Ultrasound-Assisted Synthesis and In Silico Modeling of Methanesulfonyl-Piperazine-Based Dithiocarbamates as Potential Anticancer, Thrombolytic, and Hemolytic Structural Motifs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antiproliferative Potential
2.3. Hemolytic Potential
2.4. Thrombolytic Potential
2.5. Structure-Activity Relationship (SAR) Study
2.6. In Silico Modeling
3. Materials and Methods
3.1. General
3.2. General Procedures for the Synthesis of Piperazine-1-carbodithioates 5a–5j
3.2.1. Conventional Method
3.2.2. Ultrasound-Assisted Method
3.2.3. 2-Oxo-2-(phenylamino)ethyl 4-(methylsulfonyl)piperazine-1-carbodithioate (5a)
3.2.4. 2-((2-Chlorophenyl)amino)-2-oxoethyl 4-(methylsulfonyl)piperazine-1-carbodithioate (5b)
3.2.5. 2-((4-Chlorophenyl)amino)-2-oxoethyl 4-(methylsulfonyl)piperazine-1-carbodithioate (5c)
3.2.6. 2-((3,4-Dichlorophenyl)amino)-2-oxoethyl 4-(methylsulfonyl)piperazine-1-carbodithioate (5d)
3.2.7. 2-((2-Fluorophenyl)amino)-2-oxoethyl 4-(methylsulfonyl)piperazine-1-carbodithioate (5e)
3.2.8. 2-((4-Fluorophenyl)amino)-2-oxoethyl 4-(methylsulfonyl)piperazine-1-carbodithioate (5f)
3.2.9. 2-((4-Methoxyphenyl)amino)-2-oxoethyl 4-(methylsulfonyl)piperazine-1-carbodithioate (5g)
3.2.10. 2-((2,5-Dimethoxyphenyl)amino)-2-oxoethyl 4-(methylsulfonyl)piperazine-1-carbodithioate (5h)
3.2.11. 2-((2,4-Dimethylphenyl)amino)-2-oxoethyl 4-(methylsulfonyl)piperazine-1-carbodithioate (5i)
3.2.12. 2-((3,4-Dimethylphenyl)amino)-2-oxoethyl-4-(methylsulfonyl)piperazine-1-carbodithioate (5j)
3.3. Experimental Procedures for Antiproliferative, Hemolytic, and Thrombolytic Activity
3.3.1. Culture and Treatment of Cell Lines
3.3.2. Evaluation of Cell Viability
3.3.3. Hemolytic Potential
3.3.4. Thrombolytic Potential
3.4. Computational Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Alberg, A.J.; Samet, J.M. Epidemiology of lung cancer. Chest 2003, 123, 21S–49S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiro, S.G.; Silvestri, G.A. One hundred years of lung cancer. Am. J. Respir. Crit. Care Med. 2005, 172, 523–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jemal, A.; Murray, T.; Ward, E.; Sammuels, A.; Tewari, R.C.; Ghafoor, A.; Feuer, E.J.; Thun, M.J. Cancer Statistics, 2005. CA Cancer J. Clin. 2005, 55, 10–30. [Google Scholar] [CrossRef] [PubMed]
- Travis, W.D. Pathology of lung cancer. Clin. Chest Med. 2002, 23, 65–81. [Google Scholar] [CrossRef]
- Parkin, D.M.; Bray, F.I.; Devesa, S.S. Cancer burden in the year 2000. The global picture. Eur. J. Cancer 2001, 37, S4–S66. [Google Scholar] [CrossRef]
- Jackman, D.M.; Johnson, B.E. Small-cell lung cancer. Lancet 2005, 366, 1385–1396. [Google Scholar] [CrossRef]
- Wistuba, I.I.; Gazdar, A.F. Lung cancer preneoplasia. Annu. Rev. Pathol. Mech. Dis. 2006, 1, 331–348. [Google Scholar] [CrossRef]
- Minna, J.D.; Roth, J.A.; Gazdar, A.F. Focus on lung cancer. Cancer Cell 2002, 1, 49–52. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. Eur. J. Med. Chem. 2014, 76, 193–244. [Google Scholar] [CrossRef]
- Jida, M.; Soveidan, M.; Willand, N.; Agbossou-Niedercorn, F.; Pelinski, L.; Laconde, G.; Poulain, R.D.; Deprez, B. A facile and rapid synthesis of N-benzyl-2-substituted piperazines. Tetrahedron Lett. 2011, 52, 1705–1708. [Google Scholar] [CrossRef]
- Koparde, S.; Hosamani, K.M.; Kulkarni, V.; Joshi, S.D. Synthesis of coumarin-piperazine derivatives as potent anti-microbial and anti-inflammatory agents, and molecular docking studies. Chem. Data Collect. 2018, 15–16, 197–206. [Google Scholar] [CrossRef]
- Hafeez, F.; Zahoor, A.F.; Ahmad, S.; Ahmad, M.; Faiz, S. Recent progress in the synthesis of diclofenac based NSAIDs analogs/derivatives. Synth. Commun. 2018, 49, 325–350. [Google Scholar] [CrossRef]
- Kaya, B.; Yurttas, L.; Saǧlik, B.N.; Levent, S.; Özkay, Y.; Kaplancikli, Z.A. Novel 1-(2-pyrimidin-2-yl)piperazine derivatives as selective monoamine oxidase (MAO)-A inhibitors. J. Enzyme Inhib. Med. Chem. 2017, 32, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Gou, C.-C.; Tong, R.-B.; Li, K.-L. Chloroalkyl piperazine and nitrogen mustard porphyrins: Synthesis and anticancer activity. Bioorg. Med. Chem. 2004, 12, 2469–2475. [Google Scholar] [CrossRef]
- Akhtar, R.; Zahoor, A.F.; Rasul, A.; Ahmad, M.; Anjum, M.N.; Ajmal, M.; Raza, Z. Design, synthesis, in-silico study and anticancer potential of novel n-4-piperazinyl-ciprofloxacin-aniline hybrids. Pak. J. Pharm. Sci. 2019, 32, 2215–2222. [Google Scholar]
- Zahoor, A.F.; Yousaf, M.; Siddique, R.; Ahmad, S.; Naqvi, S.A.R.; Rizvi, S.M.A. Synthetic strategies toward the synthesis of enoxacin-, levofloxacin-, and gatifloxacin-based compounds: A review. Synth. Commun. 2017, 47, 1021–1039. [Google Scholar] [CrossRef]
- Akhtar, R.; Yousaf, M.; Naqvi, S.A.R.; Irfan, M.; Zahoor, A.F.; Hussain, A.I.; Chatha, S.A.S. Synthesis of ciprofloxacin-based compounds: A review. Synth. Commun. 2016, 46, 1849–1879. [Google Scholar] [CrossRef]
- Todorovic, A.; Haskell-Leuvano, C. A review of melanocortin receptor small molecule ligands. Peptides 2005, 26, 2026–2036. [Google Scholar] [CrossRef]
- De Freitas Oliveira, J.W.; Rocha, H.A.O.; de Medeiros, W.M.T.Q.; Silva, M.S. Application of dithiocarbamates as potential new antitrypanosomatids-drugs: Approach chemistry, functional and biological. Molecules 2019, 24, 2806. [Google Scholar] [CrossRef] [Green Version]
- Pang, H.; Chen, D.; Cui, Q.C.; Dou, Q.P. Sodium diethyldithiocarbamate, an AIDS progression inhibitor and a copper-binding compound, has proteasome-inhibitory and apoptosis-inducing activities in cancer cells. Int. J. Mol. Med. 2007, 19, 809–816. [Google Scholar] [CrossRef] [Green Version]
- Amir, M.K.; Rehman, Z.; Hayat, F.; Khan, S.Z.; Hogarth, G.; Kondratyuk, T.; Pezzuto, J.M.; Tahir, M.N. Monofunctional platinum(ii) dithiocarbamate complexes: Synthesis, characterization and anticancer activity. RSC Adv. 2016, 6, 110517–110524. [Google Scholar] [CrossRef]
- Fu, D.-J.; Li, J.-H.; Yang, J.-J.; Li, P.; Zhang, Y.-B.; Liu, S.; Li, Z.-R.; Zhang, S.-Y. Discovery of novel chalcone-dithiocarbamates as ROS-mediated apoptosis inducers by inhibiting catalase. Bioorg. Chem. 2019, 86, 375–385. [Google Scholar] [CrossRef]
- Buac, D.; Schmitt, S.; Ventro, G.; Kona, F.R.; Dou, Q.P. Dithiocarbamate-based coordination compounds as potent proteasome inhibitors in human cancer cells. Mini Rev. Med. Chem. 2012, 12, 1193–1201. [Google Scholar] [CrossRef] [Green Version]
- Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A.M. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem. 2007, 12, 1829–1852. [Google Scholar] [CrossRef]
- Kouznetsov, V.V.; Gómez-Barrio, A. Recent developments in the design and synthesis of hybrid molecules based on aminoquinoline ring and their antiplasmodial evaluation. Eur. J. Med. Chem. 2009, 44, 3091–3113. [Google Scholar] [CrossRef]
- Geltik, M.; Grütter, C.; Simrad, J.R.; Klüter, S.; Rabiller, M.; Rode, H.B.; Robubi, A.; Rauh, D. Hybrid compound design to overcome the gatekeeper T338M mutation in cSrc. J. Med. Chem. 2009, 52, 3915–3926. [Google Scholar] [CrossRef]
- Henderson, B.J.; Carper, D.J.; Gonzǎlez-Cestari, T.F.; Yi, B.; Mohasenan, K.; Pavlovicz, R.E.; Dalefield, M.L.; Coleman, R.S.; Li, C.; McKay, D.B. Structure–activity relationship studies of sulfonylpiperazine analogues as novel negative allosteric modulators of human neuronal nicotinic receptors. J. Med. Chem. 2011, 54, 8681–8692. [Google Scholar] [CrossRef] [Green Version]
- Cormier, R.; Burdab, W.N.; Harringtonb, L.; Edlingera, J.; Kodigepallib, K.M.; Thomas, J.; Kepolka, R.; Roma, G.; Anderson, B.E.; Turosa, E.; et al. Studies on the antimicrobial properties of N-acylated ciprofloxacins. Bioorg. Med. Chem. Lett. 2012, 22, 6513–6520. [Google Scholar] [CrossRef] [Green Version]
- Faiz, S.; Zahoor, A.F.; Ajmal, M.; Kamal, S.; Ahmad, S.; Abdelgawed, A.M.; Elnaggar, M.E. Design, synthesis, antimicrobial evaluation, and laccase catalysis effect of novel benzofuran–oxadiazole and benzofuran–triazole hybrids. J. Heterocycl. Chem. 2019, 56, 2839–2852. [Google Scholar] [CrossRef]
- Hafeez, F.; Zahoor, A.F.; Rasool, A.; Ahmad, S.; Mansha, A. Synthesis and anticancer evaluation of 2-oxo-2-(arylamino) ethyl 4-phenylpiperazine-1-carbodithioates. Pak. J. Pharm. Sci. 2021, 34, 353–357. [Google Scholar]
- Hafeez, F.; Mansha, A.; Zahoor, A.F.; Ali, K.G.; Khan, S.G.; Naqvi, S.A.R. Facile green approach towards the synthesis of some phenyl piperazine based dithiocarbamates as potent hemolytic and thrombolytic agents. Pak. J. Pharm. Sci. 2021, 34, 1885–1890. [Google Scholar] [PubMed]
- Rasul, A.; Di, J.; Millimouno, F.M.; Malhi, M.; Tsuji, I.; Ali, M.; Li, J.; Li, X. Reactive oxygen species mediate isoalantolactone-induced apoptosis in human prostate cancer cells. Molecules 2013, 18, 9382–9396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahzadi, I.; Zahoor, A.F.; Rasul, A.; Rasool, N.; Raza, Z.; Faisal, S.; Parveen, B.; Kamal, S.; Zia-ur-Rehman, M.; Zahid, F.M. Synthesis, anticancer, and computational studies of 1, 3, 4-oxadiazole-purine derivatives. J. Heterocycl. Chem. 2020, 57, 2782–2794. [Google Scholar] [CrossRef]
- Riaz, M.; Rasool, N.; Bukhari, I.H.; Shahid, M.; Zubair, M.; Rizwan, K.; Rashid, U. In vitro antimicrobial, antioxidant, cytotoxicity and GC-MS analysis of Mazus goodenifolius. Molecules 2012, 17, 14275–14287. [Google Scholar] [CrossRef] [Green Version]
- Batool, M.; Tajammal, A.; Farhat, F.; Verpoort, F.; Khattak, Z.A.K.; Mehr-un-Nisa, M.S.; Ahmad, H.A.; Munawar, M.A.; Zia-ur-Rehman, M.; Basra, M.A.R. Molecular docking, computational, and antithrombotic studies of novel 1,3,4-oxadiazole derivatives. Int. J. Mol. Sci. 2018, 19, 3606. [Google Scholar] [CrossRef] [Green Version]
- Gfeller, D.; Grosdider, A.; Wirth, M.; Diana, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014, 42, W32–W38. [Google Scholar] [CrossRef]
Piperazine | Ar | Cell Viability A-549 a | Hemolysis (%) | Thrombolysis (%) |
---|---|---|---|---|
5a | Phenyl | 61.35 ± 2.29 | 3.1 | 58.9 |
5b | 2-Chlorophenyl | 25.11 ± 2.49 | 1.27 | 54.4 |
5c | 4-Chlorophenyl | 60.29 ± 5.96 | 10 | 47.8 |
5d | 3,4-Dichlorophenyl | 38.08 ± 2.85 | 0.1 | 56.03 |
5e | 2-Fluorophenyl | 68.94 ± 6.64 | 0.3 | 53.5 |
5f | 4-Fluorophenyl | 41.01 ± 3.73 | 2.8 | 50.3 |
5g | 4-Methoxyphenyl | 43.36 ± 4.42 | 1.3 | 50.9 |
5h | 2,5-Dimethoxyphenyl | 40.25 ± 3.34 | 7.1 | 60.2 |
5i | 2,4-Dimethylphenyl | 25.31 ± 3.62 | 2.8 | 57.4 |
5j | 3,4-dimethylphenyl | 47.94 ± 1.57 | 0.1 | 58.7 |
Standard | 100 ± 0 | |||
DMSO | 0.01 | 0.57 | ||
ABTS | 95.9 | 80 |
Ligand | ΔG (kcal/mol) | Interacting Residues | Interaction Type |
---|---|---|---|
5b | −8.30 | TYR514, PHE686, TYR683, VAL712, PRO702, MET703, GLU711, SER667 | H–bonding, sulfur–X, π–σ, π–π stacked, amide–π stacked, alkyl, π–alkyl |
PQ-10 | −8.97 | GLU711, PRO702, TYR683, VAL712, GLN716, ILE682, ALA679, TYR514, ASP664, PHE716, MET703 | H–bonding, sulfur–X, π–σ, π–π stacked, amide–π stacked, alkyl, π–alkyl |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafeez, F.; Zahoor, A.F.; Rasul, A.; Mansha, A.; Noreen, R.; Raza, Z.; Ali, K.G.; Irfan, A.; El-Hiti, G.A. Ultrasound-Assisted Synthesis and In Silico Modeling of Methanesulfonyl-Piperazine-Based Dithiocarbamates as Potential Anticancer, Thrombolytic, and Hemolytic Structural Motifs. Molecules 2022, 27, 4776. https://doi.org/10.3390/molecules27154776
Hafeez F, Zahoor AF, Rasul A, Mansha A, Noreen R, Raza Z, Ali KG, Irfan A, El-Hiti GA. Ultrasound-Assisted Synthesis and In Silico Modeling of Methanesulfonyl-Piperazine-Based Dithiocarbamates as Potential Anticancer, Thrombolytic, and Hemolytic Structural Motifs. Molecules. 2022; 27(15):4776. https://doi.org/10.3390/molecules27154776
Chicago/Turabian StyleHafeez, Freeha, Ameer Fawad Zahoor, Azhar Rasul, Asim Mansha, Razia Noreen, Zohaib Raza, Kulsoom Ghulam Ali, Ali Irfan, and Gamal A. El-Hiti. 2022. "Ultrasound-Assisted Synthesis and In Silico Modeling of Methanesulfonyl-Piperazine-Based Dithiocarbamates as Potential Anticancer, Thrombolytic, and Hemolytic Structural Motifs" Molecules 27, no. 15: 4776. https://doi.org/10.3390/molecules27154776
APA StyleHafeez, F., Zahoor, A. F., Rasul, A., Mansha, A., Noreen, R., Raza, Z., Ali, K. G., Irfan, A., & El-Hiti, G. A. (2022). Ultrasound-Assisted Synthesis and In Silico Modeling of Methanesulfonyl-Piperazine-Based Dithiocarbamates as Potential Anticancer, Thrombolytic, and Hemolytic Structural Motifs. Molecules, 27(15), 4776. https://doi.org/10.3390/molecules27154776