Co-Pyrolysis of Cotton Stalks and Low-Density Polyethylene to Synthesize Biochar and Its Application in Pb(II) Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock Collection and Biochar Production
2.2. Thermogarvimetric Analysis
2.3. The Analysis of Feedstock and Biochar Properties
2.4. Pb(II) Adsorption Experiment
3. Results and Discussion
3.1. Thermogravimetric Analysis
3.2. Biochar Characteristic
3.2.1. The Physicochemical Properties
3.2.2. Surface Functional Groups
3.2.3. The Surface Area, Pore Volume, Pore Size of the Biochars
3.2.4. SEM
3.3. Adsorption of Pb(II) on Biochar
3.3.1. Influence of Blending Ratio and Pyrolysis Temperature
3.3.2. Influence of pH
3.3.3. Influence of Contact Time
3.3.4. Influence of Initial Concentration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Fu, P.; Hu, S.; Xiang, J.; Sun, L.; Su, S.; An, S. Study on the gas evolution and char structural change during pyrolysis of cotton stalk. J. Anal. Appl. Pyrolysis 2012, 97, 130–136. [Google Scholar] [CrossRef]
- Dong, Z.; Hou, X.; Haigler, I.; Yang, Y. Preparation and properties of cotton stalk bark fibers and their cotton blended yarns and fabrics. J. Clean. Prod. 2016, 139, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wu, Q.; Fan, B.; Zhang, J.; Li, W.; Zheng, X.; Lin, H.; Guo, L. Testing biodegradable films as alternatives to plastic films in enhancing cotton (Gossypium hirsutum L.) yield under mulched drip irrigation. Soil Tillage Res. 2019, 192, 196–205. [Google Scholar] [CrossRef]
- Schaffer, S.; Pröll, T.; Al Afif, R.; Pfeifer, C. A mass-and energy balance-based process modelling study for the pyrolysis of cotton stalks with char utilization for sustainable soil enhancement and carbon storage. Biomass Bioenergy 2019, 120, 281–290. [Google Scholar] [CrossRef]
- Gao, L.; Li, Z.; Yi, W.; Li, Y.; Zhang, P.; Zhang, A.; Wang, L. Impacts of pyrolysis temperature on lead adsorption by cotton stalk-derived biochar and related mechanisms. J. Environ. Chem. Eng. 2021, 9, 105602. [Google Scholar] [CrossRef]
- Dai, J.; Dong, H. Intensive cotton farming technologies in China: Achievements, challenges and countermeasures. Field Crops Res. 2014, 155, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Zhao, J.B. Farmland plastic film pollution and its countermeasures. Sichuan Environ. 2005, 24, 102–105. [Google Scholar]
- Mahari, W.A.; Chong, C.T.; Lam, W.H.; Anuar, T.N.S.T.; Ma, N.L.; Ibrahim, M.D.; Lam, S.S. Microwave co-pyrolysis of waste polyolefns and waste cooking oil: Influence of N2 atmosphere versus vacuum environment. Energy Convers. Manag. 2018, 171, 1292–1301. [Google Scholar] [CrossRef]
- Mahari, W.A.W.; Kee, S.H.; Foong, S.Y.; Amelia, T.S.M.; Bhubalan, K.; Man, M.; Yang, Y.; Ong, H.C.; Vithanage, M.; Lam, S.S.; et al. Generating alternative fuel and bioplastics from medical plastic waste and waste frying oil using microwave co-pyrolysis combined with microbial fermentation. Renew. Sustain. Energy Rev. 2022, 153, 111790. [Google Scholar]
- Kai, X.; Li, R.; Yang, T.; Shen, S.; Ji, Q.; Zhang, T. Study on the co-pyrolysis of rice straw and high density polyethylene blends using TG-FTIR-MS. Energy Convers. Manag. 2017, 146, 20–33. [Google Scholar] [CrossRef]
- Kai, X.; Yang, T.; Shen, S.; Li, R. TG-FTIR-MS study of synergistic effects during co-pyrolysis of corn stalk and high-density polyethylene (HDPE). Energy Convers. Manag. 2019, 181, 202–213. [Google Scholar] [CrossRef]
- Gu, J.; Fan, H.; Wang, Y.; Zhang, Y.; Yuan, H.; Chen, Y. Co-pyrolysis of xylan and high-density polyethylene: Product distribution and synergistic effects. Fuel 2020, 267, 116896. [Google Scholar] [CrossRef]
- Jin, Q.; Wang, X.; Li, S.; Mikulčić, H.; Bešenić, T.; Deng, S.; Vujanović, M.; Tan, H.; Kumfer, B.M. Synergistic effects during co-pyrolysis of biomass and plastic: Gas, tar, soot, char products and thermogravimetric study. J. Energy. Inst. 2019, 92, 108–117. [Google Scholar] [CrossRef]
- Rathnayake, D.; Ehidiamhen, P.O.; Egene, C.E.; Stevens, C.V.; Meers, E.; Mašek, O.; Ronsse, F. Investigation of biomass and agricultural plastic co-pyrolysis: Effect on biochar yield and properties. J. Anal. Appl. Pyrolysis 2021, 155, 105029. [Google Scholar] [CrossRef]
- Mahari, W.A.W.; Awang, S.; Zahariman, N.A.Z.; Peng, W.; Man, M.; Park, Y.K.; Lee, J.; Sonne, C.; Lam, S.S. Microwave co-pyrolysis for simultaneous disposal of environmentally hazardous hospital plastic waste, lignocellulosic, and triglyceride biowaste. J. Hazard. Mater. 2022, 423, 127096. [Google Scholar]
- Zhang, X.; Xu, M.; Sun, R.; Sun, L. Study on biomass pyrolysis kinetics. J. Eng. Gas Turbines Power 2006, 128, 493–496. [Google Scholar] [CrossRef]
- Inyang, M.I.; Gao, B.; Yao, Y.; Xue, Y.; Zimmerman, A.; Mosa, A.; Pullammanappallil, P.; Ok, Y.S.; Cao, X. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 2016, 46, 406–433. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Chen, M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour. Technol. 2016, 214, 836–851. [Google Scholar] [CrossRef]
- Oh, S.Y.; Seo, Y.D. Polymer/biomass-derived biochar for use as a sorbent and electron transfer mediator in environmental applications. Bioresour. Technol. 2016, 218, 77–83. [Google Scholar] [CrossRef]
- Oh, S.Y.; Seo, T.C. Upgrading biochar via co-pyrolyzation of agricultural biomass and polyethylene terephthalate wastes. RSC Adv. 2019, 9, 28284–28290. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Zheng, Y.; Tao, L.; Yang, X.; Huang, Y.; Liu, C.; Zheng, Z. Study of the thermal behavior, kinetics, and product characterization of biomass and low-density polyethylene co-pyrolysis by thermogravimetric analysis and pyrolysis-GC/MS. J. Anal. Appl. Pyrolysis 2018, 133, 185–197. [Google Scholar] [CrossRef]
- Fan, H.; Gu, J.; Wang, Y.; Yuan, H.; He, M.; Sun, F.A. Study on co-pyrolysis characteristics of biomass components and polyethylene by TG-MS. Strateg. Study Chin. Acad. Eng. 2018, 20, 102–108. [Google Scholar] [CrossRef]
- Kumagai, S.; Fujita, K.; Kameda, T.; Yoshioka, T. Interactions of beech wood–polyethylene mixtures during co-pyrolysis. J. Anal. Appl. Pyrolysis 2016, 122, 531–540. [Google Scholar] [CrossRef]
- Liu, Z.; Niu, W.; Chu, H.; Zhou, T.; Niu, Z. Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources 2018, 13, 3429–3446. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.; Xiang, L.; Hu, H.; Fu, Q.; Zhu, J.; Liu, Y.; Huang, G. High-efficiency removal capacities and quantitative sorption mechanisms of Pb by oxidized rape straw biochars. Sci. Total Environ. 2020, 699, 134262. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Camps-Arbestain, M.; Lehmann, J. Biochar: A Guide to Analytical Methods; Csiro Publishing: Clayton, Australia, 2017. [Google Scholar]
- Sajjadi, B.; Shrestha, R.M.; Chen, W.Y.; Mattern, D.L.; Hammer, N.; Raman, V.; Dorris, A. Double-layer magnetized/functionalized biochar composite: Role of microporous structure for heavy metal removals. J. Water. Process Eng. 2021, 39, 101677. [Google Scholar] [CrossRef]
- Chen, W.M.; Chen, M.Z.; Zhou, X.Y. Characterization of biochar obtained by co-pyrolysis of waste newspaper with high-density polyethylene. BioResources 2015, 10, 8253–8267. [Google Scholar] [CrossRef] [Green Version]
- Kwak, J.H.; Islam, M.S.; Wang, S.; Messele, S.A.; Naeth, M.A.; El-Din, M.G.; Chang, S.X. Biochar properties and lead (II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Chemosphere 2019, 231, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Du, W.; Wang, F.; Xu, H.; Zhao, T.; Zhang, H.; Zhu, W. Comparative study on Pb2+ removal from aqueous solutions using biochars derived from cow manure and its vermicompost. Sci. Total Environ. 2020, 716, 137108. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Shen, G.; Zhang, Y.; Gao, C.; Li, Y.; Zhang, P.; Xiao, W.; Han, L. Impacts of carbonization temperature on the Pb (II) adsorption by wheat straw-derived biochar and related mechanism. Sci. Total Environ. 2019, 692, 479–489. [Google Scholar] [CrossRef]
- Xu, Y.; Bai, T.; Li, Q.; Yang, H.; Yan, Y.; Sarkar, B.; Lam, S.S.; Bolan, N. Influence of pyrolysis temperature on the characteristics and lead (II) adsorption capacity of phosphorus-engineered poplar sawdust biochar. J. Anal. Appl. Pyrolysis 2021, 154, 105010. [Google Scholar] [CrossRef]
- Li, Y.; Song, S.; Xia, L.; Yin, H.; Meza, J.V.G.; Ju, W. Enhanced Pb (II) removal by algal-based biosorbent cultivated in high-phosphorus cultures. Chem. Eng. J. 2019, 361, 167–179. [Google Scholar] [CrossRef]
- Jiang, Q.; Xie, W.; Han, S.; Wang, Y.; Zhang, Y. Enhanced adsorption of Pb (II) onto modified hydrochar by polyethyleneimine or H3PO4: An analysis of surface property and interface mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123962. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Cai, J.; Zhang, X.; Zhang, J.; Shao, J. Evaluation and prediction of cadmium removal from aqueous solution by phosphate-modified activated bamboo biochar. Energy Fuels 2017, 32, 4469–4477. [Google Scholar] [CrossRef]
- OzCimen, D.; Ersoy-Meriboyu, A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renew. Energy 2010, 35, 1319–1324. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, W.; Yang, Y.; Huang, X.; Wang, S.; Qiu, R. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 2012, 46, 854–862. [Google Scholar] [CrossRef]
- Fan, S.; Sun, Y.; Yang, T.; Chen, Y.; Yan, B.; Li, R.; Chen, G. Biochar derived from corn stalk and polyethylene co-pyrolysis: Characterization and Pb(II) removal potential. RSC Adv. 2020, 10, 6362–6376. [Google Scholar] [CrossRef] [Green Version]
- Alqadami, A.A.; Naushad, M.; ALOthman, Z.A.; Alsuhybani, M.; Algamdi, M. Excellent adsorptive performance of a new nanocomposite for removal of toxic Pb(II) from aqueous environment: Adsorption mechanism and modeling analysis. J. Hazard. Mater. 2020, 389, 121896. [Google Scholar] [CrossRef]
- Kołodyńska, D.; Wnętrzak, R.; Leahy, J.J.; Hayes, M.H.B.; Kwapiński, W.; Hubicki, Z.J.C.E.J. Kinetic and adsorptive characterization of biochar in metal ions removal. Chem. Eng. J. 2012, 197, 295–305. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F.-S. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J. Hazard. Mater. 2009, 167, 933–939. [Google Scholar]
- Shen, Z.; Jin, F.; Wang, F.; McMillan, O.; Al-Tabbaa, A. Sorption of lead by Salisbury biochar produced from British broadleaf hardwood. Bioresour. Technol. 2015, 193, 553–556. [Google Scholar]
- Liu, L.; Huang, Y.; Zhang, S.; Gong, Y.; Su, Y.; Cao, J.; Hu, H. Adsorption characteristics and mechanism of Pb(II) by agricultural waste-derived biochars produced from a pilot-scale pyrolysis system. Waste Manag. 2019, 100, 287–295. [Google Scholar]
- Shi, J.; Fan, X.; Tsang, D.C.W.; Wang, F.; Shen, Z.; Hou, D.; Alessi, D.S. Removal of lead by rice husk biochars produced at different temperatures and implications for their environmental utilizations. Chemosphere 2019, 235, 825–831. [Google Scholar]
- Choudhary, V.; Patel, M.; Pittman, C.U.; Mohan, D. Batch and Continuous Fixed-Bed Lead Removal Using Himalayan Pine Needle Biochar: Isotherm and Kinetic Studies. ACS Omega 2020, 5, 16366–16378. [Google Scholar]
- Cheng, S.; Liu, Y.; Xing, B.; Qin, X.; Zhang, C.; Xia, H. Lead and cadmium clean removal from wastewater by sustainable biochar derived from poplar saw dust. J. Clean. Prod. 2021, 314, 128074. [Google Scholar]
pH | Yield (%) | Ash (%) | C (%) | H (%) | N (%) | O (%) | H/C | O/C | |
---|---|---|---|---|---|---|---|---|---|
Cotton Stalks | 7.82 ± 0.08 | - | 6.21 ± 0.15 | 42.68 ± 0.33 | 4.89 ± 0.06 | 1.69 ± 0.03 | 44.53 ± 0.16 | 1.37 ± 0.05 | 0.696 ± 0.005 |
LDPE | 7.98 ± 0.07 | - | - | 85.70 ± 0.32 | 14.30 ± 0.12 | - | - | 2.00 ± 0.02 | - |
CSB400 | 8.43 ± 0.06 | 34.39 ± 0.24 | 12.50 ± 0.19 | 65.75 ± 0.31 | 3.86 ± 0.01 | 1.06 ± 0.02 | 16.83 ± 0.22 | 0.70 ± 0.01 | 0.171 ± 0.003 |
C3P1400 | 7.99 ± 0.06 | 49.61 ± 0.35 | 6.21 ± 0.14 | 74.70 ± 0.49 | 8.09 ± 0.02 | 0.62 ± 0.02 | 10.38 ± 0.19 | 1.30 ± 0.02 | 0.093 ± 0.002 |
C2P1400 | 8.08 ± 0.05 | 54.54 ± 0.29 | 4.87 ± 0.09 | 76.69 ± 0.66 | 9.43 ± 0.06 | 0.53 ± 0.03 | 8.49 ± 0.32 | 1.40 ± 0.03 | 0.074 ± 0.002 |
C1P1400 | 8.26 ± 0.11 | 65.80 ± 0.22 | 3.40 ± 0.11 | 79.92 ± 0.35 | 11.30 ± 0.05 | 0.35 ± 0.02 | 5.03 ± 0.26 | 1.70 ± 0.04 | 0.042 ± 0.001 |
CSB450 | 9.26 ± 0.09 | 32.75 ± 0.39 | 12.73 ± 0.24 | 68.10 ± 0.38 | 3.61 ± 0.03 | 1.06 ± 0.04 | 14.50 ± 0.33 | 0.64 ± 0.00 | 0.142 ± 0.002 |
C3P1450 | 9.64 ± 0.08 | 27.84 ± 0.26 | 10.99 ± 0.34 | 69.41 ± 0.39 | 3.85 ± 0.02 | 1.02 ± 0.02 | 14.73 ± 0.28 | 0.67 ± 0.01 | 0.141 ± 0.002 |
C2P1450 | 9.67 ± 0.08 | 22.33 ± 0.33 | 10.48 ± 0.42 | 69.88 ± 0.11 | 4.03 ± 0.05 | 1.04 ± 0.01 | 15.38 ± 0.23 | 0.70 ± 0.02 | 0.148 ± 0.003 |
C1P1450 | 9.24 ± 0.11 | 19.91 ± 0.35 | 8.60 ± 0.27 | 71.42 ± 0.42 | 5.38 ± 0.04 | 0.96 ± 0.02 | 13.63 ± 0.15 | 0.90 ± 0.03 | 0.127 ± 0.001 |
C1P0500 | 10.04 ± 0.12 | 31.70 ± 0.18 | 11.96 ± 0.41 | 68.81 ± 0.38 | 3.17 ± 0.02 | 1.13 ± 0.03 | 14.13 ± 0.17 | 0.55 ± 0.01 | 0.137 ± 0.002 |
C3P1500 | 10.15 ± 0.10 | 24.31 ± 0.20 | 11.11 ± 0.37 | 69.74 ± 0.33 | 3.09 ± 0.04 | 1.13 ± 0.03 | 14.93 ± 0.25 | 0.53 ± 0.00 | 0.143 ± 0.003 |
C2P1500 | 9.96 ± 0.11 | 20.93 ± 0.18 | 10.42 ± 0.28 | 70.24 ± 0.27 | 3.14 ± 0.05 | 1.06 ± 0.04 | 15.14 ± 0.19 | 0.54 ± 0.01 | 0.144 ± 0.005 |
C1P1500 | 10.14 ± 0.09 | 16.15 ± 0.23 | 10.34 ± 0.42 | 70.91 ± 0.36 | 3.24 ± 0.03 | 1.04 ± 0.03 | 14.47 ± 0.12 | 0.55 ± 0.01 | 0.136 ± 0.003 |
SBET (m2/g) | SMicro (m2/g) | VTot (10−2 cm3/g) | VMicro (10−2 cm3/g) | MPD (Å) | |
---|---|---|---|---|---|
C1P0400 | 0.83 | 0.71 | 0.30 | 0.24 | 10.80 |
C3P1400 | 0.27 | 0.16 | 0.22 | 0.19 | 21.48 |
C2P1400 | - | - | - | - | - |
C1P1400 | - | - | - | - | - |
C1P0450 | 1.24 | 1.12 | 0.44 | 0.42 | 10.25 |
C3P1450 | 2.68 | 2.09 | 0.61 | 0.56 | 9.64 |
C2P1450 | 5.09 | 3.18 | 0.42 | 0.38 | 15.42 |
C1P1450 | 8.49 | 5.42 | 1.24 | 1.22 | 14.61 |
C1P0500 | 9.620 | 5.846 | 1.18 | 1.08 | 14.89 |
C3P1500 | 17.181 | 11.55 | 1.27 | 1.35 | 15.01 |
C2P1500 | 43.966 | 27.30 | 3.91 | 3.84 | 18.27 |
C1P1500 | 68.260 | 43.51 | 5.58 | 5.02 | 18.04 |
Pseudo-First Order | Pseudo-Second Order | Elovich | |||||||
---|---|---|---|---|---|---|---|---|---|
Qe (mg g−1) | K1 (h−1) | R2 | Qe (mg g−1) | K2 (mg (g h)−1) | R2 | a (mg g−1) | b | R2 | |
C1P0500 | 28.19 | 4.17 | 0.693 | 28.86 | 0.40 | 0.975 | 26.26 | 0.95 | 0.915 |
C3P1500 | 32.18 | 4.06 | 0.375 | 32.93 | 0.34 | 0.792 | 29.91 | 1.09 | 0.995 |
C2P1500 | 34.63 | 5.01 | 0.172 | 35.71 | 0.32 | 0.693 | 32.79 | 1.11 | 0.994 |
C1P1500 | 37.93 | 5.37 | 0.385 | 38.67 | 0.55 | 0.851 | 36.72 | 0.74 | 0.987 |
Freundlich | Langmuir | |||||
---|---|---|---|---|---|---|
KF | n | R2 | KL | qmax | R2 | |
C1P0500 | 1.48 | 0.54 | 0.975 | 0.004 | 63.05 | 0.981 |
C3P1500 | 0.99 | 0.63 | 0.792 | 0.003 | 89.21 | 0.990 |
C2P1500 | 0.73 | 0.71 | 0.693 | 0.002 | 120.64 | 0.992 |
C1P1500 | 0.57 | 0.76 | 0.851 | 0.001 | 199.82 | 0.996 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, X.; Zhang, X.; Lv, H.; Xu, Y.; Bai, T. Co-Pyrolysis of Cotton Stalks and Low-Density Polyethylene to Synthesize Biochar and Its Application in Pb(II) Removal. Molecules 2022, 27, 4868. https://doi.org/10.3390/molecules27154868
Yuan X, Zhang X, Lv H, Xu Y, Bai T. Co-Pyrolysis of Cotton Stalks and Low-Density Polyethylene to Synthesize Biochar and Its Application in Pb(II) Removal. Molecules. 2022; 27(15):4868. https://doi.org/10.3390/molecules27154868
Chicago/Turabian StyleYuan, Xiaowei, Xuejun Zhang, Huijie Lv, Yonggang Xu, and Tianxia Bai. 2022. "Co-Pyrolysis of Cotton Stalks and Low-Density Polyethylene to Synthesize Biochar and Its Application in Pb(II) Removal" Molecules 27, no. 15: 4868. https://doi.org/10.3390/molecules27154868
APA StyleYuan, X., Zhang, X., Lv, H., Xu, Y., & Bai, T. (2022). Co-Pyrolysis of Cotton Stalks and Low-Density Polyethylene to Synthesize Biochar and Its Application in Pb(II) Removal. Molecules, 27(15), 4868. https://doi.org/10.3390/molecules27154868