, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Machado, G.C.; Eyles, J.P.; Ravi, V.; Hunter, D.J. Dietary supplements for treating osteoarthritis: A systematic review and meta-analysis. Br. J. Sports Med. 2017, 52, 167–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mojaverrostami, S.; Bojnordi, M.N.; Ghasemi-Kasman, M.; Ebrahimzadeh, M.A.; Hamidabadi, H.G. A Review of Herbal Therapy in Multiple Sclerosis. Adv. Pharm. Bull. 2018, 8, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Asad, M.; Alhomoud, M. Proulcerogenic effect of water extract of Boswellia sacraoleo gum resin in rats. Pharm. Biol. 2015, 54, 225–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Yahya, A.A.; Asad, M.; Sadaby, A.; Alhussaini, M.S. Repeat oral dose safety study of standardized methanolic extract of Boswellia sacra oleo gum resin in rats. Saudi J. Biol. Sci. 2019, 27, 117–123. [Google Scholar] [CrossRef]
- Alyahya, A.A.; Asad, M. Repeated 28-DAY oral dose study on Boswellia sacra oleo gum resin extract for testicular toxicity in rats. J. Ethnopharmacol. 2020, 258, 112890. [Google Scholar] [CrossRef]
- Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Shahlari, M. Frankincense (乳香 Rǔ Xiāng; Boswellia Species): From the Selection of Traditional Applications to the Novel Phytotherapy for the Prevention and Treatment of Serious Diseases. J. Tradit. Complement. Med. 2013, 3, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Sohrabvand, F.; Mahroozade, S.; Bioos, S.; Nazari, S.M.; Dabaghian, F.H. Improvement in Sperm Parameters With Traditional Iranian Remedy. J. Evid. -Based Integr. Med. 2016, 22, 223–226. [Google Scholar] [CrossRef]
- Nusier, M.K.; Bataineh, H.N.; Bataineh, Z.M.; Daradka, H.M. Effect of Frankincense (Boswellia thurifera) on Reproductive System in Adult Male Rat. J. Heal. Sci. 2007, 53, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Al-Yasiry, A.R.M.; Kiczorowska, B. Frankincense – therapeutic properties. Adv. Hyg. Exp. Med. 2016, 70, 380–391. [Google Scholar] [CrossRef]
- Roy, N.K.; Parama, D.; Banik, K.; Bordoloi, D.; Devi, A.K.; Thakur, K.K.; Padmavathi, G.; Shakibaei, M.; Fan, L.; Sethi, G.; et al. An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases. Int. J. Mol. Sci. 2019, 20, 4101. [Google Scholar] [CrossRef] [Green Version]
- Gomaa, A.A.; Farghaly, H.A.; Abdel-Wadood, Y.A.; Gomaa, G.A. Potential therapeutic effects of boswellic acids/Boswellia serrata extract in the prevention and therapy of type 2 diabetes and Alzheimer’s disease. Naunyn-Schmiedebergs Arch. Fur Exp. Pathol. Und Pharmakol. 2021, 394, 2167–2185. [Google Scholar] [CrossRef]
- Okano, S.; Honda, Y.; Kodama, T.; Kimura, M. The Effects of Frankincense Essential Oil on Stress in Rats. J. Oleo Sci. 2019, 68, 1003–1009. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Al-Daghri, N.; Alokail, M.S.; Hussain, T. Potential Changes in Rat Spermatogenesis and Sperm Parameters after Inhalation of Boswellia papyrifera and Boswellia carterii Incense. Int. J. Environ. Res. Public Heal. 2013, 10, 830–844. [Google Scholar] [CrossRef] [Green Version]
- Mason, K.E.; Burns, W.A.; Smith, J.C. Testicular Damage Associated with Zinc Deficiency in Pre- and Postpubertal Rats: Response to Zinc Repletion. J. Nutr. 1982, 112, 1019–1028. [Google Scholar] [CrossRef]
- OECD Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure. 2022. Available online: https://www.oecd-ilibrary.org/docserver/9789264071049-en.pdf?expires=1658493451&id=id&accname=guest&checksum=1745AE31AD173A9DB2CDC117955510E2 (accessed on 13 February 2022). [CrossRef] [Green Version]
- Allen, C.M.; Lopes, F.; Mitchell, R.T.; Spears, N. How does chemotherapy treatment damage the prepubertal testis? Reproduction 2018, 156, R209–R233. [Google Scholar] [CrossRef] [Green Version]
- Alkhalaf, M.I.; Alansari, W.S.; Alshubaily, F.; Alnajeebi, A.M.; Eskandrani, A.A.; Tashkandi, M.A.; Babteen, N.A. Chemoprotective effects of inositol hexaphosphate against cyclophosphamide-induced testicular damage in rats. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Memudu, A.E.; Duru, F.I. A Comparative study on the effects of Yaji (Suya Meat sauce) and its spice constituents on the male reproductive profile of adult male Sprague Dawley rats. JBRA Assist. Reprod. 2021. [Google Scholar] [CrossRef]
- Asadi, N. The Impact of Oxidative Stress on Testicular Function and the Role of Antioxidants in Improving it: A Review. J. Clin. Diagn. Res. 2017, 11, IE01–IE05. [Google Scholar] [CrossRef]
- Sheweita, S.A.; Meftah, A.A.; Sheweita, M.S.; Balbaa, M.E. Erectile dysfunction drugs altered the activities of antioxidant enzymes, oxidative stress and the protein expressions of some cytochrome P450 isozymes involved in the steroidogenesis of steroid hormones. PLoS ONE 2020, 15, e0241509. [Google Scholar] [CrossRef]
- Karna, K.K.; Choi, B.R.; Kim, M.-J.; Park, J.K. The Effect of Schisandra chinensis Baillon on Cross-Talk between Oxidative Stress, Endoplasmic Reticulum Stress, and Mitochondrial Signaling Pathway in Testes of Varicocele-Induced SD Rat. Int. J. Mol. Sci. 2019, 20, 5785. [Google Scholar] [CrossRef] [Green Version]
- Showell, M.G.; Brown, J.; Yazdani, A.; Stankiewicz, M.T.; Hart, R.J. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 2011, CD007411. [Google Scholar] [CrossRef]
- Marini, H.R.; Micali, A.; Squadrito, G.; Puzzolo, D.; Freni, J.; Antonuccio, P.; Minutoli, L. Nutraceuticals: A New Challenge against Cadmium-Induced Testicular Injury. Nutrients 2022, 14, 663. [Google Scholar] [CrossRef]
- Barakat, B.M.; Ahmed, H.I.; Bahr, H.I.; Elbahaie, A.M. Protective Effect of Boswellic Acids against Doxorubicin-Induced Hepatotoxicity: Impact on Nrf2/HO-1 Defense Pathway. Oxidative Med. Cell. Longev. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Beghelli, D.; Isani, G.; Roncada, P.; Andreani, G.; Bistoni, O.; Bertocchi, M.; Lupidi, G.; Alunno, A. Antioxidant and Ex Vivo Immune System Regulatory Properties of Boswellia serrata Extracts. Oxidative Med. Cell. Longev. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Aitken, R.J.; Baker, M.A. The Role of Genetics and Oxidative Stress in the Etiology of Male Infertility—A Unifying Hypothesis? Front. Endocrinol. 2020, 11. [Google Scholar] [CrossRef]
- Aitken, R.J.; Drevet, J.R.; Moazamian, A.; Gharagozloo, P. Male Infertility and Oxidative Stress: A Focus on the Underlying Mechanisms. Antioxidants 2022, 11, 306. [Google Scholar] [CrossRef]
- Salimnejad, R.; Rad, J.S.; Nejad, D.M.; Roshangar, L. Effect of ghrelin on total antioxidant capacity, lipid peroxidation, sperm parameters and fertility in mice against oxidative damage caused by cyclophosphamide. Andrologia 2018, 50, e12883. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Shoorei, H.; Abak, A.; Seify, M.; Mohaqiq, M.; Keshmir, F.; Taheri, M.; Ayatollahi, S.A. Effects of chemotherapeutic agents on male germ cells and possible ameliorating impact of antioxidants. Biomed. Pharmacother. 2021, 142, 112040. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Das, U.B.; Ghosh, S.; Mallick, M.; Debnath, J. TESTICULAR GAMETOGENIC AND STEROIDOGENIC ACTIVITIES IN CYCLOPHOSPHAMIDE TREATED RAT: A CORRELATIVE STUDY WITH TESTICULAR OXIDATIVE STRESS. Drug Chem. Toxicol. 2002, 25, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.B.; Walker, W.H. The regulation of spermatogenesis by androgens. Semin. Cell Dev. Biol. 2014, 30, 2–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sağraç, D.; Şenkal, S.; Hayal, T.B.; Demirci, S.; Şişli, H.B.; Asutay, A.B.; Doğan, A. Protective role of Cytoglobin and Neuroglobin against the Lipopolysaccharide (LPS)-induced inflammation in Leydig cells ex vivo. Reprod. Biol. 2022, 22, 100595. [Google Scholar] [CrossRef]
- Li, M.-Y.; Zhu, X.-L.; Zhao, B.-X.; Shi, L.; Wang, W.; Hu, W.; Qin, S.-L.; Chen, B.-H.; Zhou, P.-H.; Qiu, B.; et al. Adrenomedullin alleviates the pyroptosis of Leydig cells by promoting autophagy via the ROS–AMPK–mTOR axis. Cell Death Dis. 2019, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-C.; Lin-Shiau, S.-Y.; Lin, J.-K. Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J. Cell. Physiol. 1998, 177, 324–333. [Google Scholar] [CrossRef]
- Amstad, P.A.; Liu, H.; Ichimiya, M.; Berezesky, I.K.; Trump, B.F.; Buhimschi, I.; Gutierrez, P.L. BCL-2 is involved in preventing oxidant-induced cell death and in decreasing oxygen radical production. Redox Rep. 2001, 6, 351–362. [Google Scholar] [CrossRef]
- Zhang, S.; He, B.; Ge, J.; Zhai, C.; Liu, X.; Liu, P. Characterization of chemical composition of Agaricus brasiliensis polysaccharides and its effect on myocardial SOD activity, MDA and caspase-3 level in ischemia–reperfusion rats. Int. J. Biol. Macromol. 2010, 46, 363–366. [Google Scholar] [CrossRef]
- Kim, G.W.; Sugawara, T.; Chan, P.H. Involvement of Oxidative Stress and Caspase-3 in Cortical Infarction after Photothrombotic Ischemia in Mice. J. Cereb. Blood Flow Metab. 2000, 20, 1690–1701. [Google Scholar] [CrossRef] [Green Version]
- Ismy, J.; Sugandi, S.; Rachmadi, D.; Hardjowijoto, S.; Mustafa, A. The Effect of Exogenous Superoxide Dismutase (SOD) on Caspase-3 Activation and Apoptosis Induction in Pc-3 Prostate Cancer Cells. Res. Rep. Urol. 2020, 12, 503–508. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Haque, M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Mukherjee, P.K. Quality Control and Evaluation of Herbal Drugs; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Yotarlai, S.; Chaisuksunt, V.; Saenphet, K.; Sudwan, P. Effects of Boesenbergia Rotunda Juice on Sperm Qualities in Male Rats. J. Med. Plants Res. 2011, 5, 3861–3867. [Google Scholar] [CrossRef]
- Anesthesia (Guideline) | Vertebrate Animal Research. Available online: https://animal.research.uiowa.edu/iacuc-guidelines-anesthesia (accessed on 13 February 2022).
- Pugeat, M.; Plotton, I.; De La Perrière, A.B.; Raverot, G.; Déchaud, H.; Raverot, V. MANAGEMENT OF ENDOCRINE DISEASE Hyperandrogenic states in women: Pitfalls in laboratory diagnosis. Eur. J. Endocrinol. 2018, 178, R141–R154. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.A.; Mohammed, N.A.; Eid, K.A.; Abomughaid, M.M.; Abdelazim, A.M.; Aboregela, A.M. Hypothyroidism: Morphological and metabolic changes in the testis of adult albino rat and the amelioration by alpha-lipoic acid. Folia Morphol. 2021, 80, 352–362. [Google Scholar] [CrossRef]
- Correia, S.; Oliveira, P.F.; Guerreiro, P.M.; Lopes, G.; Alves, M.G.; Canario, A.V.M.; Cavaco, J.E.; Socorro, S. Sperm parameters and epididymis function in transgenic rats overexpressing the Ca2+-binding protein regucalcin: A hidden role for Ca2+ in sperm maturation? Mol. Hum. Reprod. 2013, 19, 581–589. [Google Scholar] [CrossRef] [Green Version]
- WHO World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th ed.; WHO Press: Geneva, Switzerland, 2021. [Google Scholar]
- Gorpinchenko, I.; Nikitin, O.; Banyra, O.; Shulyak, A. The influence of direct mobile phone radiation on sperm quality. Cent. Eur. J. Urol. 2014, 67, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Cheesbrough, M. Laboratory Practice in Tropical Countries, 1st ed.; Cambridge University Press: Cambridge, UK, 2000; ISBN 0521665469. [Google Scholar]
- Adamkovicova, M.; Toman, R.; Martiniakova, M.; Omelka, R.; Babosova, R.; Krajcovicova, V.; Grosskopf, B.; Massanyi, P. Sperm motility and morphology changes in rats exposed to cadmium and diazinon. Reprod. Biol. Endocrinol. 2016, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Link, E.M. The mechanism of pH-dependent hydrogen peroxide cytotoxicity in vitro. Arch. Biochem. Biophys. 1988, 265, 362–372. [Google Scholar] [CrossRef]
- Elstner, E.F.; Heupel, A. Inhibition of nitrite formation from hydroxylammoniumchloride: A simple assay for superoxide dismutase. Anal. Biochem. 1976, 70, 616–620. [Google Scholar] [CrossRef]
- MTT Cell Proliferation Assay | ATCC. Available online: https://www.atcc.org/products/30-1010k (accessed on 13 February 2022).
- Kim, H.Y. Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kur-tosis. Restor. Dent. Endod. 2013, 38, 52–54. [Google Scholar] [CrossRef]
Number | Chemical Constituent | Retention Time (Rt) | Area (%) |
---|---|---|---|
1 | 1,2-Cyclooctanedione | 4.529 | 2.30 |
2 | 2-Hydroxy-gamma-butyrolactone | 5.861 | 2.20 |
3 | PROCEROSIDE | 6.883 | 2.15 |
4 | 1,4-Dioxin, 2,3-dihydro\-5,6-dimethyl | 7.069 | 2.06 |
5 | 5-Hydroxymethylfurfural | 11.856 | 2.25 |
6 | 2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-4,4 | 19.230 | 2.03 |
7 | 3-Ethoxy-4-hydroxyphenylacetonitrile | 23.743 | 9.57 |
8 | Pentadecanoic Acid | 27.101 | 6.70 |
9 | beta-d-Mannofuranoside, 1-O-(10-undeceny2)- | l8.012 | 3.98 |
10 | 9,12,15-Octadecatrienoic acid, (Z,Z,Z)- | 29.346 | 6.80 |
11 | Octadecanoic acid | 29.595 | 2.13 |
12 | Ethyl 1-thio-alpha-l-arabinofuranoside | 33.310 | 3.25 |
Treatment | Concentration (µg/mL) | Cell Viability (%) (Mean ± SEM) |
---|---|---|
Untreated | 100 | |
B. sacra extract | 6.25 | 99.88 ± 1.23 |
12.5 | 99.64 ± 0.98 | |
25 | 99.34 ± 2.35 | |
50 | 98.98 ± 0.89 | |
100 | 98.33 ± 0.32 | |
LPS | 0.5 | 89.9 ± 1.23 |
1 | 73.83 ± 0.65 *** | |
3 | 47.79 ± 0.44 *** | |
6 | 33.93 ± 0.59 *** | |
10 | 21.15 ± 0.36 *** |
Gene | Primer Sequence | Accession Number |
---|---|---|
Bcl-2 | 5′ CATGTGTGTGGAGAGCGTCAAC 3′ (Forward primer) | NM_000633 |
5′ CAGATAGGCACCCAGGGTGAT 3′ (reverse primer) | NM_000633 | |
Caspase-3 | 5′ TATGGTTTTGTGATGTTTGTCC 3′ (Forward primer) | NM_001354783 |
5′ TAGATCCAGGGGCATTGTAG 3′ (reverse primer) | NM_001354783 | |
GAPDH | 5′ TGACAACTTTGGTATCGTGGAAG 3′ (Forward primer) | NM_001357943 |
5′ CAGTAGAGGCAGGGATGATGTT 3′ (reverse primer) | NM_001357943 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, S.A.; Asad, M.; Abdelsalam, K.E.A.; Ibrahim, M.A.; Chandy, S. Beneficial Effect of Methanolic Extract of Frankincense (Boswellia Sacra) on Testis Mediated through Suppression of Oxidative Stress and Apoptosis. Molecules 2022, 27, 4699. https://doi.org/10.3390/molecules27154699
Alharbi SA, Asad M, Abdelsalam KEA, Ibrahim MA, Chandy S. Beneficial Effect of Methanolic Extract of Frankincense (Boswellia Sacra) on Testis Mediated through Suppression of Oxidative Stress and Apoptosis. Molecules. 2022; 27(15):4699. https://doi.org/10.3390/molecules27154699
Chicago/Turabian StyleAlharbi, Samir Abdulkarim, Mohammed Asad, Kamal Eldin Ahmed Abdelsalam, Monjid Ahmed Ibrahim, and Sunil Chandy. 2022. "Beneficial Effect of Methanolic Extract of Frankincense (Boswellia Sacra) on Testis Mediated through Suppression of Oxidative Stress and Apoptosis" Molecules 27, no. 15: 4699. https://doi.org/10.3390/molecules27154699
APA StyleAlharbi, S. A., Asad, M., Abdelsalam, K. E. A., Ibrahim, M. A., & Chandy, S. (2022). Beneficial Effect of Methanolic Extract of Frankincense (Boswellia Sacra) on Testis Mediated through Suppression of Oxidative Stress and Apoptosis. Molecules, 27(15), 4699. https://doi.org/10.3390/molecules27154699