Increasing Value of Winery Residues through Integrated Biorefinery Processes: A Review
Abstract
:1. Introduction
2. Winemaking Process
3. Winery Waste Composition
3.1. Winery Wastewater
3.2. Grape Seeds
3.3. Grape Stalks
3.4. Grape Skins
3.5. Grape Pomace
4. Winery Residues Biorefinery
4.1. Recovery of Value-Added Products from Winery Residues
4.1.1. Solid–Liquid Extraction
4.1.2. Ultrasound-Assisted Extraction
4.1.3. Microwave-Assisted extraction
4.1.4. Accelerated Solvent Extraction
4.1.5. Supercritical Fluid Extraction
4.1.6. High-Voltage Electrical Discharges Extraction
4.1.7. Membrane Processes
Phenolic Group | Compound | Value (mg g db −1) |
---|---|---|
Phenolic acids | Gallic acid | 0.05–2.45 |
Protocatechuic acid | 0.01–1.66 | |
p-Coumaric acid | 0.01–0.02 | |
Vanillic acid | 0.07–0.09 | |
Flavonoids | (+)-Catechin | 0.02–15.59 |
(−)-Epicatechin | 0.03–10.23 | |
Procyanidin B1 | 3.81–7.80 | |
Procyanidin B2 | 2.88–6.07 | |
Rutin | 0.12–0.41 | |
Quercitin 3-O-Glucoside | 0.09–0.74 | |
Anthocyanins: | ||
Delphinidin-3-glucoside | 0.05–0.20 | |
Cyanidin-3-glucoside | 0.01–0.02 | |
Petudin-3-glucoside | 0.14–0.53 | |
Peonidin-3-glucoside | 0.15–0.46 | |
Malvidin-3-glucoside | 0.99–5.94 | |
Stilbenes | Resveratrol | 0.01–0.06 |
4.1.8. Enzymatic Hydrolysis
4.2. Energy Recovery
4.2.1. Biogas
Sample | Operational Parameters | BMP | BD (%) | Reference |
---|---|---|---|---|
Pomace | T: 37.5 °C; SIR: 1:3 (gCOD gCOD−1) | 125 a | 35.6 | [36] |
Pomace | 170 a | 48.7 | ||
Seeds | 52 a | 14.7 | ||
Seeds | 129 a | 36.9 | ||
Pulp | 165 a | 47.1 | ||
Pulp | 182 a | 51.9 | ||
Stalks | T: 35 °C; SIR: nd | 170 b 115 b 876 b ~500 b ~500 b ~750 b | nd | [135] |
Pomace | nd | |||
Wine lees | nd | |||
Wine lees + wine shoots | nd | |||
Wine lees + stalks + pomace | nd | |||
Wine lees + stalks + pomace + shoots + WAS | nd | |||
Skins + seeds | T: 38 °C; SIR: 0.5 | 206 b | nd | [140] |
Winery wastewater | T:36 °C; SIR: nd | 20–200 c | nd | [139] |
Pomace | T: 37 °C; SIR: 1:3 (gCOD gCOD−1) | 130.5–219.4 a | 37–63 | [136] |
Pomace | T: 37 °C; SIR: 0.5 | 148 b 838 b 212 b | nd | [138] |
Wine lees | nd | |||
Pomace (43%) + Stems (34%) + PS (9%) + SS (9%) + Lees (5%) | nd | |||
Pomace | T: 37 °C; SIR: 1:3 (gCOD gCOD−1) | 104–242 a | 29.7–69.0 | [133] |
Stalks Skins and seeds Wine lees | T: 55 °C; SIR: nd | 133 b 360 b 370 b | nd | [134] |
nd | ||||
nd |
4.2.2. Bioethanol and Bio-Oil
4.2.3. Hydrogen
4.2.4. Thermal Processes
Process | T (°C) | By-Products | Reference | |
---|---|---|---|---|
Combustion | Grape marc pellets | nd | Gas: | [155] |
LHV: 19.8 MJ kg−1 | ||||
Grape marc | nd | Gas: | [156] | |
LHV: 5.7–7.9 MJ kg−1 | ||||
Grape marc | nd | Gas: | [157] | |
HHV: 21.8 MJ kg−1 | ||||
Air gasification | Grape marc | 990 | Gas: | [157] |
LHV: 4.2 MJ kg−1 | ||||
Vine residues | 800 | Gas: | [158] | |
Yield: 36% | ||||
CO: 17% H2:10% CO2: 11% CH4: 4% C2H6: 11% | ||||
LHV: 6.6 MJ m−3 | ||||
Steam gasification | Grape marc | 652 | Gas: | [157] |
LHV: 9.4 MJ kg−1 | ||||
Pyrolysis | Grape marc | 500 | Biochar: | [159] |
Yield: 33% | ||||
K: 2.2% | ||||
P: 0.62% | ||||
N: 2.7 % | ||||
Fixed carbon: 58.2% | ||||
Grape marc | 500 | Biochar: | [160] | |
Yield: 38% | ||||
HHV: 30.2 MJ kg−1 | ||||
Tar: | ||||
Yield: 34% | ||||
HHV: 30.5 MJ kg−1 | ||||
Vine residues | 550 | Gas: | [161] | |
Yield: 43% | ||||
HHV: 10.6 MJ kg−1 | ||||
Tar: | ||||
Yield: 17% | ||||
HHV: 5.7 MJ kg−1 | ||||
Biochar: | ||||
Yield: 40% | ||||
HHV: 12.8 MJ kg−1 | ||||
K: 2.3%1 | ||||
P: 0.1% | ||||
N: 0.5% | ||||
Fixed carbon: 40.2% |
4.3. Soil Amendment Production
5. Integrated Biorefinery Approaches: Case Studies
5.1. Grape Seed Oil Extraction Followed by Phenolic Compounds Extraction
5.2. Grape Pomace Phenolic Extraction Followed by Anaerobic Digestion or Pyrolysis
5.3. Grape Pomace Phenolic Extraction Followed by Two-Stage Anaerobic Digestion and Aerobic Digestion
5.4. Grape Pomace Extraction Followed by Enzymatic Hydrolysis and Anaerobic Fermentation
5.5. An Italian Case Study for Upgrading Wineries to Biorefinery and Circular Economy Framework
6. Conclusions and Forthcoming Developments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, B.; Yadav, V.; Yadav, A.; Rahman, M.U.; Yuan, W.Z.; Li, Z.; Wang, X. Integrated biorefinery approach to valorize winery waste: A review from waste to energy perspectives. Sci. Total Environ. 2020, 719, 137315. [Google Scholar] [CrossRef] [PubMed]
- 2019 Statistical Report on World Vitiviniculture. 2019. Available online: www.oiv.int/en/oiv-life/oiv-2019-report-on-the-world-vitivinicultural-situation (accessed on 4 January 2022).
- Conradie, A.; Sigge, G.O.; Cloete, T.E. Influence of winemaking practices on the characteristics of winery wastewater and water usage of wineries. S. Afr. J. Enol. Vitic. 2014, 35, 10–19. [Google Scholar]
- Zacharof, M.-P. Grape winery waste as feedstock for bioconversions: Applying the biorefinery concept. Waste Biomass Valor. 2017, 8, 1011–1025. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.; Duarte, E. Integrated approach to winery waste: Waste generation and data consolidation. Front. Environ. Sci. Eng. 2016, 10, 168–176. [Google Scholar] [CrossRef]
- Devesa-Rey, R.; Vecino, X.; Varela-Alende, J.L.; Barral, M.T.; Cruz, J.M.; Moldes, A.B. Valorization of winery waste vs. the costs of not recycling. Waste Manag. 2011, 31, 2327–2335. [Google Scholar] [CrossRef]
- Rondeau, P.; Gambier, F.; Jolibert, F.; Brosse, N. Compositions and chemical variability of grape pomaces from French vineyard. Ind. Crop. Prod. 2013, 43, 251–254. [Google Scholar] [CrossRef]
- Amulya, K.; Jukuri, S.; Mohan, S.V. Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: Process integration for up-scaling. Bioresour. Technol. 2015, 188, 231–239. [Google Scholar] [CrossRef]
- Ping, L.; Brosse, N.; Sannigrahi, P.; Ragauskas, A. Evaluation of grape stalks as a bioresource. Ind. Crops Prod. 2011, 33, 200–204. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural bioactive compounds from winery by-products as health promoters: A review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [Green Version]
- Apostolou, A.; Stagos, D.; Galitsiou, E.; Spyrou, A.; Haroutounian, S.; Portesis, N.; Trizoglou, I.; Hayes, A.W.; Tsatsakis, A.M.; Kouretas, D. Assessment of polyphenolic content, antioxidant activity, protection against ROS-induced DNA damage and anticancer activity of Vitis vinifera stem extracts. Food Chem. Toxicol. 2013, 61, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, P.L.; Mitchell, J.W.; Wilson, M.W.; Melton, L.D. Antilisterial activity of grape juice and grape extracts derived from Vitis vinifera variety Ribier. Int. J. Microb. 2006, 107, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Arvanitoyannis, I.S.; Ladas, D.; Mavromatis, A. Potential uses and applications of treated wine waste: A review. Int. J. Food Sci. Technol. 2006, 41, 475–487. [Google Scholar] [CrossRef]
- Ferri, M.; Vannini, M.; Ehrnell, M.; Eliasson, L.; Xanthakis, E.; Monari, S.; Sisti, L.; Marchese, P.; Celli, A.; Tassoni, A. From winery waste to bioactive compounds and new polymeric biocomposites: A contribution to the circular economy concept. J. Adv. Res. 2020, 24, 1–11. [Google Scholar] [CrossRef]
- Jin, Q.; O’Hair, J.; Stewart, A.C.; O’Keefe, S.F.; Neilson, A.P.; Kim, Y.-T.; Mcguire, M.; Lee, A.; Wilder, G.; Huang, H. Compositional characterization of different industrial white and red grape pomaces in Virginia and the potential valorization of the major components. Foods 2019, 8, 667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Q.; O’Keefe, S.F.; Stewart, A.C.; Neilson, A.P.; Kim, Y.-T.; Huang, H. Techno-economic analysis of a grape pomace biorefinery: Production of seed oil, polyphenols, and biochar. Food Bioprod. Process. 2021, 127, 139–151. [Google Scholar] [CrossRef]
- Lafka, T.I.; Sinanoglou, V.; Lazos, E.S. On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chem. 2007, 104, 1206–1214. [Google Scholar] [CrossRef]
- Giacobbo, A.; Meneguzzia, A.; Bernardes, A.M.; de Pinho, M.N. Pressure-driven membrane processes for the recovery of antioxidantcompounds from winery effluents. J. Clean. Prod. 2017, 155, 172–178. [Google Scholar] [CrossRef]
- Kontogiannopoulos, K.N.; Patsios, S.I.; Mitrouli, S.T.; Karabelas, A.J. Tartaric acid and polyphenols recovery from winery waste lees using membrane separation processes. J. Chem. Technol. Biotechnol. 2017, 92, 2934–2943. [Google Scholar] [CrossRef]
- Filippi, K.; Papapostolou, H.; Alexandri, M.; Vlysidis, A.; Myrtsi, E.D.; Ladakis, D.; Pateraki, C.; Haroutounian, S.A.; Koutinas, A. Integrated biorefinery development using winery waste streams for the production of bacterial cellulose, succinic acid and value-added fractions. Bioresour. Technol. 2022, 343, 125989. [Google Scholar] [CrossRef]
- Mohan, S.V.; Nikhil, G.N.; Chiranjeevi, P.; Reddy, C.N.; Rohit, M.V.; Kumar, A.N.; Sarkr, O. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresour. Technol. 2016, 215, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Castilla-Archilla, J.; O’Flaherty, V.; Lens, P.N.L. Biorefineries: Industrial Innovation and Tendencies. In Biorefinery; Bastidas-Oyanedel, J.R., Schmidt, J., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Dahiya, S.; Katakojwala, R.; Ramakrishna, S.; Mohan, S.V. Biobased products and life cycle assessment in the context of circular economy and sustainability. Mater. Circ. Econ. 2020, 2, 1–28. [Google Scholar] [CrossRef]
- Shah, A.V.; Singh, A.; Mohanty, S.S.; Srivastava, V.K.; Varjani, S. Organic solid waste: Biorefinery approach as a sustainable strategy in circular bioeconomy. Bioresour. Technol. 2022, 349, 126835. [Google Scholar] [CrossRef] [PubMed]
- Chakka, A.K.; Babu, A.S. Bioactive compounds of winery by-products: Extraction techniques and their potential health benefits. Appl. Food Biotechnol. 2022, 2, 100058. [Google Scholar] [CrossRef]
- Ioannou, L.A.; Puma, G.L.; Fatta-Kassinos, D. Treatment of winery wastewater by physicochemical, biological and advanced processes: A review. J. Hazard. Mater. 2015, 286, 343–368. [Google Scholar] [CrossRef] [PubMed]
- Giacobbo, A.; Oliveira, M.; Duarte, E.C.N.F.; Mira, H.M.C.; Bernardes, A.M.; De Pinho, M.N. Ultrafiltration based process for the recovery of polysaccharides and polyphenols from winery effluents. Sep. Sci. Technol. 2013, 4, 438–444. [Google Scholar] [CrossRef]
- Buelow, M.C.; Steenwerth, K.; Silva, L.C.R.; Parikh, S.J. Characterization of winery wastewater for reuse in California. Am. J. Enol. Vitic. 2015, 66, 302–310. [Google Scholar] [CrossRef] [Green Version]
- Bustamante, M.A.; Paredes, C.; Moral, R.; Moreno-Caselles, J.; Pérez-Espinosa, A.; Pérez-Murcia, M.D. Uses of winery and distillery effluents in agriculture: Characterisation of nutrient and hazardous components. Water Sci. Technol. 2005, 51, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Fumi, M.D.; Parodi, G.; Parodi, E.; Silva, A.; Marchetti, R. Optimisation of long-term activated-sludge treatment of winery wastewater. Bioresour. Technol. 1995, 52, 45–51. [Google Scholar] [CrossRef]
- Petruccioli, M.; Cardoso Duarte, J.; Eusebio, A.; Federici, F. Aerobic treatment of winery wastewater using a jet-loop activated sludge reactor. Process. Biochem. 2002, 37, 821–829. [Google Scholar] [CrossRef]
- Riaño, B.; Molinuevo, B.; García-González, M.C. Potential for methane production from anaerobic co-digestion of swine manure with winery wastewater. Bioresour. Technol. 2011, 102, 4131–4136. [Google Scholar] [CrossRef] [PubMed]
- Vlyssides, A.G.; Barampouti, E.M.; Mai, S. Wastewater characteristics from Greek wineries and distilleries. Water Sci. Technol. 2005, 51, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Bordiga, M. Valorization of Winemaking By-Products; CRC Press; Taylor & Francis Group: Boca Raton, FL, USA, 2016. [Google Scholar]
- El Achkar, J.H.; Lendormi, T.; Hobaika, Z.; Salameh, D.; Louka, N.; Maroun, R.G.; Lanoisellé, J.L. Anaerobic digestion of grape pomace: Biochemical characterization of the fractions and methane production in batch and continuous digesters. Waste Manag. 2016, 50, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Hajati, H.; Hassanabadi, A.; Golian, A.; Nassiri-Moghaddam, H.; Nassiri, M.R. The effect of grape seed extract and vitamin c feed supplementation on some blood parameters and HSP70 gene expression of broiler chickens suffering from chronic heat stress. Ital. J. Anim. Sci. 2015, 14, 3273. [Google Scholar] [CrossRef]
- Mironeasa, S.; Leahu, A.; Codin, G. Grape seed: Physico-chemical, structural characteristics and oil content. J. Agroaliment. Proc. Technol. 2010, 16, 1–6. [Google Scholar]
- Prado, J.M.; Forster-Carneiro, T.; Rostagno, M.A.; Follegatti-Romero, L.A.; Maugeri Filho, F.; Meireles, M.A.A. Obtaining sugars from coconut husk, defatted grape seed, and pressed palm fiber by hydrolysis with subcritical water. J. Supercrit. Fluids 2014, 89, 89–98. [Google Scholar] [CrossRef]
- Yalcin, H.; Kavuncuoglu, H.; Ekici, L.; Sagdic, O. Determination of fatty acid composition, volatile components, physico-chemical and bioactive properties of grape (Vitis vinifera) seed and seed oil. J. Food Process. Preserv. 2017, 41, e12854. [Google Scholar] [CrossRef]
- Fernandes, T.V.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; van Lier, J.B. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass. Bioresour. Technol. 2009, 100, 2575–2579. [Google Scholar] [CrossRef]
- Tuck, C.O.; Pérez, E.; Horváth, I.T.; Sheldon, R.A.; Poliakoff, M. Valorization of biomass: Deriving more value from waste. Science 2012, 337, 695. [Google Scholar] [CrossRef]
- Ananga, A.; Obuya, J.; Ochieng, J.; Tsolova, V. Grape seed nutraceuticals for disease prevention: Current status and future prospects. In Phenolic Compounds—Biological Activity; Soto-Hernandez, M., Palma-Tenango, M., Garcia-Mateos, M.d.R., Eds.; IntechOpen: London, UK, 2017. [Google Scholar]
- Perumalla, A.V.S.; Hettiarachchy, N.S. Green tea and grape seed extracts—Potential applications in food safety and quality. Food Res. Int. 2011, 44, 827–839. [Google Scholar] [CrossRef]
- Lin, C.S.K.; Koutinas, A.A.; Stamatelatou, K.; Mubofu, E.B.; Matharu, A.S.; Kopsahelis, N.; Pfaltzgraff, L.A.; Clark, J.H.; Papanikolaou, S.; Kwan, T.H.; et al. Current and future trends in food waste valorization for the production of chemicals, materials and fuels: A global perspective. Biofuels Bioprod. Biorefining 2014, 8, 686–715. [Google Scholar] [CrossRef]
- Salehi, B.; Vlaisavljevic, S.; Adetunji, C.O.; Adetunji, J.B.; Kregiel, D.; Antolak, H.; Pawlikowska, E.; Uprety, Y.; Mileski, K.S.; Devkota, H.P.; et al. Plants of the genus Vitis: Phenolic compounds, anticancer properties and clinical relevance. Trends Food Sci. Technol. 2019, 91, 362–379. [Google Scholar] [CrossRef]
- Bucic-Kojic, A.; Sovova, H.; Planinic, M.; Tomas, S. Temperature-dependent kinetics of grape seed phenolic compounds extraction: Experiment and model. Food Chem. 2013, 136, 1136–1140. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; Rodrigues, E.; Gonzaga, L.V.; Caliari, V.; Genovese, M.I.; Gonçalves, A.E.d.S.S.; Fett, R. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chem. 2011, 127, 174–179. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Rosselló, C.; Simal, S.; Garau, M.C.; López, F.; Femenia, A. Physico-chemical properties of cell wall materials obtained from ten grape varieties and their byproducts: Grape pomaces and stems. LWT 2010, 43, 1580–1586. [Google Scholar] [CrossRef]
- Llobera, A.; Cañellas, J. Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): Pomace and stem. Food Chem. 2007, 101, 659–666. [Google Scholar] [CrossRef]
- Karvela, E.; Makris, D.P.; Kalogeropoulos, N.; Karathanos, V.T. Deployment of response surface methodology to optimise recovery of grape (Vitis vinifera) stem polyphenols. Talanta 2009, 79, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Troilo, M.; Difonzo, G.; Paradiso, V.M.; Summo, C.; Caponio, F. Bioactive compounds from vine shoots, grape stalks, and wine lees: Their potential use in agro-food chains. Foods 2021, 10, 342. [Google Scholar] [CrossRef]
- Nanni, A.; Cancelli, U.; Montevecchi, G.; Masino, F.; Messori, M.; Antonelli, A. Functionalization and use of grape stalks as poly(butylene succinate) (PBS) reinforcing fillers. Waste Manag. 2021, 126, 538–548. [Google Scholar] [CrossRef]
- Prozil, S.O.; Evtuguin, D.V.; Lopes, L.P.C. Chemical composition of grape stalks of Vitis vinifera L. from red grape pomaces. Ind. Crops Prod. 2012, 35, 178–184. [Google Scholar] [CrossRef]
- Pujol, D.; Liu, C.; Fiol, N.; Olivella, M.À.; Gominho, J.; Villaescusa, I.; Pereira, H. Chemical characterization of different granulometric fractions of grape stalks waste. Ind. Crops Prod. 2013, 50, 494–500. [Google Scholar] [CrossRef]
- Romo Sánchez, S.; Gil Sánchez, I.; Arévalo-Villena, M.; Briones Pérez, A. Production and immobilization of enzymes by solid-state fermentation of agroindustrial waste. Bioprocess Biosyst. Eng. 2015, 38, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Gerardi, C.; D'amico, L.; Migoni, D.; Santino, A.; Salomone, A.; Carluccio, M.A.; Giovinazzo, G. Strategies for Reuse of Skins Separated From Grape Pomace as Ingredient of Functional Beverages. Front. Bioeng. Biotechnol. 2020, 8, 645. [Google Scholar] [CrossRef]
- Mendes, J.A.S.; Xavier, A.M.R.B.; Evtuguin, D.V.; Lopes, L.P.C. Integrated utilization of grape skins from white grape pomaces. Ind. Crop. Prod. 2013, 49, 286–291. [Google Scholar] [CrossRef]
- Baron, G.; Ferrario, G.; Marinello, C.; Carini, M.; Morazzoni, P.; Aldini, G. Effect of Extraction Solvent and Temperature on Polyphenol Profiles, Antioxidant and Anti-Inflammatory Effects of Red Grape Skin By-Product. Molecules 2021, 26, 5454. [Google Scholar] [CrossRef] [PubMed]
- Rani, J.; Indrajeet, R.A.; Kumar, S. Biovalorization of winery industry waste to produce value-added products. In Biovalorisation of Wastes to Renewable Chemicals and Biofuels; Rathinam, N.K., Sani, R.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 77–78. [Google Scholar]
- Lago-Vanzela, E.S.; Da-Silva, R.; Gomes, E.; García-Romero, E.; Hermosín-Gutiérrez, I. Phenolic composition of the Brazilian seedless table grape varieties BRS Clara and BRS Morena. J. Agric. Food Chem. 2011, 59, 8314–8323. [Google Scholar] [CrossRef]
- Rubilar, M.; Pinelo, M.; Shene, C.; Sineiro, J.; Nuñez, M.J. Separation and HPLC-MS identification of phenolic antioxidants from agricultural residues: Almond hulls and grape Pomace. J. Agric. Food Chem. 2007, 55, 10101–10109. [Google Scholar] [CrossRef]
- Hogervorst, J.C.; Miljić, U.; Puškaš, V. 5—extraction of bioactive compounds from grape processing by-products. In Handbook of Grape Processing By-Products; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 105–135. [Google Scholar]
- Ruberto, G.; Renda, A.; Daquino, C.; Amico, V.; Spatafora, C.; Tringali, C.; De Tommasi, N. Polyphenol constituents and antioxidant activity of grape pomace extracts from five Sicilian red grape cultivars. Food Chem. 2007, 100, 203–210. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Lazcano, C.; Lores, M.; Domínguez, J. Short-term stabilization of grape marc through earthworms. J. Hazard. Mater. 2011, 187, 291–295. [Google Scholar] [CrossRef]
- Gowman, A.; Picard, M.; Rodriguez-Uribe, A.; Misra, M.; Khalil, H.; Thimmanagari, M.; Mohanty, A. physicochemical analysis of apple and grape pomaces. BioResources 2019, 14, 3210–3230. [Google Scholar] [CrossRef]
- Moldes, A.B.; Vázquez, M.; Domínguez, J.M.; Díaz-Fierros, F.; Barral, M.T. Evaluation of mesophilic biodegraded grape marc as soil fertilizer. Appl. Biochem. Biotechnol. 2007, 141, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Corbin, K.R.; Hsieh, Y.S.Y.; Betts, N.S.; Byrt, C.S.; Henderson, M.; Stork, J.; DeBolt, S.; Fincher, G.B.; Burton, R.A. Grape marc as a source of carbohydrates for bioethanol: Chemical composition, pre-treatment and saccharification. Bioresour. Technol. 2015, 193, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; et al. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velvizhi, G.; Balakumar, K.; Shetti, N.P.; Ahmad, E.; Kishore Pant, K.; Aminabhavi, T.M. Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: Paving a path towards circular economy. Bioresour. Technol. 2022, 343, 126151. [Google Scholar] [CrossRef]
- Gavrilescu, M. Chapter 14—Biorefinery systems: An overview. In Bioenergy Research: Advances and Applications; Gupta, V.K., Tuohy, M.G., Kubicek, C.P., Saddler, J., Xu, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 219–241. [Google Scholar]
- Dohadwala, M.M.; Vita, J.A. Grapes and cardiovascular disease. J. Nutr. 2009, 139, 1788S–1793S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Xiao, Y.Y. Grape phytochemicals and associated health benefits. Criti. Rev. Food Sci. Nutr. 2013, 53, 1202–1225. [Google Scholar] [CrossRef]
- Anastasiadi, M.; Pratsinis, H.; Kletsas, D.; Skaltsounis, A.L.; Haroutounian, A. Grape stem extracts: Polyphenolic content and assessment of their in vitro antioxidant properties. Food Sci. Technol. 2012, 48, 316–322. [Google Scholar] [CrossRef]
- Di Lecce, G.; Arranz, S.; Jáuregui, O.; Tresserra-Rimbau, A.; Quifer-Rada, P.; Lamuela-Raventós, R.M. Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry. Food Chem. 2014, 145, 874–882. [Google Scholar] [CrossRef]
- Montealegre, P.R.; Peces, R.R.; Vozmediano, J.L.C.; Gascueña, J.M.; Romero, G. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J. Food Comp. Anal. 2006, 19, 687–693. [Google Scholar] [CrossRef]
- Kallithraka, S.; Salachaa, M.I.; Tzouroua, I. Changes in phenolic composition and antioxidant activity of white wine during bottle storage: Accelerated browning test versus bottle storage. Food Chem. 2009, 113, 500–505. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Salvador, A.A.A.S.; Smânia, E.F.A.; Maraschin, M.; Ferreira, S.R.S. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. J. Biotechnol. 2013, 164, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Ky, I.; Lorrain, B.; Kolbas, N.; Crozier, A.; Teissedre, P.L. Wine by-products: Phenolic characterization and antioxidant activity evaluation of grapes and grape pomaces from six different french grape varieties. Molecules 2014, 19, 482–506. [Google Scholar] [CrossRef] [Green Version]
- Spatafora, C.; Barbagallo, E.; Amico, V.; Tringali, C. Grape stems from Sicilian Vitis vinifera cultivars as a source of polyphenol-enriched fractions with enhanced antioxidant activity. Food Sci. Technol. 2013, 54, 542–548. [Google Scholar] [CrossRef]
- Amico, V.; Chillemi, R.; Mangiafico, S.; Spatafora, C.; Tringali, C. Polyphenol-enriched fractions from Sicilian grape pomace: HPLC–DAD analysis and antioxidant activity. Bioresour. Technol. 2008, 99, 5960–5966. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, D.W.; Parker, M.; Smith, P.A. Flavonol composition of Australian red and white wines determined by high-performance liquid chromatography. Aust. J. Grape Wine Res. 2008, 14, 153–161. [Google Scholar] [CrossRef]
- Fontana, A.R.; Antoniolli, A.; Bottini, R. Grape pomace as a sustainable source of bioactive compounds: Extraction, characterization, and biotechnological applications of phenolics. J. Agric. Food Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Zhang, M.; Sun, B. Novel approach for extraction of grape skin antioxidants by accelerated solvent extraction: Box–Behnken design optimization. J. Food Sci. Technol. 2019, 56, 4879–4890. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Zawirska-Wojtasiak, R.; Gośliński, M. Phenolic compounds from winemaking waste and its antioxidant activity towards oxidation of rapeseed oil. Int. J. Food Sci. Technol. 2010, 45, 2272–2280. [Google Scholar] [CrossRef]
- Caldas, T.W.; Mazza, K.E.L.; Teles, A.S.C.; Mattos, G.N.; Brígida, A.I.S.; Conte-Junior, C.A.; Borguini, R.G.; Godoy, R.L.O.; Cabral, L.M.C.; Tonon, R.V. Phenolic compounds recovery from grape skin using conventional and non-conventional extraction methods. Ind. Crops Prod. 2018, 111, 86–91. [Google Scholar] [CrossRef]
- Vatai, T.; Škerget, M.; Knez, Ž.; Kareth, S.; Wehowski, M.; Weidner, E. Extraction and formulation of anthocyanin-concentrates from grape residues. J. Supercrit. Fluids 2008, 45, 32–36. [Google Scholar] [CrossRef]
- Makris, D.P.; Boskou, G.; Andrikopoulos, N.K. Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J. Food Composit. Anal. 2007, 20, 125–132. [Google Scholar] [CrossRef]
- Yi, C.; Shi, J.; Kramer, J.; Xue, S.; Jiang, Y.; Zhang, M.; Ma, Y.; Pohorly, J. Fatty acid composition and phenolic antioxidants of winemaking pomace powder. Food Chem. 2009, 114, 570–576. [Google Scholar] [CrossRef]
- Negro, C.; Tommasi, L.; Miceli, A. Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour. Technol. 2003, 87, 41–44. [Google Scholar] [CrossRef]
- Da Rocha, C.B.; Noreña, C.P.Z. Microwave-assisted extraction and ultrasound-assisted extraction of bioactive compounds from grape pomace. Int. J. Food Eng. 2020, 16, 1–10. [Google Scholar] [CrossRef]
- Aliakbarian, B.; Fathi, A.; Perego, P.; Dehghani, F. Extraction of antioxidants from winery wastes using subcritical water. J. Supercrit. Fluids 2012, 65, 18–24. [Google Scholar] [CrossRef]
- Grillo, G.; Boffa, L.; Talarico, S.; Solarino, R.; Binello, A.; Cavaglià, G.; Bensaid, S.; Telysheva, G.; Cravotto, G. Batch and flow ultrasound-assisted extraction of grape stalks: Process intensification design up to a multi-kilo scale. Antioxidants 2020, 9, 730. [Google Scholar] [CrossRef]
- Baydar, N.G.; Özkan, G.; Saǧdiç, O. Total phenolic contents and antibacterial activities of grape (Vitis vinifera L.) extracts. Food Control 2004, 15, 335–339. [Google Scholar] [CrossRef]
- Vatai, T.; Škerget, M.; Knez, Ž. Extraction of phenolic compounds from elder berry and different grape marc varieties using organic solvents and/or supercritical carbon dioxide. J. Food Eng. 2009, 90, 246–254. [Google Scholar] [CrossRef]
- Bosiljkov, T.; Dujmić, F.; Bubalo, M.C.; Hribar, J.; Vidrih, R.; Brnčić, M.; Zlatic, E.; Redovniković, I.R.; Jokić, S. Natural deep eutectic solvents and ultrasound-assisted extraction: Green approachesfor extraction of wine lees anthocyanins. Food Bioprod. Process. 2017, 102, 195–203. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Toledo, R.T. Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols. J. Food Composit. Anal. 2006, 19, 41–48. [Google Scholar] [CrossRef]
- Drevelegka, I.; Goula, A.M. Recovery of grape pomace phenolic compounds through optimized extraction and adsorption processes. Chem. Eng. Process. 2020, 149, 107845. [Google Scholar] [CrossRef]
- Lončarić, A.; Jozinović, A.; Kovač, T.; Kojić, N.; Babić, J.; Šubarić, D. High voltage electrical discharges and ultrasound-assisted extraction of phenolics from indigenous fungus-resistant grape by-product. Pol. J. Food Nutr. Sci. 2020, 70, 101–111. [Google Scholar] [CrossRef]
- Zevallos, L.; Caldas, C.; Flores, A.; Obregón, J.; Miano, A.C.; Barraza-Jáuregui, G. Mixing design for optimizing ultrasound-assisted extraction of phenolic components and anthocyanins from blue berries and grape marc. Int. J. Fruit Sci. 2020, 20, S1313–S1327. [Google Scholar] [CrossRef]
- Dranca, F.; Oroian, M. Kinetic Improvement of bioactive compounds extraction from red grape (vitis vinifera moldova) pomace by ultrasonic treatment. Foods 2019, 8, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazza, K.E.L.; Santiago, M.C.P.A.; do Nascimento, L.S.M.; Godoy, R.L.O.; Souza, E.F.; Brígida, A.I.S.; Borguini, R.G.; Tonon, R.V. Syrah grape skin valorisation using ultrasound-assisted extraction: Phenolic compounds recovery, antioxidant capacity and phenolic profile. Int. J. Food Sci. Technol. 2019, 54, 641–650. [Google Scholar] [CrossRef]
- Ghafoor, K.; Choi, Y.H.; Jeon, J.Y.; Jo, I.H. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and Anthocyanins from grape (Vitis vinifera) seeds. J. Agric. Food Chem. 2009, 57, 4988–4994. [Google Scholar] [CrossRef]
- Thimothe, J.; Bonsi, I.A.; Padilla-Zakour, O.I.; Koo, H. Chemical characterization of red wine grape (Vitis vinifera and Vitis interspecific hybrids) and pomace phenolic extracts and their biological activity against Streptococcus mutans. J. Agric. Food Chem. 2007, 55, 10200–10207. [Google Scholar] [CrossRef]
- Alonso, Á.M.; Guillén, D.A.; Barroso, B.P.; García, A. Determination of antioxidant activity of wine byproducts and its correlation with polyphenolic content. J. Agric. Food Chem. 2002, 50, 5832–5836. [Google Scholar] [CrossRef]
- Mandal, S.C.; Mandal, V.; Das, A.K. Essentials of Botanical Extraction: Principles and Applications; Academic Press: Cambridge, MA, USA, 2015; pp. 173–185. [Google Scholar]
- Ekezie, F.G.C.; Sun, D.W.; Cheng, J.H. Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: A review of latest developments. Trends Food Sci. Technol. 2017, 67, 160–172. [Google Scholar] [CrossRef]
- Bagade, S.B.; Patil, M. Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: A review. Crit. Rev. Anal. Chem. 2019, 51, 138–149. [Google Scholar] [CrossRef]
- Ćurko, N.; Kelšin, K.; Dragović-Uzelac, V.; Valinger, D.; Tomašević, M.; Kovačević Ganić, K. Microwave-assisted extraction of different groups of phenolic compounds from grape skin pomaces: Modeling and optimization. Pol. J. Food Nutr. Sci. 2019, 69, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Garrido, T.; Gizdavic-Nikolaidis, M.; Leceta, I.; Urdanpilleta, M.; Guerrero, P.; de la Caba, K.; Kilmartin, P.A. Optimizing the extraction process of natural antioxidants from chardonnay grape marc using microwave-assisted extraction. Waste Manag. 2019, 88, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Nieto, J.A.; Santoyo, S.; Prodanov, M.; Reglero, G.; Jaime, L. Valorisation of grape stems as a source of phenolic antioxidants by using a sustainable extraction methodology. Foods 2020, 9, 604. [Google Scholar] [CrossRef] [PubMed]
- Pereira, D.T.V.; Tarone, A.G.; Cazarin, C.B.B.; Barberi, G.F.; Martínez, J. Pressurized liquid extraction of bioactive compounds from grape marc. J. Food Eng. 2019, 240, 105–113. [Google Scholar] [CrossRef]
- Aresta, A.; Cotugno, P.; De Vietro, N.; Massari, F.; Zambonin, C. Determination of polyphenols and vitamins in wine-making by-products by supercritical fluid extraction (SFE). Anal. Lett. 2020, 53, 2585–2595. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A. Supercritical fluid extraction of polyphenols from grape seed (Vitis vinifera): Study on process variables and kinetics. J. Supercrit. Fluids 2017, 130, 239–245. [Google Scholar] [CrossRef]
- Ghafoor, K.; AL-Juhaimi, F.Y.; Choi, Y.H. Supercritical Fluid extraction of phenolic compounds and antioxidants from grape (Vitis labrusca B.) seeds. Plant Foods Hum. Nutr. 2012, 67, 407–414. [Google Scholar] [CrossRef]
- De Campos, L.M.A.S.; Leimann, F.V.; Pedrosa, R.C.; Ferreira, S.R.S. Free radical scavenging of grape pomace extracts from Cabernet sauvingnon (Vitis vinifera). Bioresour. Technol. 2008, 99, 8413–8420. [Google Scholar] [CrossRef]
- Boussetta, N.; Lanoisellé, J.L.; Bedel-Cloutour, C.; Vorobiev, E. Extraction of soluble matter from grape pomace by high voltage electrical discharges for polyphenol recovery: Effect of sulphur dioxide and thermal treatments. J. Food Eng. 2009, 95, 192–198. [Google Scholar] [CrossRef]
- Boussetta, N.; Vorobiev, E.; Le, L.H.; Falcimaigne-Cordin, A.; Lanoisellé, J.-L. Application of electrical treatments in alcoholic solvent for polyphenols extraction from grape seeds. LWT Food Sci. Technol. 2012, 46, 127–134. [Google Scholar] [CrossRef]
- Boussetta, N.; Vorobiev, E.; Deloison, V.; Pochez, F.; Falcimaigne-Cordin, A.; Lanoisellé, J.-L. Valorisation of grape pomace by the extraction of phenolic antioxidants: Application of high voltage electrical discharges. Food Chem. 2011, 128, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Brianceau, S.; Turk, M.; Vitrac, X.; Vorobiev, E. High voltage electric discharges assisted extraction of phenolic compounds from grape stems: Effect of processing parameters on flavan-3-ols, flavonols and stilbenes recovery. Innov. Food Sci. Emerg. Technol. 2016, 35, 67–74. [Google Scholar] [CrossRef]
- Barba, F.J.; Brianceau, S.; Turk, M.; Boussetta, N.; Vorobiev, E. Effect of Alternative Physical Treatments (Ultrasounds, Pulsed Electric Fields, and High-Voltage Electrical Discharges) on Selective Recovery of Bio-compounds from Fermented Grape Pomace. Food Bioprocess Technol. 2015, 8, 1139–1148. [Google Scholar] [CrossRef]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Extraction and analysis of polyphenols: Recent trends. Crit. Rev. Biotechnol. 2011, 31, 227–249. [Google Scholar] [CrossRef] [PubMed]
- Purkait, M.K.; DasGupta, S.; De, S. Micellar enhanced ultrafiltration of phenolic derivatives from their mixtures. J. Colloid Interface Sci. 2005, 285, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Giacobbo, A.; Bernardes, A.M.; De Pinho, M.N. Nanofiltration for the recovery of low molecular weight polysaccharides and polyphenols from winery effluents. Sep. Sci. Technol. 2013, 48, 2524–2530. [Google Scholar] [CrossRef]
- Giacobbo, A.; Bernardes, A.M.; Rosa, M.J.F.; De Pinho, M.N. Concentration polarization in ultrafiltration/nanofiltration for the recovery of polyphenols from winery wastewaters. Membranes 2018, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Galanakis, C.M.; Markouli, E.; Gekas, V. Recovery and fractionation of different phenolic classes from winery sludge using ultrafiltration. Sep. Purif. Technol. 2013, 107, 245–251. [Google Scholar] [CrossRef]
- Rodrigues, R.P.; Gando-Ferreira, L.M.; Quina, M.J. Micellar enhanced ultrafiltration for the valorization of phenolic compounds and polysaccharides from winery wastewaters. J. Water Process. Eng. 2020, 38, 101565. [Google Scholar] [CrossRef]
- Cheng, V.J.; Bekhit, A.E.-D.A.; McConnell, M.; Mros, S.; Zhao, J. Effect of extraction solvent, waste fraction and grape variety on the antimicrobial and antioxidant activities of extracts from wine residue from cool climate. Food Chem. 2012, 134, 474–482. [Google Scholar] [CrossRef]
- Dabetić, N.; Todorović, V.; Panić, M.; Radojčić Redovniković, I.; Šobajić, S. Impact of Deep Eutectic Solvents on Extraction of Polyphenols from Grape Seeds and Skin. Appl. Sci. 2020, 10, 4830. [Google Scholar] [CrossRef]
- Víctor-Ortega, M.D.; Martins, R.C.; Gando-Ferreira, L.M.; Quinta-Ferreira, R.M. Recovery of phenolic compounds from wastewaters through micellar enhanced ultrafiltration. Colloids Surf. 2017, 531, 18–24. [Google Scholar] [CrossRef]
- Schwarze, M. Micellar-enhanced ultrafiltration (MEUF)—State of the art. Environ. Sci. Water Res. Technol. 2017, 3, 598–624. [Google Scholar] [CrossRef]
- Jin, Q.; Neilson, A.P.; Stewart, A.C.; O’Keefe, S.F.; Kim, Y.-T.; Mcguire, M.; Wilder, G.; Huang, H. Integrated approach for the valorization of red grape pomace: Production of oil, polyphenols, and acetone–butanol–ethanol. ACS Sustain. Chem. Eng. 2018, 6, 16279–16286. [Google Scholar] [CrossRef]
- El Achkar, J.H.; Lendormi, T.; Hobaika, Z.; Salameh, D.; Louka, N.; Maroun, R.G.; Lanoisellé, J.L. Anaerobic digestion of nine varieties of grape pomace: Correlation between biochemical composition and methane production. Biomass Bioenergy 2017, 107, 335–344. [Google Scholar] [CrossRef]
- Ma, X.; Yu, M.; Yang, M.; Gao, M.; Wu, C.; Wang, Q. Synergistic effect from anaerobic co-digestion of food waste and Sophora flavescens residues at different co-substrate ratios. Environ. Sci. Pollut. Res. 2019, 26, 37114–37124. [Google Scholar] [CrossRef]
- Montalvo, S.; Martinez, J.; Castillo, A.; Huiliñir, C.; Borja, R.; García, V.; Salazar, R. Sustainable energy for a winery through biogas production and its utilization: A Chilean case study. Sustain. Energy Technol. Assess. 2020, 37, 100640. [Google Scholar] [CrossRef]
- El Achkar, J.H.; Lendormi, T.; Salameh, D.; Louka, N.; Maroun, R.G.; Lanoisellé, J.L.; Hobaika, Z. Influence of pretreatment conditions on lignocellulosic fractions and methane production from grape pomace. Bioresour. Technol. 2018, 247, 881–889. [Google Scholar] [CrossRef]
- Da Ros, C.; Cavinato, C.; Bolzonella, D.; Pavan, P. Renewable energy from thermophilic anaerobic digestion of winery residue: Preliminary evidence from batch and continuous lab-scale trials. Biomass Bioenergy 2016, 91, 150–159. [Google Scholar] [CrossRef]
- Filho, M.G.; Lumi, M.; Hasan, C.; Marder, M.; Leite, L.C.S.; Konrad, O. Energy recovery from wine sector wastes: A study about the biogas generation potential in a vineyard from Rio Grande do Sul, Brazil. Sustain. Energy Technol. Assess. 2018, 29, 44–49. [Google Scholar]
- Carrillo-Reyes, J.; Albarrán-Contreras, B.A.; Buitrón, G. Influence of added nutrients and substrate concentration in biohydrogen production from winery wastewaters coupled to methane production. Appl. Biochem. Biotechnol. 2019, 187, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Montes, J.A.; and Rico, C. Biogas Potential of Wastes and By-Products of the Alcoholic Beverage Production Industries in the Spanish Region of Cantabria. Appl. Sci. 2020, 10, 7481. [Google Scholar] [CrossRef]
- Bai, Z.; Jin, B.; Li, Y.; Chen, J.; Li, Z. Utilization of winery wastes for Trichoderma viride biocontrol agent production by solid state fermentation. J. Environ. Sci. 2008, 20, 353–358. [Google Scholar] [CrossRef]
- Sirohi, R.; Tarafdar, A.; Singh, S.; Negi, T.; Gaur, V.K.; Gnansounou, E.; Bharathiraja, B. Green processing and biotechnological potential of grape pomace: Current trends and opportunities for sustainable biorefinery. Bioresour. Technol. 2020, 314, 123771. [Google Scholar] [CrossRef]
- Bolonio, S.; García-Martínez, M.-J.; Ortega, M.F.; Lapuerta, M.; Rodríguez-Fernández, J.; Canoira, L. Fatty acid ethyl esters (FAEEs) obtained from grapeseed oil: A fully renewable biofuel. Renew. Energy 2018, 132, 278–283. [Google Scholar] [CrossRef]
- Ramos, M.J.; Fernández, C.M.; Casas, A.; Rodríguez, L.; Pérez, Á. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 2009, 100, 261–268. [Google Scholar] [CrossRef]
- Lapuerta, M.; Rodríguez-Fernández, J.; Ramos, Á.; Donoso, D.; Canoira, L. WLTC and real-driving emissions for an autochthonous biofuel from wine-industry waste. Sci. Rep. 2021, 11, 7528. [Google Scholar] [CrossRef]
- Haro, J.C.D.; Rodríguez, J.F.; Carmona, M.; Pérez, Á. Revalorization of Grape Seed Oil for Innovative Non-Food Applications. Grapes Wines Adv. Prod. Process. Anal. Valorization 2018, 205, 1373–1397. [Google Scholar]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Nadaleti, W.C.; Martins, R.; Lourenço, V.; Przybyla, G.; Bariccatti, R.; Souza, S.; Manzano-Agugliaro, F.; Sunny, N. A pioneering study of biomethane and hydrogen production from the wine industry in Brazil: Pollutant emissions, electricity generation and urban bus fleet supply. Int. J. Hydrog. Energy 2021, 46, 19180–19201. [Google Scholar] [CrossRef]
- Bocanegra, P.E.; Reverte, C.; Aymonier, C.; Loppinet-Serani, A.; Barsan, M.M.; Butler, I.S.; Kozinski, J.A.; Gökalp, I. Gasification study of winery waste using a hydrothermal diamond anvil cell. J. Supercrit. Fluids 2010, 53, 72–81. [Google Scholar] [CrossRef]
- Zoppi, G.; Pipitone, G.; Pirone, R.; Bensaid, S. Aqueous phase reforming process for the valorization of wastewater streams: Application to different industrial scenarios. Catal. Today 2022, 387, 224–236. [Google Scholar] [CrossRef]
- Muhlack, R.A.; Potumarthi, R.; Jeffery, D.W. Sustainable wineries through waste valorisation: A review of grape marc utilisation for value-added products. Waste Manag. 2018, 72, 99–118. [Google Scholar] [CrossRef] [PubMed]
- Caputo, A.C.; Palumbo, M.; Pelagagge, P.M.; Scacchia, F. Economics of biomass energy utilization in combustion and gasification plants: Effects of logistic variables. Biomass Bioenerg. 2005, 28, 35–51. [Google Scholar] [CrossRef]
- Iakovou, E.; Karagiannidis, A.; Vlachos, D.; Toka, A.; Malamakis, A. Waste biomass-to-energy supply chain management: A critical synthesis. Waste Manag. 2010, 30, 1860–1870. [Google Scholar] [CrossRef] [PubMed]
- Benetto, E.; Jury, C.; Kneip, G.; Vázquez-Rowe, I.; Huck, V.; Minette, F. Life cycle assessment of heat production from grape marc pellets. J. Clean. Prod. 2015, 85, 149–158. [Google Scholar] [CrossRef]
- Rada, E.C.; Ragazzi, M.; Fiori, L.; Antolini, D. Bio-drying of grape marc and other biomass: A comparison. Water Sci. Technol. 2009, 60, 1065–1070. [Google Scholar] [CrossRef]
- Fiori, L.; Florio, L. Gasification and combustion of grape marc: Comparison among different scenarios. Waste Biomass Valorization 2010, 1, 191–200. [Google Scholar] [CrossRef]
- Link, S.; Arvelakis, S.; Paist, A.; Liliedahl, T.; Rosén, C. Effect of leaching pretreatment on the gasification of wine and vine (residue) biomass. Renew. Energy 2018, 115, 1–5. [Google Scholar] [CrossRef]
- Ferjani, A.; Jeguirim, M.; Jellali, S.; Limousy, L.; Courson, C.; Akrout, H.; Thevenin, N.; Ruidavets, L.; Muller, A.; Bennici, S. The use of exhausted grape marc to produce biofuels and biofertilizers: Effect of pyrolysis temperatures on biochars properties. Renew. Sustain. Energy Rev. 2019, 107, 425–433. [Google Scholar] [CrossRef]
- Volpe, M.; Fiori, L.; Panno, D.; Volpe, R.; Messineo, A. Assessment of bio-combustibles production via slow pyrolysis of wine industry residues. AIP Conf. Proc. 2018, 2040, 140010. [Google Scholar]
- Rosas, J.G.; Gómez, N.; Cara, J.; Ubalde, J.; Sort, X.; Sánchez, M.E. Assessment of sustainable biochar production for carbon abatement from vineyard residues. J. Anal. Appl. Pyrolysis 2015, 113, 223–247. [Google Scholar] [CrossRef]
- Del Pozo, C.; Bartrolí, J.; Alier, S.; Puy, N.; Fàbregas, E. Production, identification, and quantification of antioxidants from torrefaction and pyrolysis of grape pomace. Fuel Process. Technol. 2021, 211, 106602. [Google Scholar] [CrossRef]
- Ramos, J.S.; Ferreira, A.F. Techno-economic analysis and life cycle assessment of olive and wine industry co-products valorisation. Renew. Sustain. Energy Rev. 2022, 15, 111929. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Paredes, C.; Morales, J.; Mayoral, A.M.; Moral, R. Study of the composting process of winery and distillery wastes using multivariate techniques. Bioresour. Technol. 2009, 100, 4766–4772. [Google Scholar] [CrossRef]
- Díaz, M.J.; Madejón, E.; López, F.; López, R.; Cabrera, F. Optimization of the rate vinasse/grape marc for co-composting process. Process. Biochem. 2002, 37, 1143–1150. [Google Scholar] [CrossRef]
- Fermoso, F.G.; Serrano, A.; Alonso-Fariñas, B.; Fernández-Bolaños, J.; Borja, R.; Rodríguez-Gutiérrez, G. Valuable compound extraction, anaerobic digestion, and composting: A leading biorefinery approach for agricultural wastes. J. Agric. Food Chem. 2018, 66, 8451–8468. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Alburquerque, J.A.; Restrepo, A.P.; de la Fuente, C.; Paredes, C.; Moral, R.; Bernal, M.P. Co-composting of the solid fraction of anaerobic digestates, to obtain added-value materials for use in agriculture. Biomass Bioenerg. 2012, 43, 26–35. [Google Scholar] [CrossRef]
- Lucarini, M.; Durazzo, A.; Romani, A.; Campo, M.; Lombardi-Boccia, G.; Cecchini, F. Bio-based compounds from grape seeds: A biorefinery approach. Molecules 2018, 23, 1888. [Google Scholar] [CrossRef] [Green Version]
- Almeida, P.V.; Rodrigues, R.P.; Mendes, C.V.T.; Slezag, R.; Pietrzyk, D.; Quina, M.J. Assessment of NIR spectroscopy for predicting biochemical methane potential of agro-residues—A biorefinery approach. Biomass Bioenerg. 2021, 151, 106169. [Google Scholar] [CrossRef]
- Almeida, P.V.; Rodrigues, R.P.; Slezag, R.; Quina, M.J. Effect of phenolic compound recovery from agro-industrial residues on the performance of pyrolysis process. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Martinez, G.A.; Rebecchi, S.; Decorti, D.; Domingos, J.M.B.; Natolino, A.; Del Rio, D.; Bertin, L.; Da Porto, C.; Fava, F. Towards multi-purpose biorefinery platforms for the valorisation of red grape pomace: Production of polyphenols, volatile fatty acids, polyhydroxyalkanoates and biogas. Green Chem. 2016, 18, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Ncube, A.; Fiorentino, G.; Colella, M.; Ulgiati, S. Upgrading wineries to biorefineries within a Circular Economy perspective: An Italian case study. Sci. Total Environ. 2021, 775, 145809. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value | Parameter | Value |
---|---|---|---|
pH | 3.10–12.90 | P (mg L−1) | 3.30–188.3 |
Electrical conductivity (dS m−1) | 0.14–72.0 | Fe (mg L−1) | 1.00–77.0 |
Total solids (g L−1) | 0.19–79.6 | Mg (mg L−1) | 1.96–1170 |
Volatile solids (g L−1) | 0.66–54.9 | Ca (mg L−1) | 12.00–2203 |
Chemical oxygen demand (g L−1) | 0.34–296 | Mn (mg L−1) | 200.00–1740 |
Biochemical oxygen demand (g L−1) | 0.004–41.0 | Cu (mg L−1) | 0.05–3260 |
Total organic carbon (g L−1) | 0.11–20.9 | Zn (mg L−1) | 12.00–1400 |
Total phenolic content (mg L−1) | 29.00–1450. | Ni (mg L−1) | 500–650 |
Total carbohydrates (g L−1) | 1.56–1.56 | ||
Total lipids (g L−1) | 0.25–0.25 | ||
Total proteins ((g L−1) | 0.01–2.75 | ||
Total Kjeldahl nitrogen (g L−1) | 0.03–0.07 |
Parameter | Value |
---|---|
pH | 4.6 |
Moisture (%) | 5.5–34.8 |
Organic matter (%, db) | 94.2–96.2 |
Ash (%, db) | 2.1–8.3 |
Klason lignin (%, db) | 50.7 a |
Total carbohydrates (%, db) | 64.7–72.1 |
Diatery fibers (%, db) | 35.3 |
Lipids (%, db) | 7.2–24.8 |
Proteins (%, db) | 5.0–19.0 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Moisture (%) | 56.8–76.7 | Proteins (%, db) | 4.9–11.2 |
Organic matter (%, db) | 89.0–94.5 | K (g kg−1, db) | 9.00–28.73 |
Ash (%, db) | 3.9–11.2 | Ca (g kg−1, db) | 1.50–5.97 |
Klason lignin (%, db) | 4.6–47.3 | Mg (g kg−1, db) | 0.20–2.63 |
Hemicelluloses (%, db) | 13.9–24.5 | Zn (g kg−1, db) | 0.01–0.10 |
Cellulose (%, db) | 30.3 | Na (g kg−1, db) | 0.10–0.32 |
Total carbohydrates (%, db) | 14.0–27.6 | Fe (g kg−1, db) | 0.07–0.25 |
Soluble carbohydrates (%, db) | 5.1–12.4 | Cu (g kg−1, db) | 0.04–0.05 |
Diatery fibers (%, db) | 1.0–77.2 | Mn (g kg−1, db) | 0.09–0.17 |
Lipids (%, db) | 0.9–3.4 | Mg (g kg−1, db) | 2.33–2.63 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Moisture (%) | 5.6 | Ca (g kg−1, db) | 3.93–4.26 |
Organic matter (%, db) | 81.7–98.0 | Fe (g kg−1, db) | 0.17–0.72 |
Ash (%, db) | 2.0–18.3 | K (g kg−1, db) | 17.92–24.68 |
Klason lignin (%, db) | 22.4–22.5 | Mg (g kg−1, db) | 0.40–0.51 |
Hemicelluloses (%, db) | 3.6–12.5 | Na (g kg−1, db) | 0.17–0.27 |
Cellulose (%, db) | 20.8–25.9 | Zn (g kg−1, db) | 0.01–0.02 |
Diatery fibers (%, db) | 19.3 | ||
Proteins (%, db) | 5.0–19.0 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Moisture (%) | 50.0–72.0 | Lipids (%, db) | 19.9–74.5 |
Organic matter (%, db) | 50.2–72.2 | Proteins (%, db) | 2.7–12.2 |
Ash (%, db) | 82.7–95.90 | K (g kg−1, db) | 11.80–37.90 |
Klason lignin (%, db) | 32.5–56.7 | Ca (g kg-1, db) | 5.40–20.60 |
Hemicelluloses (%, db) | 6.9–8.0 | Mg (g kg−1, db) | 0.70–2.20 |
Cellulose (%, db) | 17.5–25.3 | Zn (g kg−1, db) | 0.01–0.04 |
Total carbohydrates (%, db) | 18.2 | Fe (g kg−1, db) | 0.54–0.28 |
Soluble carbohydrates (%, db) | 29.0-31.4 | Cu (g kg−1, db) | 0.01–0.28 |
Diatery fibers (%, db) | 2.0–17.2 | Mn (g kg−1, db) | 0.0002–0.10 |
Operational Conditions | Sample | TPh (mgGAE gdb−1) | Reference |
---|---|---|---|
Solvent: Ethanol:Water (49:51); t: 5 min; T: 50 °C; L/S: 16.5 | Skins | 13.29 | [84] |
Solvent: Ethanol:Water (70:30); t: 300 min; T: 60 °C; L/S: 4 | Pomace | 19.17 | [85] |
Solvent: Ethanol:Water (50:50); t: 30 min; T: 30 °C; L/S: 10 | Skins | 48.6 | [86] |
Solvent: Methanol:HCl (99.9:0.1); t: 60 min; T: 4 °C; L/S: 50 | Pomace | 74.75 | [48] |
Solvent: Acetone:Water (70:30); t: 120 min; T: 60 °C; L/S: 20 | Pomace | 17 | [87] |
Solvent: Methanol:Acetone:Water (60:30:10) with 0.1% HCl; t: 10 min; T: nd; L/S: nd | Pomace | 54.02 | [88] |
Stalks | 57.98 | ||
Seeds | 103.3 | ||
Skins | 36.25 | ||
Solvent: Methanol; t: 30 min; T: nd; L/S: 10 | Pomace | 5.33 | [89] |
Solvent: Ethanol:Water (80:20) with 0.5% HCl (0.1 N); t: nd; T: nd; L/S: 30 | Skins and Seeds | 41.9 | [90] |
Seeds | 85.8 | ||
Skins | 33.3 | ||
Solvent: Citric Acid (2%): Water (3:1); t: 1440 min; T: RT; L/S: nd | Pomace | 3 | [91] |
Solvent: Water; t: 45 min; T: 45 °C; L/S: 20 | Stalks | 27.09 | [92] |
Solvent: Ethanol; t: 1140 min; T: 25 °C; L/S: 5 | Pomace | 7.87 | [93] |
Solvent: Ethyl acetate:Methanol:Water (60:30:10); t: 480 min; T: 60 °C; L/S: 2 | Skins | 45.44 | [94] |
Solvent: Acetone:Water:Acetic acid (90:9.5:0.5); t: 480 min; T: 60 °C; L/S: 2 | Seeds | 667.9 | |
Solvent: Ethanol:Water (50:50); t: 120 min; T: 60 °C; L/S: 20 | Pomace | 18 | [95] |
Solvent: Choline chloride:Malic acid:Water (25:25:25); t: 180 min; T: RT; L/S: 60 | Wine lees | 5.5 a | [96] |
Operational Conditions | Sample | TPh (mgGAE gdb−1) | Reference |
---|---|---|---|
Solvent: Ethanol:Water (50:50); t: 9 min; T: 28 °C; Power: 20 kHz, 1000 W; L/S: 10 | Skins | 80 | [86] |
Solvent: Citric Acid (2%):Water (3:1); t: 15 min; T: 88.1 °C; Power: 450 W; L/S: nd | Pomace | 4.5 | [91] |
Solvent: Water; t: 45 min; T: 45 °C; Power: 25 kHz, 200 W; L/S: 20 | Stalks | 31.89 | [93] |
Solvent: Acetone:Water (50:50); t: 15 min + 30 min; T: RT; Power: nd; L/S: 10 | Seeds | 41 | [97] |
Solvent: Ethanol:Water (47:53); t: 20 min T: 56 °C; Power: 20 kHz; 130 W; L/S: 8 | Pomace | 48.76 | [98] |
Solvent: Ethanol; t: 15 min; T: 80 °C; Power: 35 kHz; L/S: nd | Pomace | 6 | [99] |
Solvent: Ethanol:Water (50:50); t: 15 min T: nd; Power: 40 kHz; L/S: 200 | Pomace | 26.21 | [100] |
Solvent: 2-propanol:Water (50:50); t: 29.6 min; T: 50 °C; Power: 25 kHz; L/S: 10 | Pomace | 62.49 | [101] |
Solvent: Ethanol:Water (50:50) + 2.4% citric acid; t: 3 min; T: 26 °C; Power: 20 kHz, 2600 W;L/S: 13 | Skins | 117.3 | [102] |
Solvent: Ethanol:Water (50:50); t: 25 min; T: 50 °C; Power: 40 kHz, 250 W; L/S: 50 | Seeds | 26.6 | [103] |
Solvent: Methanol:Ethanol:Water (50:25:25); t: 20 min; T: nd; Power: nd; L/S: 10 | Skins and Seeds | 61.8 | [104] |
Solvent: Methanol; t: 15; T: nd; Power: nd; L/S: 10 | PomaceSeeds | 41 a | [105] |
Solvent: Choline chloride:Malic acid:Water (25:25:25); t: 30.6 min; T: RT; Power: 37 kHz, 341.5 W;L/S: 10 | Wine lees | 6.6 a | [96] |
Operational Conditions | Sample | TPh (mgGAE gdb−1) | Reference |
---|---|---|---|
Solvent: Ethanol:Water (50:50); t: 30 min; T: nd; Power: 3458 MHz; 1000 W; L/S: 10 | Skins | 104 | [86] |
Solvent: Ethanol:Water (42:58); t: 5 min T: nd; Power: 408 W; L/S: 24 | |||
Solvent: Citric Acid (2%):Water (3:1); t: 10 min; T: 92.5 °C; Power: 1000 W; L/S: nd | Pomace | 7 | [91] |
Solvent: Methanol:Water (60:40); t: 16 min; T: 60 °C; Power: 2.45 GHz; L/S: 50 | Skin | 22.16 | [109] |
Solvent: Ethanol:Water (30:70); t: 15 min; T: 24 °C; Power: 93 W; L/S: 6.7 | Pomace | 10.2 | [110] |
Operational Conditions | Sample | TPh (mgGAE gdb−1) | Reference |
---|---|---|---|
Solvent: Ethanol:Water (48.81:51.19); t: 14.82 min; T: 50.79 °C; Pressure: 10.1 MPa; S/F: nd | Skins | 15.24 | [84] |
Solvent: Water; t: 130 min; T: 140 °C; Pressure: 8 MPa; S/F: nd | Pomace | 32.49 | [92] |
Solvent: Ethanol:Water (50:50); t: 6 min T: 120 °C; Pressure: 10.3 MPa; S/F: nd | Stalks | 57.1 | [111] |
Solvent: Ethanol:Water (50:50), pH 2; t: 40 min; T: 85 °C; Pressure: nd; S/F: 253 | Skins and seeds | 76.38 | [112] |
Operational Conditions | Sample | TPh (mgGAE gdb−1) | Reference |
---|---|---|---|
Solvent: CO2; Flowrate: nd; t: nd; T: 40 °C; Pressure: 30 MPa | Pomace | 18 | [95] |
Solvent: CO2 + Ethanol (20%); Flowrate: 2 mL min-1; + 0.4 mL min-1; t: nd; T: 60 °C; Pressure: 25 MPa | Pomace Skins Seeds | 0.570 | [113] |
0.603 | |||
0.336 | |||
Solvent: CO2 + Ethanol (15%); Flowrate: 6 kg h-1; t: 780 min; T: 40 °C; Pressure: 0.8 MPa | Pomace | 71.32 | [114] |
Solvent: CO2 + Ethanol (5%); Flowrate: 2 mL min-1; t: 30 min; T: 46 °C; Pressure: 16.7 MPa | Seeds | 85 | [115] |
Operational Conditions | Sample | TPh (mgGAE gdb−1) | Reference |
---|---|---|---|
Solvent: Ethanol:Water (50:50), 1% HCl; Energy input: 22.27 kJ kg−1; t: 15 min; T: 25 °C; L/S: nd | Pomace | 30 | [99] |
Solvent: Ethanol:Water (50:50), pH 5.5; Energy input: 188 kJ kg−1; t: nd T: 20 °C; L/S: 15 | Stalks | 78.8 | [118] |
Solvent: Water; Energy input: 53 kJ kg−1; t: nd; T: 20 °C; L/S: 5 | Seeds | 25 | [120] |
Solvent: Water; Energy input: 213 kJ kg−1; t: nd; T: 20 °C; L/S: 5 | Stalks | 1.85 | |
Solvent: Ethanol:Water (30:70); Energy input: 80 kJ kg−1; t: 60 min; T: 20 °C; L/S: 2 | Pomace | 28 | [119] |
Parameter | SLE | UAE | MAE | ASE | SFE | HVED |
---|---|---|---|---|---|---|
t (min) | 10–1440 | 9–45 | 5–30 | 6–130 | 30–780 | 15–60 |
T (°C) | 4–60 | 26–80 | 24–93 | 51–140 | 40–60 | 20–25 |
Pressure (MPa) | atm | atm | atm | 8–10 | 0.8–30 | atm |
L/S (mL g−1) | 2–50 | 8–200 | 7–50 | nd | nd | 2–15 |
Advantages | Easy operation; widely used | Eco friendly; can be used for themo-sensible compounds; reduced extraction time | Reduced solvent usage; reduced extraction time; high extraction yield | Low solvent consuption; low extraction time | Eco friendly; can be used for themo-sensible compounds | Reduced extraction time, low solvente consuption, |
Disadvantages | Impurities; analytical errors | Not uniform energy distribution; decline power with time | High capital costs | Not suitable for themo-sensible compounds | High capital costs; high pressure requirments | Low selectivity; high energy consuption |
Product | Parameter | Value | Reference |
---|---|---|---|
Bioethanol | Yeast culture | Saccharomyces cerevisiae 1072 | [58] |
Agitation (rpm) | 180 | [58] | |
Temperature ( °C) | 28 | [58] | |
Sample (% v/v) | 70 | [58] | |
Inoculum (% v/v) | 20 | [58] | |
Supplementary medium (% v/v) | 10 | [58] | |
Yield (mL kg−1) | 310–400 | [58,64] | |
Bio-oil | Yield (%) | 6.4–7.2 | [143,144] |
Unsaturated fatty acids (%) | 84.6–89.0 | [143,144,145,146] | |
Saturated fatty acids (%) | 11.0–15.4 | [143,145,146] | |
Bio-diesel (FAEE) | Density, 15 °C (kg m-3) | 879.5–882.4 | [143,145] |
Kinematic viscosity, 40 °C (mm2 s−1) | 4.1–4.7 | [143,145,146] | |
HHV (MJ kg−1) | 40.0 | [143] | |
LHV (MJ kg−1) | 37.5–37.6 | [143,145] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, R.P.; Gando-Ferreira, L.M.; Quina, M.J. Increasing Value of Winery Residues through Integrated Biorefinery Processes: A Review. Molecules 2022, 27, 4709. https://doi.org/10.3390/molecules27154709
Rodrigues RP, Gando-Ferreira LM, Quina MJ. Increasing Value of Winery Residues through Integrated Biorefinery Processes: A Review. Molecules. 2022; 27(15):4709. https://doi.org/10.3390/molecules27154709
Chicago/Turabian StyleRodrigues, Rafaela P., Licínio M. Gando-Ferreira, and Margarida J. Quina. 2022. "Increasing Value of Winery Residues through Integrated Biorefinery Processes: A Review" Molecules 27, no. 15: 4709. https://doi.org/10.3390/molecules27154709
APA StyleRodrigues, R. P., Gando-Ferreira, L. M., & Quina, M. J. (2022). Increasing Value of Winery Residues through Integrated Biorefinery Processes: A Review. Molecules, 27(15), 4709. https://doi.org/10.3390/molecules27154709