Proximate, Elemental, and Functional Properties of Novel Solid Dispersions of Moringa oleifera Leaf Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Materials
2.2. Preparation of Solid Dispersions
2.2.1. Solvent Evaporation Method
2.2.2. Freeze-Drying Technique
2.2.3. Melting Method Technique
2.2.4. Microwave Method Technique
2.3. Characterization of MOLP and Solid-Dispersed MOLPs
2.3.1. Proximal Analyses
2.3.2. Elemental Analysis
2.3.3. Functional Properties of MOLP and Solid-Dispersed MOLP
Determination of Water Absorption Capacity
Determination of Solubility
2.4. Data Analysis
3. Results and Discussions
3.1. Nutritional Compositions of MOLP and Solid-Dispersed MOLPs
3.1.1. Moisture Content
3.1.2. Protein
3.1.3. Ash
3.1.4. Fat
3.1.5. Carbohydrates
3.2. Elemental Composition of MOLP and Solid-Dispersed MOLP
3.3. Functional Properties of MOLP and SDMOLPs
3.3.1. Water Absorption Capacity
3.3.2. Solubility
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Singh, V.; Arulanantham, A.; Parisipogula, V.; Arulanantham, S.; Biswas, A. Moringa olifera: Nutrient Dense Food Source and World’s Most Useful Plant to Ensure Nutritional Security, Good Health and Eradication of Malnutrition. Eur. J. Nutr. Food Saf. 2018, 8, 204–214. [Google Scholar] [CrossRef]
- Murdiana, H.E.; Revika, E.; Rahmawati, D.; Puspitasari, T.R.; Putri, A.D.; Murti, B.T. Moringa oleifera lam.-based effervescent tablets: Design, formulation and physicochemical evaluation. Int. J. Drug Deliv. Technol. 2018, 8, 222–228. [Google Scholar] [CrossRef]
- Bamishaiye, E.I.; Olayemi, F.F.; Awagu, E.F.; Bamshaiye, O.M. Proximate and Phytochemical Composition of Moringa oleifera Leaves at Three Stages of Maturation. Adv. J. Food Sci. Technol. 2011, 3, 233–237. [Google Scholar]
- Ali, M.A.; Yusof, Y.A.; Chin, N.L.; Ibrahim, M.N.; Muneer, S. Development and Standardization of Moringa oleifera Leaves as a Natural Dietary Supplement. J. Diet. Suppl. 2019, 16, 66–85. [Google Scholar] [CrossRef]
- Witt, K. The Nutrient Content of Moringa oleifera Leaves. Echo 2014. Research Note No. 1. Available online: https://www.academia.edu/18024032/Nutrient_content_of_moringa_oleifera_leaves (accessed on 1 June 2022).
- Sultana, S. Nutritional and functional properties of Moringa oleifera. Metab. Open 2020, 8, 100061. [Google Scholar] [CrossRef]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Falowo, A.B.; Mukumbo, F.E.; Idamokoro, E.M.; Lorenzo, J.M.; Afolayan, A.J.; Muchenje, V. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review. Food Res. Int. 2018, 106, 317–334. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, X.; Wei, X.; Gao, Z.; Han, J. Values, properties and utility of different parts of Moringa oleifera: An overview. Chinese Herb. Med. 2018, 10, 371–378. [Google Scholar] [CrossRef]
- Hagan, O.C.K.K.; Nsiah, P.; Obiri-yeboah, D.; Yirdong, F.; Annan, I.; Eliason, S.; Nuvor, S.V.; College, C. Vaccination against hepatitis B in Ghana: A pilot study. J. Public Health Africa 2018, 9, 1–4. [Google Scholar] [CrossRef]
- Punitha, S.; Srinivasa Reddy, G.; Srikrishna, T.; Lakshman Kumar, M. Solid dispersions: A review. Res. J. Pharm. Technol. 2011, 4, 331–334. [Google Scholar] [CrossRef]
- Jadhav, Y.L.; Parashar, B.; Ostwal, P.P.; Jain, M.S. Solid dispersion: Solubility enhancement for poorly water soluble drug. Res. J. Pharm. Technol. 2012, 5, 190–197. [Google Scholar]
- Leimann, V.F.; Gonçalves, O.H.; Sorita, G.D.; Rezende, S.; Bona, E.; Fernandes, I.P.M.; Ferreira, I.C.F.R.; Barreiro, M.F. Heat and pH stable curcumin-based hydrophylic colorants obtained by the solid dispersion technology assisted by spray-drying. Chem. Eng. Sci. 2019, 205, 248–258. [Google Scholar] [CrossRef] [Green Version]
- Bolourchian, N.; Mahboobian, M.M.; Dadashzadeh, S. The effect of PEG molecular weights on dissolution behavior of simvastatin in solid dispersions. Iran. J. Pharm. Res. 2013, 12, 9–18. [Google Scholar]
- Chuah, A.M.; Jacob, B.; Jie, Z.; Ramesh, S.; Mandal, S.; Puthan, J.K.; Deshpande, P.; Vaidyanathan, V.V.; Gelling, R.W.; Patel, G.; et al. Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin. Food Chem. 2014, 156, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Teng, J.; Selbo, J. Amorphous Solid Dispersion of Epigallocatechin Gallate for Enhanced Physical Stability and Controlled Release. Pharmaceuticals 2017, 10, 88. [Google Scholar] [CrossRef] [Green Version]
- Zhai, X.; Li, C.; Lenon, G.B.; Xue, C.C.L.; Li, W. Preparation and characterisation of solid dispersions of tanshinone IIA, cryptotanshinone and total tanshinones. Asian J. Pharm. Sci. 2017, 12, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Vadlamudi, M.K.; Dhanaraj, S. Significance of excipients to enhance the bioavailability of poorly water-soluble drugs in oral solid dosage forms: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 022023. [Google Scholar] [CrossRef] [Green Version]
- Hassouna, F.; Abo El Dahab, M.; Fulem, M.; De Lima Haiek, A.; Laachachi, A.; Kopecký, D.; Šoóš, M. Multi-scale analysis of amorphous solid dispersions prepared by freeze drying of ibuprofen loaded acrylic polymer nanoparticles. J. Drug Deliv. Sci. Technol. 2019, 53, 101182. [Google Scholar] [CrossRef]
- Tran, P.; Pyo, Y.-C.; Kim, D.-H.; Lee, S.-E.; Kim, J.-K.; Park, J.-S. Overview of the Manufacturing Methods of Solid Dispersion Technology for Improving the Solubility of Poorly Water-Soluble Drugs and Application to Anticancer Drugs. Pharmaceutics 2019, 11, 132. [Google Scholar] [CrossRef] [Green Version]
- Zawar, L.; Bari, S. Microwave Induced Solid Dispersion as a Novel Technique for Enhancing Dissolution Rate of Repaglinide. Adv. Pharmacol. Pharm. 2013, 1, 95–101. [Google Scholar] [CrossRef]
- Tafu, N.N.; Jideani, V.A. Characterization of novel solid dispersions of moringa oleifera leaf powder using thermo-analytical techniques. Processes 2021, 9, 2230. [Google Scholar] [CrossRef]
- Ishimoto, K.; Miki, S.; Ohno, A.; Nakamura, Y.; Otani, S.; Nakamura, M.; Nakagawa, S. β-Carotene solid dispersion prepared by hot-melt technology improves its solubility in water. J. Food Sci. Technol. 2019, 56, 3540–3546. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Xu, M.; Ohm, J.B.; Chen, B.; Rao, J. Solid dispersion-based spray-drying improves solubility and mitigates beany flavour of pea protein isolate. Food Chem. 2019, 278, 665–673. [Google Scholar] [CrossRef]
- Pang, S.; Ma, C.; Zhang, N.; He, L. Investigation of the solubility enhancement mechanism of rebaudioside D using a solid dispersion technique with potassium sorbate as a carrier. Food Chem. 2015, 174, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, S.; Imam, S.S.; Altamimi, M.A.; Hussain, A.; Shakeel, F.; Elzayat, E.; Mohsin, K.; Ibrahim, M.; Alanazi, F. Enhanced Dissolution of Luteolin by Solid Dispersion Prepared by Different Methods: Physicochemical Characterization and Antioxidant Activity. ACS Omega 2020, 5, 6461–6471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikghalb, L.A.; Singh, G.; Singh, G.; Kahkeshan, K.F. Solid Dispersion: Methods and Polymers to increase the solubility of poorly soluble drugs. J. Appl. Pharm. Sci. 2012, 2, 170–175. [Google Scholar] [CrossRef]
- Yu, J.Y.; Kim, J.A.; Joung, H.J.; Ko, J.A.; Park, H.J. Preparation and characterization of curcumin solid dispersion using HPMC. J. Food Sci. 2020, 85, 3866–3873. [Google Scholar] [CrossRef]
- Zhang, X. Pharmaceutical Dispersion Techniques for Dissolution and Bioavailability Enhancement of Poorly Water-Soluble Drugs. Pharmaceutics 2018, 10, 74. [Google Scholar] [CrossRef] [Green Version]
- Younis, M.A. Solid Dispersion Technology, a Contemporary Overview on a Well-Established Technique. Univers. J. Pharm. Res. 2017, 2, 15–19. [Google Scholar] [CrossRef]
- Raj, A.L.; Kumar, Y.S. Preparation and Evaluation of Solid Dispersion of Nebivolol Using Solvent Evaporation Method. Int. J. Pharm. Sci. Drug Res. 2018, 10, 322–328. [Google Scholar] [CrossRef]
- Fitriani, L.; Haqi, A.; Zaini, E. Preparation and characterization of solid dispersion freeze-dried efavirenz–polyvinylpyrrolidone K-30. J. Adv. Pharm. Technol. Res. 2016, 7, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Mogal, S.A.; Gurjar, P.N.; Yamgar, D.S.; Kamod, A.C. Solid dispersion technique for improving solubility of some poorly soluble drugs. Der Pharm. Lett. 2012, 4, 1574–1586. [Google Scholar]
- Köhn, C.R.; Fontoura, A.M.; Kempka, A.P.; Demiate, I.M.; Kubota, E.H.; Prestes, R.C. Assessment of different methods for determining the capacity of water absorption of ingredients and additives used in the meat industry. Int. Food Res. J. 2015, 22, 356–362. [Google Scholar]
- Horwitz, W. (Ed.) AOAC Official Methods of Analysis of AOAC INTERNATIONAL; AOAC INTERNATIONAL: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Itagi, H.B.N.; Singh, V. Preparation, nutritional composition, functional properties and antioxidant activities of multigrain composite mixes. J. Food Sci. Technol. 2012, 49, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Okiki, P.A.; Osibote, I.A.; Balogun, O.; Oyinloye, B.E.; Idris, O.; Olufunke, A.; Asoso, S.O.; Olagbemide, P.T. Evaluation of Proximate, Minerals, Vitamins and Phytochemical Composition of Moringa oleifera Lam. Cultivated in Ado Ekiti, Nigeria. Adv. Biol. Res. (Rennes) 2015, 9, 436–443. [Google Scholar] [CrossRef]
- Devisetti, R.; Sreerama, Y.N.; Bhattacharya, S. Processing effects on bioactive components and functional properties of moringa leaves: Development of a snack and quality evaluation. J. Food Sci. Technol. 2016, 53, 649–657. [Google Scholar] [CrossRef] [Green Version]
- Moyo, B.; Masika, P.J.; Hugo, A.; Muchenje, V. Nutritional characterization of Moringa (Moringa oleifera Lam.) leaves. African J. Biotechnol. 2011, 10, 12925–12933. [Google Scholar]
- Punchay, K.; Inta, A.; Tiansawat, P.; Balslev, H.; Wangpakapattanawong, P. Nutrient and Mineral Compositions of Wild Leafy Vegetables of the Karen and Lawa Communities in Thailand. Foods 2020, 9, 1748. [Google Scholar] [CrossRef]
- Oulai, P.; Zoue, L.; Megnanou, R.-M.; Doue, R.; Niamke, S. Proximate Composition and Nutritive Value of Leafy Vegetables Consumed in Northern Côte D’ Ivoire. Eur. Sci. J. 2014, 10, 212–227. [Google Scholar]
- Selladurai, A. Nutritional and mineral composition of selected green leafy vegetables. Ceylon J. Sci. 2018, 47, 35. [Google Scholar] [CrossRef]
- Sahay, S.; Yadav, U.; Srinivasamurthy, S. Potential of Moringa oleifera as a functional food ingredient: A review. Int. J. Food Sci. Nutr. 2017, 2, 31–37. [Google Scholar]
- Su, B.; Chen, X. Current Status and Potential of Moringa oleifera Leaf as an Alternative Protein Source for Animal Feeds. Front. Vet. Sci. 2020, 7, 1–13. [Google Scholar] [CrossRef]
- Yee, P.; Yan, L.; Sim, Y.; Lin, K. Influence of kenaf (Hibiscus cannabinus L.) leaves powder on the physico-chemical, antioxidant and sensorial properties of wheat bread. J. Food Meas. Charact. 2020, 14, 2425–2432. [Google Scholar] [CrossRef]
- Oduro, I.; Ellis, W.O.; Owusu, D. Nutritional potential of two leafy vegetables: Moringa oleifera and Ipomoea batatas leaves. Sci. Res. Essays 2008, 3, 57–60. [Google Scholar]
- Valdez-Solana, M.A.; Mejía-García, V.Y.; Téllez-Valencia, A.; García-Arenas, G.; Salas-Pacheco, J.; Alba-Romero, J.J.; Sierra-Campos, E. Nutritional content and elemental and phytochemical analyses of Moringa oleifera grown in Mexico. J. Chem. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Chisenga, S.M.; Workneh, T.S.; Bultosa, G.; Laing, M. Proximate composition, cyanide contents, and particle size distribution of cassava flour from cassava varieties in Zambia. AIMS Agric. Food 2019, 4, 869–891. [Google Scholar] [CrossRef]
- Raju, R.S.; Sakuntala, P.; Jaleeli, K.A. Elemental status of the medicinal plant. J. Appl. Chem. 2019, 8, 491–495. [Google Scholar]
- Melo, V.; Vargas, N.; Quirino, T.; Calvo, C.M.C. Moringa oleifera L.—An underutilized tree with macronutrients for human health. Emirates J. Food Agric. 2013, 25, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Agamou, A.; Armel, J.; Edith, F.N.; Moses, M.C. Influence of Compounds Contents and Particle Size on Some Functional Properties of Moringa oleifera Leaves (Lam) Powders. Asian Food Sci. J. 2021, 20, 60–71. [Google Scholar] [CrossRef]
- Bello, O.S.; Adegoke, K.A.; Akinyunni, O.O. Preparation and characterization of a novel adsorbent from Moringa oleifera leaf. Appl. Water Sci. 2017, 7, 1295–1305. [Google Scholar] [CrossRef] [Green Version]
- Rafe, A.; Sadeghian, A.; Zohreh, S. Physicochemical, functional, and nutritional characteristics of stabilized rice bran form tarom cultivar. Food Sci. Nutr. 2017, 5, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Oyeyinka, S.A. Physicochemical Properties of Stiff Dough “Amala” Prepared From Plantain (Musa Paradisca) Flour and Moringa (Moringa oleifera) Leaf Powder. Hrana u Zdr. i Boles. Znan.-Stručni Časopis za Nutr. i Dijetetiku 2015, 4, 48–58. [Google Scholar]
- Ssepuuya, G.; Katongole, J.; Tumuhimbise, G.A. Contribution of instant amaranth (Amaranthus hypochondriacus L.)-based vegetable soup to nourishment of boarding school adolescents. Food Sci. Nutr. 2018, 6, 1402–1409. [Google Scholar] [CrossRef] [PubMed]
- Newa, M.; Bhandari, K.H.; Kim, J.A.; Yoo, B.K.; Choi, H.G.; Yong, C.S.; Woo, J.S.; Lyoo, W.S. Preparation and evaluation of fast dissolving ibuprofen-polyethylene glycol 6000 solid dispersions. Drug Deliv. 2008, 15, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Kumavat, S.; Chaudhari, Y.; Borole, P.; Shenghani, K.; Badhe, M. Enhancement of Solubility and Dissolution Rate of Curcumin by Solid Dispersion Technique. Int. Res. J. Pharm. 2013, 4, 226–232. [Google Scholar] [CrossRef]
- Muthu, M.J.; Kavitha, K.; Chitra, K.S.; Nandhineeswari, S. Soluble curcumin prepared by solid dispersion using four different carriers: Phase solubility, molecular modelling and physicochemical characterization. Trop. J. Pharm. Res. 2019, 18, 1581–1588. [Google Scholar]
Samples | Moisture (%) | Protein (%) | Ash (%) | Fat (%) | CHO (%) | Energy (Kcal) |
---|---|---|---|---|---|---|
Pure MOLP | 8.44 ± 1.60 a | 28.53 ± 1.61 a | 11.81 ± 1.20 a | 4.89 ± 0.80 a | 46.33 ± 2.45 a | 344.46 ± 9.22 a |
PEG4000 | ||||||
Freeze-drying | 4.03 ± 0.31 b | 12.4 ± 0.30 b | 5.48 ± 0.06 b | 3.15 ± 0.00 ab | 74.91 ± 0.28 b | 377.45 ± 1.94 ab |
Melting | 3.56 ± 2.92 b | 14.2 ± 1.62 b | 6.14 ± 0.01 b | 2.85 ± 0.00 b | 73.22 ± 3.23 b | 404.52 ± 0.62 b |
Solvent evaporation | 3.28 ± 0.83 b | 12.98 ± 0.81 b | 4.03 ± 0.20 b | 2.43 ± 0.11 b | 75.41 ± 1.10 b | 386.57 ± 8.10 ab |
Microwave irradiation | 2.73 ± 1.10 b | 12.90 ± 1.11 b | 5.82 ± 0.61 b | 2.59 ± 0.00 b | 75.96 ± 0.49 b | 378.11 ± 3.00 ab |
PEG6000 | ||||||
Freeze-drying | 3.95 ± 0.63 b | 12.70 ± 0.61 b | 5.72 ± 0.09 b | 2.95 ± 0.00 b | 74.68 ± 0.40 b | 375.1 ± 2.06 ab |
Melting | 3.07 ± 0.63 b | 13.23 ± 0.61 b | 5.66 ± 0.02 b | 2.84 ± 0.10 b | 75.30 ± 2.42 b | 374.89 ± 7.27 ab |
Solvent evaporation | 2.65 ± 1.02 b | 12.9 ± 1.02 b | 6.16 ± 0.06 b | 2.27 ± 0.00 b | 76.00 ± 0.51 b | 375.53 ± 1.32 ab |
Microwave irradiation | 3.10 ± 0.00 b | 12.52 ± 0.00 b | 5.89 ± 0.21 b | 2.75 ± 0.00 b | 75.72 ± 0.10 b | 377.66 ± 1.41 ab |
Sample | Ca | Mg | P | Fe | Cu | S | Zn | Na |
---|---|---|---|---|---|---|---|---|
MOLP | 6.1 a | 7.6 a | 1.13 a | 4.78 a | 0.11 a | 21.32 ± 2.38 a | 0.08 a | 2.70 a |
PEG4000 | ||||||||
Freeze-D | 3.8 a | 9.1 b | 0.66 b | 2.20 b | 7.83 a | 23.0 b | 0.00 a | 0.00 a |
SE | 1.0 a | 2.0 c | 3.41 a | 3.87 b | 1.79 a | 0.4 a | 2.08 a | 0.78 a |
Melting | 4.5 c | 10 c | 3.41 b | 0.21 b | 3.67 a | 0.21 d | 0.04 a | 0.67 a |
Microwave | 2.6 d | 3.5 b,c | 2.44 c | 3.01 b | 4.20 a | 0.51 a | 4.6 ab | 0.39 a |
PEG6000 | ||||||||
Freeze-D | 9.1 b | 3.6 b | 1.05 b | 4.53 b | 7.02 a | 4.74 a | 0.47 a | 1.97 a |
SE | 1.5 a | 6.0 b | 3.91 b | 0.19 b | 25 b | 0.35 a | 0.93 a | 0.95 a |
Melting | 5.0 c | 1.4 a | 8.51 a | 1.89 b | 0.82 a | 1.07 c | 0.00 a | 0.95 a |
Microwave | 5.4 a | 3.3 c | 0.42 c | 2.76 b | 3.76 a | 5.58 a | 4.72 b | 3.94 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tafu, N.N.; Jideani, V.A. Proximate, Elemental, and Functional Properties of Novel Solid Dispersions of Moringa oleifera Leaf Powder. Molecules 2022, 27, 4935. https://doi.org/10.3390/molecules27154935
Tafu NN, Jideani VA. Proximate, Elemental, and Functional Properties of Novel Solid Dispersions of Moringa oleifera Leaf Powder. Molecules. 2022; 27(15):4935. https://doi.org/10.3390/molecules27154935
Chicago/Turabian StyleTafu, Nontsikelelo Noxolo, and Victoria A. Jideani. 2022. "Proximate, Elemental, and Functional Properties of Novel Solid Dispersions of Moringa oleifera Leaf Powder" Molecules 27, no. 15: 4935. https://doi.org/10.3390/molecules27154935
APA StyleTafu, N. N., & Jideani, V. A. (2022). Proximate, Elemental, and Functional Properties of Novel Solid Dispersions of Moringa oleifera Leaf Powder. Molecules, 27(15), 4935. https://doi.org/10.3390/molecules27154935