Nitrogen-Doped Porous MXene (Ti3C2) for Flexible Supercapacitors with Enhanced Storage Performance
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagent and Materials
2.2. Synthesis of MF Sphere
2.3. Synthesis of N-MXene and N-MXene-F
2.4. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Leow, W.R.; Chen, X.D. 3D Printing of flexible electronic devices. Small Methods 2018, 2, 1700259. [Google Scholar] [CrossRef] [Green Version]
- Pei, Z.; Zhang, Q.; Li, Q.; Ji, C.; Liu, Y.; Yang, K.; Zhuo, K.; Zhang, W.D.; Sang, Z.B. A fully 3D printed electronic skin with bionic high resolution and air permeable porous structure. J. Colloid Interf. Sci. 2021, 602, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Jayatgukaka, W.A.D.M.; Qi, K.; Qin, Y.L.; Chinnappan, A.; Serrano-Garcia, W.; Baskar, C.; Wang, H.B.; He, J.X.; Cui, S.Z.; Thomas, S.W.; et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors. Adv. Mater. 2019, 31, 1805921. [Google Scholar]
- Han, T.; Kim, H.; Kwon, S.; Lee, T. Graphene-based flexible electronic devices. Mat. Sci. Eng. R 2017, 118, 1–43. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Jiang, C.Z.; Liang, J.; Wu, W. Electrode materials and device architecture strategies for flexible supercapacitors in wearable energy storage. J. Mater. Chem. A 2021, 9, 8099. [Google Scholar] [CrossRef]
- Mohanta, J.; Kang, D.W.; Cho, J.S.; Jeong, S.M.; Kim, J. Stretchable electrolytes for stretchable/flexible energy storage systems–recent developments. Energy Storage Mater. 2020, 28, 315–324. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Wang, S.; Ma, J.X.; Das, P.; Zheng, S.H.; Wu, Z. Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Storage Mater. 2022, 51, 500–526. [Google Scholar] [CrossRef]
- Lage-Rivera, S.; Ares-Pernas, A.; Abad, M. Last developments in polymers for wearable energy storage devices. Int. J. Energy Res. 2022, 46, 10475–10498. [Google Scholar] [CrossRef]
- Kang, J.L.; Zhang, S.F.; Zhang, Z.J. Three-Dimensional binder-free nanoarchitectures for advanced pseudocapacitors. Adv. Mater. 2017, 48, 1700515. [Google Scholar] [CrossRef]
- Levitt, A.S.; Alhabeb, M.; Hatter, C.B.; Sarycheva, A.; Dion, G.; Gogotsi, Y. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. J. Mater. Chem. A 2019, 7, 269–277. [Google Scholar] [CrossRef]
- Lu, X.F.; Wang, C.; Favier, F.; Pinna, N. Electrospun nanomaterials for supercapacitor electrodes: Designed architectures and electrochemical performance. Adv. Energy Mater. 2017, 7, 1601301. [Google Scholar] [CrossRef]
- Joshi, B.; Samuel, E.; Kim, Y.; Yarin, A.L.; Swihart, M.T.; Yoon, S.S. Review of recent progress in electrospinning-derived freestanding and binder-free electrodes for supercapacitors. Coordin. Chem. Rev. 2022, 460, 214466. [Google Scholar] [CrossRef]
- Yu, L.H.; Yi, Y.Y.; Yao, T.; Song, Y.Z.; Chen, Y.R.; Li, Q.C.; Xia, Z.; Wei, N.; Tian, Z.N.; Sun, J.Y.; et al. All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano Res. 2019, 12, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Yu, X.L.; Liang, Q.H.; Bai, Y.; Huang, Z.H.; Kang, F.Y. Nitrogen-doped hollow activated carbon nanofibers as high performance supercapacitor electrodes. J. Electroanal. Chem. 2015, 739, 84–88. [Google Scholar]
- Han, J.Q.; Wang, S.W.; Zhu, S.L.; Huang, C.B.; Yue, Y.Y.; Mei, C.T.; Xu, X.W.; Xia, C.L. Electrospun core-shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness. ACS Appl. Mater. Interfaces 2019, 11, 44624–44635. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Halim, J.; Ghazaly, A.E.; Etman, A.S.; Tseng, E.N.; Persson, P.O.A.; Rosen, J.; Barsoum, M.W. Flexible free-standing MoO3/Ti3C2Tx MXene composite films with high gravimetric and volumetric capacities. Adv. Sci. 2021, 8, 2003656. [Google Scholar] [CrossRef]
- Reaz, A.H.; Saha, S.; Roy, C.K.; Wahab, M.A.; Will, G.; Amin, M.A.; Yamauchi, Y.; Kaneti, Y.V.; Hossain, M.S.; Firoz, S.H. Boosting capacitive performance of manganese oxide nanorods by decorating with three-dimensional crushed graphene. Nano Converg. 2022, 9, 10. [Google Scholar] [PubMed]
- Volkov, A.I.; Sharlaev, A.S.; Berezina, O.Y.; Tolstopjatova, E.G.; Fu, L.; Kondratiev, V.V. Electrospun V2O5 nanofibers as high-capacity cathode materials for zinc-ion batteries. Mater. Lett. 2022, 308, 131212. [Google Scholar] [CrossRef]
- Chamakh, M.; Ayesh, A.I. Production and investigation of flexible nanofibers of sPEEK/PVP loaded with RuO2 nanoparticles. Mater. Design 2021, 204, 109678. [Google Scholar] [CrossRef]
- Pokharel, J.; Gurung, A.; Baniya, A.; He, W.; Chen, K.; Pathak, R.; Lamsal, B.S.; Ghimire, N.; Zhou, Y. MOF-derived hierarchical carbon network as an extremely-high-perfomance supercapacitor electrode. Electrochim. Acta 2021, 394, 139058. [Google Scholar] [CrossRef]
- Lam, D.V.; Sohail, M.; Kim, J.; Lee, H.J.; Han, S.O.; Shin, J.; Kim, D.; Lee, S. Laser synthesis of MOF-derived Ni@Carbon for high-performance pseudocapacitors. ACS Appl. Mater. Inter. 2020, 12, 39154–39162. [Google Scholar]
- Wang, C.; Zhang, D.; Liu, S.; Yamauchi, Y.; Zhang, F.; Kaneti, Y.V. Ultrathin nanosheet-assembled nickel-based metal-organic framework microflowers for supercapacitor applications. Chem. Conmmun. 2022, 7, 1009–1012. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.L.; Sun, L.; Zhang, Y.X.; Zhang, Q.Y.; Li, X.W.; Si, H.C.; Shi, Y.; Sun, C.; Gong, Y.; Zhang, Y.H. MOF-deroved Mo-doped CoP@C grown on CNTs for high-performance supercapacitors. Chem. Eng. J. 2020, 385, 123454. [Google Scholar] [CrossRef]
- Yang, J.; Zhong, W.; Yu, Q.; Zou, J.; Gao, Y.S.; Liu, S.W.; Zhang, S.H.; Wang, X.Q.; Lu, L.M. MXene-AuNP-based electrochemical aptasensor for ultra-sensitive detection of chloramphenicol in honey. Molecules 2022, 27, 1871. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Y.; Zheng, S.H.; Lu, P.F.; Ma, J.X.; Das, P.; Su, F.; Cheng, H.; Wu, Z. Kinetic regulation of MXene with water-in-LiCl electrolyte for high-voltage micro-supercapacitors. Natl. Sci. Rev. 2022, 9, nwac024. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Y.; Zheng, S.H.; Qin, J.Q.; Ma, J.X.; Das, P.; Zhou, F.; Wu, Z. 2.4 V ultrahigh-voltage aqueous MXene-based asymmetric micro-supercapacitors with high volumetric energy density toward a self-sufficient integrated microsystem. Fundam. Res. 2022; in press. [Google Scholar]
- Bu, F.; Zagho, M.M.; Ibrahim, Y.; Ma, B.; Elzatahry, A.; Zhao, D. Porous MXene: Synthesis, structures, and application. Nano Today 2020, 30, 100803. [Google Scholar] [CrossRef]
- Yu, L.H.; Li, W.P.; Wei, C.H.; Yang, Q.F.; Shao, Y.L.; Sun, J.Y. 3D printing of NiCoP/Ti3C2 MXene architectures for energy devices synergizing high areal and volumetric energy density. Nano-Micro Lett. 2020, 12, 143. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhu, Q.Z.; Miao, J.W.; Zhang, P.; Wan, P.B.; He, L.Z.; Xu, B. Flexible 3D porous MXene foam for high-performance lithium-ion batteries. Small 2019, 20, 1904293. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.H.; Fan, Z.D.; Shao, Y.L.; Tian, Z.N.; Sun, J.Y.; Liu, Z.F. Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 2019, 9, 1901839. [Google Scholar] [CrossRef]
- Fan, Z.M.; Wang, Y.S.; Xie, Z.M.; Wnag, D.L.; Yuan, Y.; Kang, H.J.; Su, B.L.; Cheng, Z.J.; Liu, Y.Y. Modified MXene/Holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 2018, 5, 1800750. [Google Scholar] [CrossRef]
- Song, Y.Z.; Sun, Z.T.; Fan, Z.D.; Cai, W.L.; Shao, Y.L.; Sheng, G.; Wang, M.L.; Song, L.X.; Liu, Z.F.; Zhang, Q.; et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry. Nano Energy 2020, 70, 104555. [Google Scholar] [CrossRef]
- Mei, P.; Kaneti, Y.V.; Pramanik, M.; Takei, T.; Dag, Ö.; Sugahara, Y.; Yamauchi, Y. Two-dimensional mesoporous vanadium phosphate nanoshhets through liquid crystal templating method toward supercapacitor appliacation. Nano Energy 2018, 52, 336–344. [Google Scholar] [CrossRef] [Green Version]
- ‘Palsaniya, S.; Nemade, H.B.; Dasmahapatra, A.K. Hierarchical PANI-RGO-ZnO ternary nanocomposites for symmetric tandem supercapacitor. J. Phys. Chem. Solids 2021, 154, 110081. [Google Scholar] [CrossRef]
- Pan, X.H.; Shinde, N.M.; Lee, M.; Kim, D.; Kim, K.H.; Kang, M. Controlled nanosheet morphology of titanium carbide Ti3C2Tx MXene via drying methods and its electrochemical analysis. J. Solid State Electr. 2020, 24, 675–686. [Google Scholar] [CrossRef]
- Ramachandran, R.; Hu, Q.K.; Rajavel, K.; Zhu, P.L.; Zhao, C.H.; Wamg, F.; Xu, Z.X. Non-peripheral octamethyl-substituted copper (II) phthalocyanine nanorods with MXene sheets: An excellent electrode material for symmetric supercapacitor with enhanced electrochemical performance. J. Power Sources 2020, 47, 228472. [Google Scholar] [CrossRef]
- Sun, L.; Song, G.S.; Sun, Y.F.; Fu, Q.; Pan, C.X. MXene/N-Doped carbon foam with three-dimensional hollow neuron-like architecture for freestanding, highly compressible all solid-state supercapacitors. ACS Appl. Mater. Inter. 2020, 12, 44777–44788. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Or, S.W. Self-assembled three-dimensional macroscopic graphene/MXene-based hydrogel as electrode for supercapacitor. APL Mater. 2020, 8, 091101. [Google Scholar] [CrossRef]
- Edison, T.N.J.I.; Atchudan, R.; Karthik, N.; Chandrasekaran, P.; Perumal, S.; Arunachalam, P.; Raja, P.B.; Sethuraman, M.G.; Lee, Y.R. Electrochemically exfoliated graphene sheets as electrode material for aqueous symmetric supercapacitors. Surf. Coat. Technol. 2021, 416, 127150. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, X.; Zhang, L.; He, X.; Fang, L.; Wang, H.; Zhang, L.; Yu, L.; Zhu, G. Nitrogen-Doped Porous MXene (Ti3C2) for Flexible Supercapacitors with Enhanced Storage Performance. Molecules 2022, 27, 4890. https://doi.org/10.3390/molecules27154890
Tao X, Zhang L, He X, Fang L, Wang H, Zhang L, Yu L, Zhu G. Nitrogen-Doped Porous MXene (Ti3C2) for Flexible Supercapacitors with Enhanced Storage Performance. Molecules. 2022; 27(15):4890. https://doi.org/10.3390/molecules27154890
Chicago/Turabian StyleTao, Xin, Linlin Zhang, Xuedong He, Lingzi Fang, Hongyan Wang, Li Zhang, Lianghao Yu, and Guang Zhu. 2022. "Nitrogen-Doped Porous MXene (Ti3C2) for Flexible Supercapacitors with Enhanced Storage Performance" Molecules 27, no. 15: 4890. https://doi.org/10.3390/molecules27154890
APA StyleTao, X., Zhang, L., He, X., Fang, L., Wang, H., Zhang, L., Yu, L., & Zhu, G. (2022). Nitrogen-Doped Porous MXene (Ti3C2) for Flexible Supercapacitors with Enhanced Storage Performance. Molecules, 27(15), 4890. https://doi.org/10.3390/molecules27154890