Effects of Green Tea Marinade in the Bioaccessibility of Tonalide and Benzophenone 3 in Cooked European Seabass
Abstract
:1. Introduction
2. Results
2.1. Domestic Cooking
2.2. Bioaccessibility
3. Discussion
3.1. Domestic Cooking
3.2. Bioaccessibility
4. Materials and Methods
4.1. Standards and Chemicals
4.2. Sampling and Sample Preparation
Preparation of Green Tea Marinade
4.3. In Vitro Digestion
4.4. Sample Extraction
4.5. Digestion Efficiency
4.6. Instrumental Analysis
4.7. Quality Control/Quality Assurance
4.8. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cunha, S.C.; Menezes-Sousa, D.; Mello, F.V.; Miranda, J.A.; Fogaca, F.H.; Alonso, M.B.; Torres, J.P.M.; Fernandes, J.O. Survey on endocrine-disrupting chemicals in seafood: Occurrence and distribution. Environ. Res. 2022, 210, 112886. [Google Scholar] [CrossRef] [PubMed]
- Tumová, J.; Šauer, P.; Golovko, O.; Koba Ucun, O.; Grabic, R.; Máchová, J.; Kocour Kroupová, H. Effect of polycyclic musk compounds on aquatic organisms: A critical literature review supplemented by own data. Sci. Total Environ. 2019, 651, 2235–2246. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Choi, K. Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: A mini-review. Environ. Int. 2014, 70, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.C.; Fernandes, J.O.; Vallecillos, L.; Cano-Sancho, G.; Domingo, J.L.; Pocurull, E.; Borrull, F.; Maulvault, A.L.; Ferrari, F.; Fernandez-Tejedor, M.; et al. Co-occurrence of musk fragrances and UV-filters in seafood and macroalgae collected in European hotspots. Environ. Res. 2015, 143, 65–71. [Google Scholar] [CrossRef]
- Castro, M.; Fernandes, J.; Pena, A.; Cunha, S. Occurrence, profile and spatial distribution of UV-filters and musk fragrances in mussels from Portuguese coastline. Mar. Environ. Res. 2018, 138, 110–118. [Google Scholar] [CrossRef]
- Yao, L.; Zhao, J.L.; Liu, Y.S.; Zhang, Q.Q.; Jiang, Y.X.; Liu, S.; Liu, W.R.; Yang, Y.Y.; Ying, G.G. Personal care products in wild fish in two main Chinese rivers: Bioaccumulation potential and human health risks. Sci. Total Environ. 2018, 621, 1093–1102. [Google Scholar] [CrossRef]
- Available online: https://pubchem.ncbi.nlm.nih.gov/compound/ (accessed on 10 July 2022).
- Tsygankov, V.U.; Lukyanova, O.N.; Boyarova, M.D. Organochlorine pesticide accumulation in seabirds and marine mammals from the Northwest Pacific. Mar. Pollut. Bull. 2018, 128, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, V.; Maulvault, A.L.; Alves, R.N.; Kwadijk, C.; Kotterman, M.; Tediosi, A.; Fernández-Tejedor, M.; Sloth, J.J.; Granby, K.; Rasmussen, R.R.; et al. Effects of steaming on contaminants of emerging concern levels in seafood. Food Chem. Toxicol. 2018, 118, 490–504. [Google Scholar] [CrossRef] [Green Version]
- Trabalón, L.; Alves, R.; Castro, Ó.; Nadal, M.; Borrull, F.; Pocurull, E.; Marques, A. Preliminary assessment of galaxolide bioaccessibility in raw and cooked FISH. Food Chem. Toxicol. 2018, 122, 33–37. [Google Scholar] [CrossRef]
- Marmelo, I.; Barbosa, V.; Maulvault, A.; Duarte, M.; Marques, A. Does the addition of ingredients affect mercury and cadmium bioaccessibility in seafood-based meals? Food Chem. Toxicol. 2019, 136, 110978. [Google Scholar] [CrossRef] [PubMed]
- Sobral, M.; Cunha, S.; Faria, M.; Martins, Z.; Ferreira, I. Influence of oven and microwave cooking with the addition of herbs on the exposure to multi-mycotoxins from chicken breast muscle. Food Chem. 2019, 276, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Cruz, R.; Mendes, E.; Maulvault, A.; Marques, A.; Casal, S.; Cunha, S. Bioaccessibility of polybrominated diphenyl ethers and their methoxylated metabolites in cooked seafood after using a multi-compartment in vitro digestion model. Chemosphere 2020, 252, 126462. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Zhu, J.; Li, X.; Li, J. Effect of tea polyphenols on the physical and chemical characteristics of dried-seasoned squid (Dosidicus gigas) during storage. Food Control 2013, 31, 586–592. [Google Scholar] [CrossRef]
- Yi, S.; Li, J.; Zhu, J.; Lin, Y.; Fu, L.; Chen, W.; Li, X. Effect of tea polyphenols on microbiological and biochemical quality of Collichthys fish ball. J. Sci. Food Agric. 2011, 91, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Ng, V.K.; Mikš-Krajnik, M.; Yang, H. Effects of Fish Gelatin and Tea Polyphenol Coating on the Spoilage and Degradation of Myofibril in Fish Fillet During Cold Storage. Food Bioprocess Technol. 2017, 10, 89–102. [Google Scholar] [CrossRef]
- Sobral, M.; Cunha, S.; Faria, M.; Ferreira, I. Domestic Cooking of Muscle Foods: Impact on Composition of Nutrients and Contaminants. Compr. Rev. Food Sci. Food Saf. 2018, 17, 309–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domingo, J. Influence of Cooking Processes on the Concentrations of Toxic Metals and Various Organic Environmental Pollutants in Food: A Review of the Published Literature. Crit. Rev. Food Sci. Nutr. 2010, 51, 29–37. [Google Scholar] [CrossRef]
- Cardoso, C.; Afonso, C.; Lourenço, H.; Costa, S.; Nunes, M.L. Bioaccessibility assessment methodologies and their consequences for the risk–benefit evaluation of food. Trends Food Sci. Technol. 2015, 41, 5–23. [Google Scholar] [CrossRef]
- Cunha, S.; Alves, R.; Fernandes, J.; Casal, S.; Marques, A. First approach to assess the bioaccessibility of bisphenol A in canned seafood. Food Chem. 2017, 232, 501–507. [Google Scholar] [CrossRef]
- Anacleto, P.; Barbosa, V.; Alves, R.; Maulvault, A.; Bronze, M.; Marques, A. Green tea infusion reduces mercury bioaccessibility and dietary exposure from raw and cooked fish. Food Chem. Toxicol. 2020, 145, 111717. [Google Scholar] [CrossRef] [PubMed]
- FAO. 2022. Available online: https://www.fao.org/fishery/statistics/software/fishstatj/en (accessed on 10 July 2022).
- Bordin, K.; Kunitake, M.T.; Aracava, K.K.; Trindade, C.S. Changes in food caused by deep fat frying-A review. Arch. Latinoam. Nutr. 2013, 63, 5–13. [Google Scholar] [PubMed]
- Tornberg, E. Engineering processes in meat products and how they influence their biophysical properties. Meat Sci. 2013, 95, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Wongmaneepratip, W.; Gao, X.; Yang, H. Effect of food processing on reduction and degradation pathway of pyrethroid pesticides in mackerel fillet (Scomberomorus commerson). Food Chem. 2022, 384, 132523. [Google Scholar] [CrossRef]
- Henning, S.; Fajardo-Lira, C.; Lee, H.; Youssefian, A.; Go, V.; Heber, D. Catechin Content of 18 Teas and a Green Tea Extract Supplement Correlates with the Antioxidant Capacity. Nutr. Cancer 2003, 45, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Onopiuk, A.; Kołodziejczak, K.; Szpicer, A.; Wojtasik-Kalinowska, I.; Wierzbicka, A.; Półtorak, A. Analysis of factors that influence the PAH profile and amount in meat products subjected to thermal processing. Trends Food Sci. Technol. 2021, 115, 366–379. [Google Scholar] [CrossRef]
- Quelhas, I.; Petisca, C.; Viegas, O.; Melo, A.; Pinho, O.; Ferreira, I. Effect of green tea marinades on the formation of heterocyclic aromatic amines and sensory quality of pan-fried beef. Food Chem. 2010, 122, 98–104. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, L.; Wongmaneepratip, L.; He, Y.; Zhao, L.; Yang, H. Effect of vacuum impregnated fish gelatin and grape seed extract on moisture state, microbiota composition, and quality of chilled seabass fillets. Food Chem. 2021, 354, 129581. [Google Scholar] [CrossRef]
- Barrington, R.; Manning, R.; Walker, N.; Cadagan, D. The protective effects of red wine and green tea on lipid peroxidation in long chain marine polyunsaturated fatty acids during high temperature cooking and long term frozen storage. J. Diabetes Metab. Disord. Control 2018, 5, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Topuz, O. KEffects of marinating time, acetic acid and salt concentrations on the quality of little tunny fish (Euthynnus alletteratus) fillet. J. Food Process. Preserv. 2016, 40, 1154–1163. [Google Scholar] [CrossRef]
- Cunha, S.C.; Siminel, D.; Guàrdia, M.G.; Alda, M.L.; López-Garcia, E.; Muñoz, I.; Ferreira, R.; Eljarrat, E.; Fernandes, J.O. Effect of processing smoked salmon on contaminant contents. Food Chem. Toxicol. 2021, 153, 112276. [Google Scholar] [CrossRef]
- Tavares, W.P.S.; Dong, S.; Yang, Y.; Zeng, M.; Zhao, Y. Influence of cooking methods on protein modification and in vitro digestibility of hairtail (Thichiurus lepturus) fillets. LWT Food Sci. Technol. 2018, 96, 476–481. [Google Scholar] [CrossRef]
- Li, J.L.; Tu, Z.C.; Sha, X.M.; Zhang, L.U.; Lin, D.R.; Zeng, K.; Wang, H.; Pang, J.J.; Tang, P.P. Effect of Frying on Fatty Acid Profile, Free Amino Acids and Volatile Compounds of Grass Carp (Ctenpharyngodon idellus) Fillets. J. Food Process. Preserv. 2016, 41, e13088. [Google Scholar] [CrossRef]
- Diep, T.T.; Yoo, M.J.Y.; Rush, E. Effect of In Vitro Gastrointestinal Digestion on Amino Acids, Polyphenols and Antioxidant Capacity of Tamarillo Yoghurts. Int. J. Mol. Sci. 2022, 23, 2526. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists International; AOAC International: Washington, DC, USA, 1998. [Google Scholar]
- Petrarca, M.; Fernandes, J.; Marmelo, I.; Marques, A.; Cunha, S. Multi-analyte gas chromatography-mass spectrometry method to monitor bisphenols, musk fragrances, ultraviolet filters, and pesticide residues in seafood. J. Chromatogr. A 2022, 1663, 462755. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.N.; Maulvault, A.L.; Barbosa, V.L.; Fernandez-Tejedor, M.; Tediosi, A.; Kotterman, M.; van den Heuvel, F.H.; Robbens, J.; Fernandes, J.O.; Rasmussen, R.R.; et al. Oral bioaccessibility of toxic and essential elements in raw and cooked commercial seafood species available in European markets. Food Chem. 2018, 267, 15–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SANTE/12682/2019; Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed. European Commission: Brussels, Belgium, 2019.
Cooking Experiments | %MB * | |
---|---|---|
AHTN | BP3 | |
Roasted European seabass | 98 ± 2 a | 35 ± 5 a |
Frying European seabass | 98 ± 2 a | 36 ± 4 a |
Roasted European seabass previous marinade with green tea | 98 ± 2 a | 32 ± 6 a |
Frying European seabass previous marinade with green tea | 97 ± 3 a | 34 ± 5 a |
Weight Loss after Cooking (%) | Moisture (%) | |||
---|---|---|---|---|
European seabass | Seabass marinade | European seabass | Seabass marinade | |
Raw | - | - | 65.77 ± 0.74 a | 69.80 ± 0.45 a |
Fried | 18.69 ± 1.50 a | 21.69 ± 0.68 a | 53.83 ± 0.28 b | 58.79 ± 0.39 b |
Roasted | 15.48 ± 0.98 a | 20.01 ± 0.58 a | 59.34 ± 2.44 b | 64.28 ± 0.91 a |
Fat Content (%) | Protein Content (%) | |||
European seabass | Seabass marinated | European seabass | Seabass marinade | |
Raw | 22.51 ± 2.20 a | 22.48 ± 3.8 a | 20.21 ± 0.64 a | 19.87 ± 0.67 a |
Fried | 25.92 ± 3.48 a | 25.76 ± 0.52 a | 25.89 ± 1.74 b | 22.61 ± 0.87 b |
Roasted | 24.49 ± 1.27 a | 23.34 ± 1.60 a | 25.14 ± 0.54 b | 22.36 ± 0.06 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunha, S.C.; Gadelha, J.R.; Mello, F.; Marmelo, I.; Marques, A.; Fernandes, J.O. Effects of Green Tea Marinade in the Bioaccessibility of Tonalide and Benzophenone 3 in Cooked European Seabass. Molecules 2022, 27, 4873. https://doi.org/10.3390/molecules27154873
Cunha SC, Gadelha JR, Mello F, Marmelo I, Marques A, Fernandes JO. Effects of Green Tea Marinade in the Bioaccessibility of Tonalide and Benzophenone 3 in Cooked European Seabass. Molecules. 2022; 27(15):4873. https://doi.org/10.3390/molecules27154873
Chicago/Turabian StyleCunha, Sara C., Juliana R. Gadelha, Flávia Mello, Isa Marmelo, António Marques, and José O. Fernandes. 2022. "Effects of Green Tea Marinade in the Bioaccessibility of Tonalide and Benzophenone 3 in Cooked European Seabass" Molecules 27, no. 15: 4873. https://doi.org/10.3390/molecules27154873
APA StyleCunha, S. C., Gadelha, J. R., Mello, F., Marmelo, I., Marques, A., & Fernandes, J. O. (2022). Effects of Green Tea Marinade in the Bioaccessibility of Tonalide and Benzophenone 3 in Cooked European Seabass. Molecules, 27(15), 4873. https://doi.org/10.3390/molecules27154873