Apoptosis-Inducing Potential of Selected Bromophenolic Flame Retardants 2,4,6-Tribromophenol and Pentabromophenol in Human Peripheral Blood Mononuclear Cells
Abstract
:1. Introduction
2. Results
2.1. Quantitative Analysis of Apoptosis
2.2. Cytosolic Calcium Ion Level
2.3. Changes in Transmembrane Mitochondrial Potential
2.4. Caspase-8, -9, and -3 Activation
2.5. PARP-1 Cleavage and DNA Fragmentation
2.6. Apoptosis Detection by Fluorescence Microscopy
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Chemicals
5.2. Methods
5.2.1. Cell Isolation and Treatment
5.2.2. Quantitative Determination of Apoptosis (Annexin V-FITC/PI Staining)
5.2.3. Cytosolic Calcium Ion Level
5.2.4. Mitochondrial Transmembrane Potential (ΔΨm)
5.2.5. Caspase-3, -8, and -9 Activation
5.2.6. PARP-1 Cleavage
5.2.7. APO-BrdU TUNEL Assay
5.2.8. Hoechst 33342/PI Staining
5.2.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yu, G.; Bu, Q.; Cao, Z.; Du, X.; Xia, J.; Wu, M.; Huang, J. Brominated flame retardants (BFRs): A review on environmental contamination in China. Chemosphere 2016, 150, 479–490. [Google Scholar] [CrossRef]
- Covaci, A.; Voorspoelsb, S.; Abdallahc, M.A.E.; Geensa, T.; Harradc, S.; Lawd, E.J. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives. J. Chromat. A 2009, 1216, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Howe, P.D.; Dobson, S.; Malcolm, H.M. 2,4,6-Tribromophenol and other simple brominated phenols. IPCS Concise Int. Chem. Assess. Doc. 2005, 66, 1–35. [Google Scholar]
- Okon, D.E.; Choo, G.; Barcelo, D.; Oh, J.-E. Chapter One-Introduction of emerging halogenated flame retardants in the environment. Comprehensive Anal. Chem. 2020, 88, 1–39. [Google Scholar]
- Michałowicz, J.; Włuka, A.; Bukowska, B. A Review on environmental occurrence, toxic effects and transformation of man-made bromophenols. Sci. Total Environ. 2022, 811, 152289. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific opinion on brominated flame retardants (BFRs) in food: Brominated phenols and their derivatives. EFSA J. 2012, 10, 2634–2676. [Google Scholar] [CrossRef]
- Zhu, Q.; Maeno, S.; Nishimoto, R.; Miyamoto, T.; Fukushima, M. Oxidative degradation of pentabromophenol in the presence of humic substances catalyzed by a SBA-15 supported iron-porphyrin catalyst. J. Mol. Catalysis A Chem. 2014, 385, 31–37. [Google Scholar] [CrossRef]
- Nichkova, M.; Germani, M.; Marco, M.P. Immunochemical analysis of 2,4,6-tribromophenol for assessment of wood contamination. J. Agric. Food Chem. 2008, 56, 29–34. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. 2,4,6-Tribromophenol and Other Simple Brominated Phenols. In Concise International Chemical Assessment Document 66; World Health Organisation: Geneva, Switzerland, 2005. [Google Scholar]
- Mizukawa, H.; Nomiyama, K.; Nakatsu, S.; Yamamoto, M.; Ischizuka, M.; Ikenaka, Y.; Nakayama, S.; Tanabe, S. Anthropogenic and naturally produced brominated phenols in pet blood and pet food in Japan. Environ. Sci. Technol. 2017, 51, 11354–11362. [Google Scholar] [CrossRef] [PubMed]
- Schlabach, M.; Remberger, M.; Brorström-Lundén, E.; Norström, K.; Kaj, L.; Andersson, H.; Herzke, D.; Borgen, A.; Harju, M. Brominated Flame Retardants (BFR) in the Nordic Environment; TemaNord, 528; Nordic Council of Ministers: Copenhagen, Denmark, 2011; p. 86. [Google Scholar]
- Xiong, J.K.; An, T.C.; Zhang, C.S.; Li, G.Y. Pollution profiles and risk assessment of PBDEs and phenolic brominated flame retardants in water environments within a typical electronic waste dismantling region. Environ. Geochem. Health 2015, 37, 457–473. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Li, G.; An, T.; Zhang, C.; Wei, C. Emission patterns and risk assessment of polybrominated diphenyl ethers and bromophenols in water and sediments from the Beijiang River, South China. Environ. Pollut. 2016, 219, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Huber, S.; Warner, N.A.; Nygard, T.; Remberger, M.; Harju, M.; Uggerud, H.T.; Kaj, L.; Hanssen, L. A broad cocktail of environmental pollutants found in eggs of three seabird species from remote colonies in Norway. Environ. Toxicol. Chem. 2015, 34, 1296–1308. [Google Scholar] [CrossRef] [PubMed]
- Saito, I.; Onuki, A.; Seto, H. Indoor organophosphate and polybrominated flame retardants in Tokyo. Indoor Air 2007, 17, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Takigami, H.; Suzuki, G.; Hirai, Y.; Sakai, S. Brominated flame retardants and other polyhalogenated compounds in indoor air and dust from two houses in Japan. Chemosphere 2009, 76, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Malysheva, S.V.; Goscinny, S.; Malarvannan, G.; Poma, G.; Andjelkovic, M.; Jacobs, G.; Voorspoels, S.; Covaci, A.; Van Loco, J. Occurrence of HBCDs, TBBPA, Brominated Phenols and Their Derivative in Foodstuffs in Belgium; BFR: Halem, Germany, 2017; pp. 1–3. [Google Scholar]
- Wang, J.; Hao, Z.; Shi, F.; Yin, Y.; Cao, D.; Yao, Z.; Liu, J. Characterization of brominated disinfection by-products formed during the chlorination of aquaculture seawater. Environ. Sci. Technol. 2018, 52, 5662–5670. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Xu, Q.; Jin, Y.; Lin, Y.; Qui, X.; Lu, D.; Wang, G. Determination of urinary bromophenols (BrPs) as potential biomarkers for human exposure to polybrominated diphenyl ethers (PBDEs) using gas chromatography-tandem mass spectrometry (GC–MS/MS). J. Chromat. B 2016, 1022, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Dufour, P.; Pirard, C.; Charlier, C. Determination of phenolic organohalogens in human serum from a Belgian population and assessment of parameters affecting the human contamination. Sci. Total Environ. 2017, 599, 1856–1866. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, M.; Becerra, J.; Godoy, J.; Barra, R. Occupational and environmental exposure to tribromophenol used for wood surface protection in sawmills. Int. J. Environ. Health Res. 2005, 15, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Smeds, A.; Saukko, P. Brominated flame retardants and phenolic endocrine disrupters in Finnish human adipose tissue. Chemosphere 2003, 53, 1123–1130. [Google Scholar] [CrossRef]
- Gao, S.; Wan, Y.; Zheng, G.; Luo, K.; Kannan, K.; Giesy, J.P.; Lam, M.H.W.; Hu, J. Organobromine compound profiling in human adipose: Assessment of sources of bromophenol. Environ. Pollut. 2015, 204, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Leonetti, C.; Butt, C.M.; Hoffman, K.; Hammel, S.C.; Miranda, M.L.; Stapleton, H.M. Brominated flame retardants in placental tissues: Associations with infant sex and thyroid hormone endpoints. Environ. Health 2016, 15, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meerts, I.A.T.M.; van Zanden, J.J.; Luijks, E.A.C.; van Leeuwen-Bol, I.; Marsh, G.; Jakobsson, E.; Bergman, A.; Brouwer, A. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol. Sci. 2000, 56, 95–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonetti, C.P.; Butt, C.M.; Stapleton, H.M. Disruption of thyroid hormone sulfotransferase activity by brominated flame retardant chemicals in the human choriocarcinoma placenta cell line, BeWo. Chemosphere 2018, 197, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Liu, C.; Yu, L.; Zhou, B. Chronic exposure to environmental levels of tribromophenol impairs zebrafish reproduction. Toxicol. Appl. Pharmacol. 2010, 243, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Hassenklöver, T.; Predehl, S.; Pilli, J.; Ledwolorz, J.; Assmann, M.; Bickmeyer, U. Bromophenols, both present in marine organisms and in industrial flame retardants, disturb cellular Ca2+ signalling in neuroendocrine cells (PC12). Aquat. Toxicol. 2006, 76, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-L.; Yang, P.; Kao, Y.; Chen, P.; Chung, C.-L.; Wang, S. Pentabromophenol suppresses TGF-β signaling by accelerating degradation of type II TGF-β receptors via caveolae-mediated endocytosis. Sci. Rep. 2017, 7, 43206. [Google Scholar] [CrossRef] [Green Version]
- Roane, B.M.; Arend, R.C.; Birrer, M.J. Review: Targeting the transforming growth factor-beta pathway in ovarian cancer. Cancers 2019, 11, 668. [Google Scholar] [CrossRef] [Green Version]
- Jarosiewicz, M.; Duchnowicz, P.; Włuka, A.; Bukowska, B. Evaluation of the effect of brominated flame retardants on haemoglobin oxidation and hemolysis in human erythrocytes. Food Chem. Toxicol. 2017, 109, 264–271. [Google Scholar] [CrossRef]
- Jarosiewicz, M.; Krokosz, A.; Marczak, A.; Bukowska, B. Changes in the activities of antioxidant enzymes and reduced glutathione level in human erythrocytes exposed to selected brominated flame retardants. Chemosphere 2019, 227, 93–99. [Google Scholar] [CrossRef]
- Włuka, A.; Woźniak, A.; Woźniak, E.; Michałowicz, J. Tetrabromobisphenol A, terabromobisphenol S and other bromophenolic flame retardants cause cytotoxic effects and induce oxidative stress in human peripheral blood mononuclear cells (in vitro study). Chemosphere 2020, 261, 127705. [Google Scholar] [CrossRef]
- Barańska, A.; Woźniak, A.; Mokra, K.; Michałowicz, J. Genotoxic mechanism of action of TBBPA, TBBPS and selected bromophenols in human peripheral blood mononuclear cells. Front. Immunol. 2022, 13, 869741. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Pallardy, M.; Biola, A.; Lebrec, H.; Breard, J. Assessment of apoptosis in xenobiotic-induced immunotoxicity. Methods 1999, 19, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Jarosiewicz, M.; Michałowicz, J.; Bukowska, B. In vitro assessment of eryptotic potential of tetrabromobisphenol A and other bromophenolic flame retardants. Chemosphere 2019, 215, 404–412. [Google Scholar] [CrossRef]
- Montalbano, A.M.; Albano, G.D.; Anzalone, G.; Moscato, M.; Gagliardo, R.; Di Sano, C.; Bonnano, A.; Ruggieri, S.; Cibella, F.; Profita, M. Cytotoxic and genotoxic effects of the flame retardants (PBDE-47, PBDE-99 and PBDE-209) in human bronchial epithelial cells. Chemosphere 2020, 245, 125600. [Google Scholar] [CrossRef]
- Dong, H.; Wang, L.; Guo, M.; Stagos, D.; Giakountis, A.; Trachana, V.; Lin, X.; Liu, Y.; Liu, M. Antioxidant and anticancer activities of synthesized methylated and acetylated derivatives of natural bromophenols. Antioxidants 2022, 11, 786. [Google Scholar] [CrossRef]
- LaRosa, F.D.; Orange, S.J. Lymphocytes. J. Allergy Clin. Immunol. 2008, 121, 364–369. [Google Scholar] [CrossRef]
- Weinberg, A.; Jesser, R.; Edelstein, C.; Billy, J.; Wohl, D. Excess apoptosis of mononuclear cells contributes to the depressed cytomegalovirus-specific immunity in HIV-infected patients on HAART. Virology 2004, 330, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Ratomski, K.; Skotnicka, B.; Kasprzycka, E.; Żelazowska-Rutkowska, B.; Wysocka, J.; Anisimowicz, S. Evaluation of percentage of the CD19+ CD5+ lymphocytes in hypertrophied adenoids at children with otitis media with effusion. Otolaryngol. Pol. 2007, 61, 962–966. [Google Scholar] [CrossRef]
- Zhou, C.-X.; Zhou, D.-H.; Liu, G.-X.; Suo, X.; Zhu, X.-Q. Transcriptomic analysis of porcine PBMCs infected with Toxoplasma gondii RH strain. Acta Trop. 2016, 154, 82–88. [Google Scholar] [CrossRef]
- Halit, S.; Salameh, P. Exposure to toxins during pregnancy and childhood and asthma in children: A pilot study. J. Epidemiol. Glob. Health 2017, 7, 147–154. [Google Scholar] [CrossRef]
- Sen, P.; Kemppainen, E.; Orešič, M. Perspectives on Systems Modeling of Human Peripheral Blood Mononuclear Cells. Front. Mol. Biosci. 2017, 4, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Jiang, L.; Qiu, J.; Wang, Y. A comparative evaluation of the immunotoxicity and immunomodulatory effects on macrophages exposed to aromatic trihalogenated DBPs. Immunopharmacol. Immunotoxicol. 2019, 41, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Bowen, C.; Childers, G.; Perry, C.; Martin, N.; McPherson, C.; Lauten, T.; Santos, J.; Harry, G.J. Mitochondrial-related effects of pentabromophenol, tetrabromobisphenol A, and triphenyl phosphate on murine BV-2 microglia cells. Chemosphere 2020, 255, 126919. [Google Scholar] [CrossRef]
- Ríos, J.C.; Repetto, G.; Jos, A.; del Peso, A.; Salguero, M.; Camean, A.; Repetto, M. Tribromophenol induces the differentiation of SH-SY5Y human neuroblastoma 378 cells in vitro. Toxicol. Vitr. 2003, 17, 635–641. [Google Scholar] [CrossRef]
- Rutkowska, J. Zjawisko apoptozy w chorobach alergicznych. Med. News 2007, 76, 48–54. [Google Scholar]
- Wang, Y.; Zhang, G.-Y.; Han, Q.-L.; Suriguga, J.W.; Li, Y.; Yu, C.-H.; Li, Y.-R.; Yi, Z.-C. Phenolic metabolites of benzene induced caspase-dependent cytotoxicities to K562 cells accompanied with decrease in cell surface sialic acids. Environ. Toxicol. 2014, 29, 1437–1451. [Google Scholar] [CrossRef] [PubMed]
- Michałowicz, J.; Sicińska, P. Chlorophenols and chlorocatechols induce apoptosis in human lymphocytes (in vitro). Toxicol. Lett. 2009, 191, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Wispriyono, B.; Matsuoka, M.; Igisu, H. Effects of pentachlorophenol and tetrachlorohydroquinone on mitogen-activated protein kinase pathways in Jurkat T cells. Environ. Health Perspect. 2002, 110, 139–143. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, J.; Zhang, F.; Yu, H.; Zhang, J. Cytotoxic effects of environmentally relevant chlorophenols on L929 cells and their mechanisms. Cell Biol. Toxicol. 2004, 20, 183–196. [Google Scholar] [CrossRef]
- Hajnoczky, G.; Davies, E.; Madesh, M. Calcium signaling and apoptosis. Biochem. Biophys. Res. Commun. 2003, 304, 445–454. [Google Scholar] [CrossRef]
- Kaufman, R.J.; Scheuner, D.; Schröder, M. The unfolded protein response in nutrient sensing and differentiation. Nat. Rev. Mol. Cell Biol. 2002, 3, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Kroemer, G.; Reed, J.C. Mitochondrial control of cell heath. Nat. Med. 2000, 6, 513–519. [Google Scholar] [CrossRef]
- Mokra, K.; Kocia, M.; Michałowicz, J. Bisphenol A and its analogs exhibit different apoptotic potential in peripheral blood mononuclear cells (in vitro study). Food Chem. Toxicol. 2015, 84, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Huang, D.; Zhang, Y. The involvement of ROS overproduction and mitochondrial dysfunction in PBDE-47-induced apoptosis on Jurkat cells. Exp. Toxicol. Pathol. 2011, 63, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Mashimo, M.; Onishi, M.; Uno, A.; Tanimichi, A.; Nobeyama, A.; Mori, M.; Yamada, S.; Negi, S.; Bu, X.; Kato, J.; et al. The 89-kDa PARP1 cleavage fragment serves as a cytoplasmic PAR carrier to induce AIF-mediated apoptosis. J. Biol. Chem. 2021, 296, 100046. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, F.; Liu, J.; Li, Q.; Ji, C.; Wu, H. New insights into the mechanism of hepatocyte apoptosis induced by typical organophosphate ester: An integrated in vitro and in silico approach. Ecotoxicol. Environ. Saf. 2021, 219, 112342. [Google Scholar] [CrossRef] [PubMed]
- Chmielewski, M.; Linke, K.; Zabel, M. Metody wykrywania zjawiska apoptozy w komórkach wątrobowych in situ. Med. News 2008, 77, 223–226. [Google Scholar]
- Luo, J.; Wu, N.; Jiang, B.; Wang, L.; Wang, S.; Li, X.; Wang, B.; Wang, C.; Shi, D. Marine bromophenol derivative 3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-isopropoxymethyl benzyl) benzene-1,2-diol protects hepatocytes from lipid-Induced cell damage and insulin resistance via PTP1B inhibition. Mar. Drugs 2015, 13, 4452–4469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogalska, A.; Gajek, A.; Szwed, M.; Joźwiak, Z.; Marczak, A. The role of reactive oxygen species in WP 631-induced death of human ovarian cancer cells: A comparison with the effect of doxorubicin. Toxicol. Vitr. 2011, 25, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
- Watała, C. Biostatystyka-Wykorzystanie Metod Statystycznych W Pracy Badawczej W Naukach Biomedycznych, 2nd ed.; Alfa-Medica Press: Bielsko-Biała, Poland, 2002; pp. 54–68. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barańska, A.; Sicińska, P.; Michałowicz, J. Apoptosis-Inducing Potential of Selected Bromophenolic Flame Retardants 2,4,6-Tribromophenol and Pentabromophenol in Human Peripheral Blood Mononuclear Cells. Molecules 2022, 27, 5056. https://doi.org/10.3390/molecules27165056
Barańska A, Sicińska P, Michałowicz J. Apoptosis-Inducing Potential of Selected Bromophenolic Flame Retardants 2,4,6-Tribromophenol and Pentabromophenol in Human Peripheral Blood Mononuclear Cells. Molecules. 2022; 27(16):5056. https://doi.org/10.3390/molecules27165056
Chicago/Turabian StyleBarańska, Anna, Paulina Sicińska, and Jaromir Michałowicz. 2022. "Apoptosis-Inducing Potential of Selected Bromophenolic Flame Retardants 2,4,6-Tribromophenol and Pentabromophenol in Human Peripheral Blood Mononuclear Cells" Molecules 27, no. 16: 5056. https://doi.org/10.3390/molecules27165056
APA StyleBarańska, A., Sicińska, P., & Michałowicz, J. (2022). Apoptosis-Inducing Potential of Selected Bromophenolic Flame Retardants 2,4,6-Tribromophenol and Pentabromophenol in Human Peripheral Blood Mononuclear Cells. Molecules, 27(16), 5056. https://doi.org/10.3390/molecules27165056