Anti-Pulmonary Fibrosis Activities of Triterpenoids from Oenothera biennis
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. In Vitro Cell Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Deng, L.; Zhou, X.Q.; Jian, D.J. Progress in evaluation and development of drugs for treatment of pulmonary fibrosis. Chin. J. New Drugs 2021, 30, 712–717. [Google Scholar]
- Spagnolo, P.; Balestro, E.; Aliberti, S. Pulmonary fibrosis secondary to COVID-19: A call to arms? Lancet Respir. Med. 2020, 8, 750–752. [Google Scholar] [CrossRef]
- Vancheri, C.; Kreuter, M.; Richeldi, L. Nintedanib with add-on pirfenidone in idiopathic pulmonary fibrosis. Results of the INJOURNEY Trial. Am. J. Respir. Crit. Care Med. 2018, 197, 356–363. [Google Scholar] [CrossRef]
- Liu, M.W.; Su, M.X.; Tang, D.Y. Ligustrazin increases lung cell autophagy and ameliorates paraquat-induced pulmonary fibrosis by inhibiting PI3K/Akt/mTOR and hedgehog signalling via increasing miR-193a expression. BMC Pulm. Med. 2019, 19, 35. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, L.M.; An, X.X.; Sui, X.B.; Lin, S. Astragalus polysaccharides attenuate pulmonary fibrosis by inhibiting the epithelial-mesenchymal transition and NF-κB pathway activation. Int. J. Mol. Med. 2020, 46, 331–339. [Google Scholar] [CrossRef]
- Thomas, D.; Anandasadagopan, S.; Ganapasam, S. Autophagy induction by celastrol augments protection against bleomycin-induced experimental pulmonary fibrosis in rats: Role of adaptor protein p62/SQSTM1. Pulm. Pharmacol. Ther. 2017, 45, 47–61. [Google Scholar]
- Chen, J.H.; Shi, Y.Y.; He, L.; Hao, H.R.; Wang, B.L.; Zheng, Y.L.; Hu, C.P. Protective roles of polysaccharides from Ganoderma lucidum on bleomycin-induced pulmonary fibrosis in rats. Int. J. Biol. Macromol. 2016, 92, 278–281. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Y.; Zhang, L.; Yang, Y.R.; Sun, J.; Yu, S.X.; Li, J. Preventive effect of triterpene acids of loquat on lipid peroxidation of pulmonary fibrosis on rats. Acta Univ. Med. Anhui 2010, 45, 50–53. [Google Scholar]
- Xu, Y.Q.; Li, H.Y.; Hu, B.Z. Research progress of Oenothera L. plants. J. Northeast Agric. Univ. 2006, 37, 111–114. [Google Scholar]
- Granica, S.; Czerwi’, N.; Piwowarski, J.P.; Ziaja, M.; Kiss, A.K. Chemical composition, antioxidative and anti-inflammatory activity of extracts prepared from aerial parts of Oenothera biennis L. and Oenothera paradoxa Hudziok obtained after seeds cultivation. J. Agric. Food Chem. 2013, 61, 801–810. [Google Scholar] [CrossRef]
- Singh, S.; Kaur, R.; Sharma, S.K. An updated review on the Oenothera genus. J. Chin. Integr. Med. 2012, 10, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Singh, D.K.; Fatima, K.; Tandon, S.; Luqman, S. New constituents from the roots of Oenothera biennis and their free radical scavenging and ferric reducing activity. Ind. Crops Prod. 2014, 58, 125–132. [Google Scholar] [CrossRef]
- Christie, W.W. The analysis of evening primrose oil. Ind. Crops Prod. 1999, 10, 73–83. [Google Scholar] [CrossRef]
- Barre, D.E. Potential of evening primrose, borage, black currant, and fungal oils in human health. Ann. Nutr. Metab. 2001, 45, 47–57. [Google Scholar] [CrossRef]
- Wang, H.Q.; Cui, H.Z.; Li, C.; Chen, S.S.; Nielu, S.N. Evening primrose oil regulates p38MAPK and NF-kB signaling pathway for anti-inflammatory treatment of acne. Pharmacol. Clin. Chin. Mater. Med. 2018, 34, 62–67. [Google Scholar]
- Liu, S.L. Ultrasonic-Assisted Extraction, Purification and Antioxidant Activity of Polysaccharides from Evening Primrose (Oenothera biennis L.) Leaves. Master’s Thesis, Jilin University, Changchun, China, 2018. [Google Scholar]
- Mert, H.D.; Irak, K.V.; Cibuk, S.L.; Yildirim, S.K.; Mert, N.H. The effect of evening primrose oil (Oenothera biennis) on the level of adiponectin and some biochemical parameters in rats with fructose induced metabolic syndrome. Arch. Physiol. Biochem. 2020, 1–9. [Google Scholar] [CrossRef]
- Fukushima, M.; Ohhashi, T.; Ohno, S.; Saitoh, H.; Sonoyama, K. Effects of diets enriched in n-6 or n-3 fatty acids on cholesterol metabolism in older rats chronically fed a cholesterol-enriched diet. Lipids 2001, 36, 261–266. [Google Scholar] [CrossRef]
- Nicolaou, A. Eicosanoids in skin inflammation. Prostaglandins Leukot. Essent. Fat. Acids 2013, 88, 131–138. [Google Scholar] [CrossRef]
- Ras, R.T.; Geleijnse, J.M.; Trautwein, E.A. LDL-cholesterol-lowering effect of plant sterols and stanols across different dose ranges: A metaanalysis of randomized controlled studies. Br. J. Nutr. 2014, 112, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Das, U.N.; Rao, K.P. Effect of γ -linolenic acid and prostaglandins E1 on gamma-radiation and chemical-induced genetic damage to the bone marrow cells of mice. Prostaglandins Leukot. Essent. Fat. Acids 2006, 74, 165–173. [Google Scholar] [CrossRef]
- Yu, S.Q.; Tian, Y.Q. Research progress on breeding, development and cultivation of evening primrose in our country. Chin. Tradit. Herb. Drugs 2000, 1, 72–74. [Google Scholar]
- Shilpi, S.; Vijaya, D.; Dhananjay, K.S.; Kaneez, F.; Ateeque, A.; Suaib, L. Antiproliferative and antimicrobial effificacy of the compounds isolated from the roots of Oenothera biennis L. J. Pharm. Pharmacol. 2017, 69, 1230–1243. [Google Scholar]
- Zeng, N.; Shen, Y.; Li, L.Z.; Jiao, W.H.; Gao, P.Y.; Song, S.J.; Chen, W.S. Anti-inflammatory Triterpenes from the Leaves of Rosa laevigata. J. Nat. Prod. 2011, 74, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, J.K.; Dong, L.M.; Xu, Q.L.; Wang, J.; Liu, S.B.; Qian, T.; Yuan, Y.F.; Tan, J.W. Triterpenoids with a-glucosidase inhibitory activity and cytotoxic activity from the leaves of Akebia trifoliate. RSC Adv. 2018, 8, 40483–40489. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ren, H.; Xu, Q.L.; Zhou, Z.Y.; Wu, P.; Wei, X.Y.; Cao, Y.; Chen, X.X.; Tan, J.W. Antibacterial oleanane-type triterpenoids from pericarps of Akebia trifoliate. Food Chem. 2015, 168, 623–629. [Google Scholar] [CrossRef]
- Parichat, N.; Wolfgang, K.; Uwe, B.; Juergen, C.; Iris, K.; Somyote, S. Novel 24-nor-, 24-nor-2,3-seco-, and 3,24-dinor-2,4-seco-ursane triterpenes from Diospyros decandra: Evidences for ring A biosynthetic transformations. Tetrahedron 2006, 62, 5519–5526. [Google Scholar]
- Louis, P.S.; Abdou, T.; Hippolyte, N.N.; Mehdi, Y.; Enrico, P.; Felix, K.; Francois, C.; Gilbert, K.; Bonaventure, T.N. New Nortriterpenoid and Ceramides From Stems and Leaves of Cultivated Triumfettacordifolia A Rich (Tiliaceae). J. Am. Oil Chem. Soc. 2010, 87, 1167–1177. [Google Scholar]
- Lv, K.Y.; Li, J.Y.; Wang, C.L.; He, L.S.; Quan, S.; Zhang, J.Z.; Liu, D.L. Triterpenoids from Rosa odorata Sweet var. gigantea (Coll.et Hemsl.) Rehd. et Wils and their chemotaxonomic significance. Biochem. Syst. Ecol. 2021, 96, 104240. [Google Scholar] [CrossRef]
- Srinivasa, C.P.; Adeyemi, O.A.; Lenka, P.S.; Lucie, R.; Jiří, G.; Karel, D.; Johannes, V.S. Identification and characterisation of potential bioactive compounds from the leaves of Leucosidea sericea. J. Ethnopharmacol. 2018, 220, 169–176. [Google Scholar]
- Chen, Z.Z.; Tong, L.; Feng, Y.L.; Wu, J.Z.; Zhao, X.Y.; Ruan, H.L.; Pi, H.F.; Zhang, P. Ursane-type nortriterpenes with a five-membered A-ring from Rubusinnominatus. Phytochem. 2015, 116, 329–336. [Google Scholar] [CrossRef]
- Mariko, K.; Hashimoto, K.I.; Masashi, Y.; Hiromitsu, T.; Norio, A. Two New 19-Hydroxyursolic Acid-type Triterpenes from Peruvian ‘Unã de Gato’ (Uncariatomentosa). Tetrahedron 2000, 56, 547–552. [Google Scholar]
- Beaudelaire, K.P.; Rémy, B.T.; Massimo, R.; Télesphore, B.N.; Luana, Q.; Massimo, B.; Giulio, L.; Luciano, B.; Léon, A.T. Novel 3-Oxo- and 3,24-Dinor-2,4-secooleanane-Type Triterpenes from Terminalia ivorensis, A. Chev. Chem. Biodivers. 2011, 8, 1301–1309. [Google Scholar]
- Michał, G.; Marta, K.D.; Agata, R.; Maciej, W.; Izabela, F. Triterpenoids from strawberry Fragaria × ananassa Duch. cultivar Senga Sengana leaves. Ind. Crops Prod. 2021, 169, 113668. [Google Scholar]
- Dae, S.J.; Jong, M.K.; Joo, H.K.; Jin, S.K. 24-nor-Ursane Type Triterpenoids from the Stems of Rumex japonicas. Chem. Pharm. Bull. 2005, 53, 1594–1596. [Google Scholar]
- Lai, Y.C.; Chen, C.K.; Tsai, S.F.; Lee, S.S. Triterpenes as a-glucosidase inhibitors from Fagus hayatae. Phytochemistry 2012, 74, 206–211. [Google Scholar] [CrossRef]
- Deng, Y.H.; Jiang, T.Y.; Sheng, S.J.; Manoelson, T.R.; Snyder, J.K. Remangilones A-C, New Cytotoxic Triterpenes from Physenamadagascariensis. J. Nat. Prod. 1999, 62, 471–476. [Google Scholar] [CrossRef]
- Zhao, F.; Ma, L.; Sun, J.F.; Han, J.T.; Wang, Y.F.; Zhang, S.P. A new nor-triterpenoid from root tubers of Knoxiavalerianoides. Chin. Tradit. Herb. Drugs. 2014, 45, 28–30. [Google Scholar]
- Zhang, C.; Jiang, K.; Qu, S.J.; Zhai, Y.M.; Tan, J.J.; Tan, C.H. Triterpenoids from the barks of Terminalia chebula. J. Asian Nat. Prod. Res. 2015, 17, 996–1001. [Google Scholar] [CrossRef]
- Liu, Y.H.; Tian, Y.Y.; Long, H.; Li, G.; Liu, Z.X.; Wei, H. A new seco-triterpene from roots of Rosa laevifgata. Chin. Tradit. Herb. Drugs 2018, 49, 5740–5745. [Google Scholar]
- Tian, Y.N.; Feng, L.; Li, B.L.; Hu, J.J.; Xie, J.D.; Xiao, W.J.; Nie, L.H.; Wu, J.W. Rosanortriterpene C, a 3,24-Dinor-2,4-seco-ursane Triterpene from the Fruits of Rosa laevigata var. leiocapus. Chem. Pharm. Bull. 2019, 67, 1255–1258. [Google Scholar] [CrossRef] [Green Version]
Position | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1 | 2.04dd (4.8, 12.4), 0.90 m | 2.56d (16.4) | - | - | 2.36 s, 2.22 s |
2 | 3.70 m | - | 3.10 t (4.6), 2.26dd, (4.6, 12.1) | 3.11 m, 2.30 m | - |
3 | 2.86d (9.5) | - | 3.36dd (4.6, 12.1) | 3.82dd (4.9, 12.1) | - |
4 | - | - | - | - | - |
5 | 0.83d (2.0) | 2.42 m | 0.90 m | 1.40 m | 3.06dd (3.0, 12.4) |
6 | 4.45 m | 1.90 m, 1.48 m | 1.68 m, 1.61 m | 1.60 m, 1.53 m | 1.76 m, 1.67 m |
7 | 1.64 m, 1.63 m | 1.73 m, 1.43 m | 1.51 m, 1.39 m | 1.59 m, 1.30 m | 1.59 m, 1.36 m |
8 | - | - | - | - | - |
9 | 1.62 m | 2.08 m | 2.34 m | 2.39 m | 2.33 m |
10 | - | - | - | - | - |
11 | 1.61 m, 1.52 m | 2.07 m, 2.02 m | 1.88 m, 1.54 m | 2.46 m, 1.90 m | 2.19 m, 2.04 m |
12 | 2.82 m, 1.88 m | 5.28 t (3.8) | 5.27 t (3.6) | 5.27 t (3.0) | 5.35 t (3.8) |
13 | - | - | - | - | - |
14 | - | - | - | - | - |
15 | 1.14 m, 1.06 m | 1.81 m, 1.06 m | 1.82 m, 1.76 m | 1.78 m, 1.02 m | 1.70 m, 1.11 m |
16 | 1.91 m, 1.55 m | 2.71 m, 1.57 m | 2.57 m, 2.44 m | 2.57 m, 2.45 m | 2.00 m, 1.97 m |
17 | - | - | - | - | - |
18 | - | 2.76 s | 2.50 s | 2.50 s | 2.76 brs |
19 | 2.47dd, 1.76dd (2.2, 14.0) | - | - | - | 3.22d (3.8) |
20 | - | 1.69 m | 1.34 m | 1.32 m | - |
21 | 1.28 m, 1.23 m | 2.31 m, 1.19 m | 1.75 m, 1.26 m | 1.73 m, 1.25 m | 1.80 m, 1.22 m |
22 23 | 2.15 m, 1.34 m 1.07 s | 1.84 m, 1.55 m 1.85d (2.0) | 1.77 m, 1.63 m 1.01 s | 1.72 m, 1.63 m 3.35d, 3.51d (11.2) | 3.91dd (4.4, 11.6) 2.23 s |
24 | 1.17 s | - | 1.04 s | 0.88 s | - |
25 | 1.32 s | 0.93 s | 1.32 s | 1.35 s | 1.09 s |
26 | 1.16 s | 0.85 s | 0.86 s | 0.86 s | 0.84 s |
27 | 1.17 s | 1.39 s | 1.36 s | 1.37 s | 1.34 s |
28 | - | - | - | - | - |
29 | 0.93 s | 1.14 s | 1.22 s | 1.22 s | 0.97 s |
30 | 0.77 s | 1.00d (6.6) | 0.94d (6.7) | 0.94d (6.6) | 1.03 s |
Position | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
1 | 50.5 | 53.2 | 215.3 | 215.3 | 44.4 |
2 | 69.8 | 195.7 | 45.1 | 44.8 | 175.4 |
3 | 84.7 | 145.3 | 79.7 | 73.4 | - |
4 | 41.1 | 133.1 | 40.4 | 44.1 | 215.6 |
5 | 56.8 | 49.9 | 55.8 | 47.7 | 57.5 |
6 | 68.8 | 22.0 | 19.0 | 18.6 | 23.1 |
7 | 43.1 | 33.2 | 34.1 | 33.6 | 32.2 |
8 | 41.6 | 40.6 | 40.9 | 40.8 | 43.3 |
9 | 52.6 | 44.9 | 40.1 | 40.0 | 40.8 |
10 | 39.3 | 42.3 | 53.8 | 53.3 | 40.6 |
11 | 23.0 | 24.8 | 26.6 | 26.6 | 24.6 |
12 | 26.5 | 128.1 | 130.0 | 130.0 | 125.1 |
13 | 139.1 | 140.0 | 139.4 | 139.4 | 143.8 |
14 | 45.9 | 42.9 | 42.8 | 42.9 | 40.6 |
15 | 28.2 | 29.5 | 29.6 | 29.6 | 29.0 |
16 | 34.2 | 27.2 | 26.5 | 26.5 | 20.8 |
17 | 49.4 | 49.0 | 49.3 | 49.3 | 53.0 |
18 | 129.8 | 48.0 | 55.3 | 55.3 | 46.4 |
19 | 42.0 | 74.2 | 73.5 | 73.5 | 82.0 |
20 | 33.6 | 43.3 | 43.1 | 43.1 | 36.8 |
21 | 38.0 | 25.2 | 27.3 | 27.3 | 38.0 |
22 | 36.9 | 32.8 | 38.9 | 38.9 | 72.4 |
23 | 28.8 | 13.4 | 16.6 | 66.0 | 31.6 |
24 | 18.7 | - | 29.0 | 13.3 | - |
25 | 19.5 | 14.4 | 15.4 | 15.9 | 18.4 |
26 | 19.8 | 17.7 | 18.1 | 18.1 | 17.5 |
27 | 21.8 | 24.5 | 24.8 | 24.8 | 25.2 |
28 | 180.6 | 182.2 | 182.2 | 182.2 | 180.7 |
29 | 32.7 | 29.5 | 27.0 | 27.0 | 28.8 |
30 | 24.7 | 16.2 | 16.6 | 16.6 | 26.2 |
Group | EC50 (μM) | Group | EC50 (μM) |
---|---|---|---|
CON | NA | 6 | 4.7 |
M | NA | 7 | 53.3 |
Pirfenidone | 12.7 | 8 | 7.9 |
1 | 8.4 | 9 | NA |
2 | 9.9 | 10 | NA |
3 | 48.3 | 11 | 9.6 |
4 | NA | 12 | NA |
5 | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, J.; Zeng, M.; Li, M.; Xie, S.; Zheng, X.; Feng, W. Anti-Pulmonary Fibrosis Activities of Triterpenoids from Oenothera biennis. Molecules 2022, 27, 4870. https://doi.org/10.3390/molecules27154870
Liu J, Zhang J, Zeng M, Li M, Xie S, Zheng X, Feng W. Anti-Pulmonary Fibrosis Activities of Triterpenoids from Oenothera biennis. Molecules. 2022; 27(15):4870. https://doi.org/10.3390/molecules27154870
Chicago/Turabian StyleLiu, Juanjuan, Jingke Zhang, Mengnan Zeng, Meng Li, Shuangshuang Xie, Xiaoke Zheng, and Weisheng Feng. 2022. "Anti-Pulmonary Fibrosis Activities of Triterpenoids from Oenothera biennis" Molecules 27, no. 15: 4870. https://doi.org/10.3390/molecules27154870
APA StyleLiu, J., Zhang, J., Zeng, M., Li, M., Xie, S., Zheng, X., & Feng, W. (2022). Anti-Pulmonary Fibrosis Activities of Triterpenoids from Oenothera biennis. Molecules, 27(15), 4870. https://doi.org/10.3390/molecules27154870