Anti-Obesity Evaluation of Averrhoa carambola L. Leaves and Assessment of Its Polyphenols as Potential α-Glucosidase Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Vivo Assay of A. carambola Leaf Extract against HFD-Induced Obesity Model in Rats
2.1.1. Body Weight and Biochemical Markers Determination
2.1.2. Effect of CLL on Dyslipidemia
2.1.3. Effect of CLL on Leptin, α-Amylase, Plasma Glucose, Insulin Levels, and Insulin Resistance
2.1.4. Effect of CLL on Oxidative Stress and Lipid Peroxidation
2.1.5. Effect of CLL on Kidney and Liver Functions
2.2. Isolation and Structure Elucidation
Isolated Compounds Structure Determination Using NMR and MS
2.3. Structure-Activity Relationship Assessment of Isolated Compounds as α-Glucosidase Inhibitors
2.3.1. Structure-Activity Relationship Assessment of Flavones as α-Glucosidase Inhibitors
2.3.2. Structure-Activity Relationship of Dihydrochalcones and Their Glycosides as α-Glucosidase Inhibitors
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals
3.3. Chromatographic and Spectroscopic Techniques
3.4. In Vivo Assessment of CLL Extract in an HFD Rat Anti-Obesity Activity
3.4.1. Experimental Animals
3.4.2. In Vivo Assay Experimental Design
3.4.3. Statistical Analysis
3.5. Isolation and Structural Elucidation
3.6. In Vitro α-Glucosidase Inhibitory Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Venkatakrishnan, K.; Chiu, H.-F.; Wang, C.K. Extensive Review of Popular Functional Foods and Nutraceuticals against Obesity and Its Related Complications with a Special Focus on Randomized Clinical Trials. Food Funct. 2019, 10, 2313–2329. [Google Scholar] [CrossRef] [PubMed]
- Gesta, S.; Tseng, Y.-H.; Kahn, C.R. Developmental Origin of Fat: Tracking Obesity to Its Source. Cell 2007, 131, 242–256. [Google Scholar] [CrossRef] [PubMed]
- Gamboa-Gómez, C.I.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Moreno-Jiménez, M.R.; Vázquez-Cabral, B.D.; González-Laredo, R.F. Plants with Potential Use on Obesity and Its Complications. EXCLI J. 2015, 14, 809–831. [Google Scholar] [CrossRef] [PubMed]
- Kinlen, D.; Cody, D.; O’Shea, D. Complications of Obesity. QJM Int. J. Med. 2018, 111, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Gani, R.S.; Kudva, A.K.; Timanagouda, K.; Raghuveer; Mujawar, S.B.H.; Joshi, S.D.; Raghu, S.V. Synthesis of Novel 5-(2,5-Bis(2,2,2-Trifluoroethoxy)Phenyl)-1,3,4-Oxadiazole-2-Thiol Derivatives as Potential Glucosidase Inhibitors. Bioorg. Chem. 2021, 114, 105046. [Google Scholar] [CrossRef] [PubMed]
- Shang, A.; Gan, R.-Y.; Xu, X.-Y.; Mao, Q.-Q.; Zhang, P.-Z.; Li, H.-B. Effects and Mechanisms of Edible and Medicinal Plants on Obesity: An Updated Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2061–2077. [Google Scholar] [CrossRef]
- Dirir, A.M.; Daou, M.; Yousef, A.F.; Yousef, L.F. A Review of Alpha-Glucosidase Inhibitors from Plants as Potential Candidates for the Treatment of Type-2 Diabetes. Phytochem. Rev. 2021, 21, 1049–1079. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, N.S.; Wessjohann, L.A.; Mocan, A.; Vodnar, D.C.; El-Sayed, N.H.; El-Toumy, S.A.; Abdou Mohamed, D.; Abdel Aziz, Z.; Ehrlich, A.; Farag, M.A. Nutrient and Sensory Metabolites Profiling of Averrhoa carambola L. (Starfruit) in the Context of Its Origin and Ripening Stage by GC/MS and Chemometric Analysis. Molecules 2020, 25, 2423. [Google Scholar] [CrossRef]
- Rashid, A.M.; Lu, K.; Yip, Y.M.; Zhang, D. Averrhoa carambola L. Peel Extract Suppresses Adipocyte Differentiation in 3T3-L1 Cells. Food Funct. 2016, 7, 881–892. [Google Scholar] [CrossRef]
- Saghir, S.A.M.; Sadikun, A.; Khaw, K.Y.; Murugaiyah, V. Star Fruit (Averrhoa carambola L.): From Traditional Uses to Pharmacological Activities Fruta de La Estrella (Averrhoa carambola L.): Desde Los Usos Tradicionales a Las Actividades Farmacologicas]. Bol. Latinoam. y del Caribe Plantas Med. y Aromat. 2013, 12, 209–219. [Google Scholar]
- Jia, X.; Xie, H.; Jiang, Y.; Wei, X. Flavonoids Isolated from the Fresh Sweet Fruit of Averrhoa carambola, Commonly Known as Star Fruit. Phytochemistry 2018, 153, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xie, H.; Jiang, Y.; Wei, X. Flavan-3-Ols and 2-Diglycosyloxybenzoates from the Leaves of Averrhoa carambola. Fitoterapia 2020, 140, 104442. [Google Scholar] [CrossRef] [PubMed]
- Luan, F.; Peng, L.; Lei, Z.; Jia, X.; Zou, J.; Yang, Y.; He, X.; Zeng, N. Traditional Uses, Phytochemical Constituents and Pharmacological Properties of Averrhoa carambola L.: A Review. Front. Pharmacol. 2021, 12, 1814. [Google Scholar] [CrossRef] [PubMed]
- Lakmal, K.; Yasawardene, P.; Jayarajah, U.; Seneviratne, S.L. Nutritional and Medicinal Properties of Star Fruit (Averrhoa carambola): A Review. Food Sci. Nutr. 2021, 9, 1810–1823. [Google Scholar] [CrossRef]
- Moresco, H.H.; Queiroz, G.S.; Pizzolatti, M.G.; Brighente, I. Chemical Constituents and Evaluation of the Toxic and Antioxidant Activities of Averrhoa carambola Leaves. Rev. Bras. Farmacogn. 2012, 22, 319–324. [Google Scholar] [CrossRef]
- Dasgupta, P.; Chakraborty, P.; Bala, N.N. Averrhoa carambola: An Updated Review. Int. J. Pharma Res. Rev. 2013, 2, 54–63. [Google Scholar]
- Yang, Y.; Jia, X.; Xie, H.; Wei, X. Dihydrochalcone C-Glycosides from Averrhoa carambola Leaves. Phytochemistry 2020, 174, 112364. [Google Scholar] [CrossRef]
- Ninomiya, M.; Koketsu, M. Minor Flavonoids (Chalcones, Flavanones, Dihydrochalcones, and Aurones). In BT-Natural Products; Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes; Ramawat, K.G., Mérillon, J.-M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1867–1900. ISBN 978-3-642-22144-6. [Google Scholar]
- Gregoris, E.; Lima, G.P.P.; Fabris, S.; Bertelle, M.; Sicari, M.; Stevanato, R. Antioxidant Properties of Brazilian Tropical Fruits by Correlation between Different Assays. Biomed Res. Int. 2013, 2013, 132759. [Google Scholar] [CrossRef]
- Jelodar, G.; Mohammadi, M.; Akbari, A.; Nazifi, S. Cyclohexane Extract of Walnut Leaves Improves Indices of Oxidative Stress, Total Homocysteine and Lipids Profiles in Streptozotocin-Induced Diabetic Rats. Physiol. Rep. 2020, 8, e14348. [Google Scholar] [CrossRef]
- Klop, B.; Elte, J.W.F.; Cabezas, M.C. Dyslipidemia in Obesity: Mechanisms and Potential Targets. Nutrients 2013, 5, 1218–1240. [Google Scholar] [CrossRef]
- Çelik, M.N.; Söğüt, M.Ü. Probiotics Improve Chemerin Levels and Metabolic Syndrome Parameters in Obese Rats. Balkan Med. J. 2019, 36, 270. [Google Scholar] [PubMed]
- Sridhar, G.R.; Rao, A.A.; Srinivas, K.; Nirmala, G.; Lakshmi, G.; Suryanarayna, D.; Rao, P.V.N.; Kaladhar, D.G.; Kumar, S.V.; Devi, T.U.; et al. Butyrylcholinesterase in Metabolic Syndrome. Med. Hypotheses 2010, 75, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.P.; Gao, Y.; Geng, L.; Brimijoin, S. Butyrylcholinesterase Regulates Central Ghrelin Signaling and Has an Impact on Food Intake and Glucose Homeostasis. Int. J. Obes. 2017, 41, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Tvarijonaviciute, A.; Barić-Rafaj, R.; Horvatic, A.; Muñoz-Prieto, A.; Guillemin, N.; Lamy, E.; Tumpa, A.; Ceron, J.J.; Martinez-Subiela, S.; Mrljak, V. Identification of Changes in Serum Analytes and Possible Metabolic Pathways Associated with Canine Obesity-Related Metabolic Dysfunction. Vet. J. 2019, 244, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Sá, R.D.; Vasconcelos, A.L.; Santos, A.V.; Padilha, R.J.R.; Alves, L.C.; Soares, L.A.L.; Randau, K.P. Anatomy, Histochemistry and Oxalic Acid Content of the Leaflets of Averrhoa bilimbi and Averrhoa carambola. Rev. Bras. Farmacogn. 2019, 29, 11–16. [Google Scholar] [CrossRef]
- Malikov, V.M.; Yuldashev, M.P. Phenolic Compounds of Plants of the Scutellaria L. Genus. Distribution, Structure, and Properties. Chem. Nat. Compd. 2002, 38, 358–406. [Google Scholar] [CrossRef]
- She, G.; Wang, S.; Liu, B. Dihydrochalcone Glycosides from Oxytropis Myriophylla. Chem. Cent. J. 2011, 5, 71. [Google Scholar] [CrossRef]
- Nassar, M.I. Flavonoid Triglycosides from the Seeds of Syzygium Aromaticum. Carbohydr. Res. 2006, 341, 160–163. [Google Scholar] [CrossRef]
- De Bruyn, A.; Anteunis, M. 1H NMR Study of 2-Deoxy-D-Arabino-Hexopyranose (2-Deoxy Glucopyranose), 2-Deoxy-D-Lyxo-Hexopyranose (2-Deoxy Galactopyranose) and 2′-Deoxy Lactose. Shift Increment Studies in 2-Deoxy Carbohydrates. Bull. des Sociétés Chim. Belges 1975, 84, 1201–1209. [Google Scholar] [CrossRef]
- Rayyan, S.; Fossen, T.; Andersen, Ø.M. Flavone C-Glycosides from Seeds of Fenugreek, Trigonella foenum-graecum L. J. Agric. Food Chem. 2010, 58, 7211–7217. [Google Scholar] [CrossRef]
- Latza, S.; Gansser, D.; Berger, R.G. Identification and Accumulation of 1-O-Trans-Cinnamoyl-β-d-Glucopyranose in Developing Strawberry Fruit (Fragaria ananassa Duch. Cv. Kent). J. Agric. Food Chem. 1996, 44, 1367–1370. [Google Scholar] [CrossRef]
- Torres-Mendoza, D.; González, J.; Ortega-Barría, E.; Heller, M.V.; Capson, T.L.; McPhail, K.; Gerwick, W.H.; Cubilla-Rios, L. Weakly Antimalarial Flavonol Arabinofuranosides from Calycolpus w Arszewiczianus. J. Nat. Prod. 2006, 69, 826–828. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Jia, X.; Xie, H.; Wei, X. Further Dihydrochalcone C-Glycosides from the Fruit of Averrhoa carambola. LWT Food Sci. Technol. 2016, 65, 604–609. [Google Scholar] [CrossRef]
- Yang, D.; Xie, H.; Jia, X.; Wei, X. Flavonoid C-Glycosides from Star Fruit and Their Antioxidant Activity. J. Funct. Foods 2015, 16, 204–210. [Google Scholar] [CrossRef]
- Mizutani, K.; Kasai, R.; Nakamura, M.; Tanaka, O.; Matsuura, H. NMR Spectral Study of α- and β-l-Arabinofuranosides. Carbohydr. Res. 1989, 185, 27–38. [Google Scholar] [CrossRef]
- Ichiyanagi, T.; Kashiwada, Y.; Shida, Y.; Ikeshiro, Y.; Kaneyuki, T.; Konishi, T. Nasunin from Eggplant Consists of Cis−Trans Isomers of Delphinidin 3-[4-(p-Coumaroyl)-l-Rhamnosyl (1→6)Glucopyranoside]-5-Glucopyranoside. J. Agric. Food Chem. 2005, 53, 9472–9477. [Google Scholar] [CrossRef]
- Araho, D.; Miyakoshi, M.; Chou, W.H.; Kambara, T.; Mizutani, K.; Ikeda, T. A New Flavone C-Glycoside from the Leaves of Averrhoa carambola. Nat. Med. 2005, 59, 113–116. [Google Scholar]
- Ghada, A.F.; Areej, M.A.T.; Nayira, A.A.B.; Mohamed, S.M. Cytotoxic and Renoprotective Flavonoid Glycosides from Horwoodia dicksoniae. Afr. J. Pharm. Pharmacol. 2012, 6, 1166–1175. [Google Scholar]
- Zeng, P.; Zhang, Y.; Pan, C.; Jia, Q.; Guo, F.; Li, Y.; Zhu, W.; Chen, K. Advances in Studying of the Pharmacological Activities and Structure–Activity Relationships of Natural C-Glycosylflavonoids. Acta Pharm. Sin. B 2013, 3, 154–162. [Google Scholar] [CrossRef]
- Xiao, J.; Kai, G.; Yamamoto, K.; Chen, X. Advance in Dietary Polyphenols as α-Glucosidases Inhibitors: A Review on Structure-Activity Relationship Aspect. Crit. Rev. Food Sci. Nutr. 2013, 53, 818–836. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, G.; Pan, J.; Wang, Y. α-Glucosidase Inhibition by Luteolin: Kinetics, Interaction and Molecular Docking. Int. J. Biol. Macromol. 2014, 64, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Nicolle, E.; Souard, F.; Faure, P.; Boumendjel, A. Flavonoids as Promising Lead Compounds in Type 2 Diabetes Mellitus: Molecules of Interest and Structure-Activity Relationship. Curr. Med. Chem. 2011, 18, 2661–2672. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Fang, C.; Zhu, R.; Peng, Q.; Li, D.; Wang, M. Inhibitory Effect of Phloretin on α-Glucosidase: Kinetics, Interaction Mechanism and Molecular Docking. Int. J. Biol. Macromol. 2017, 95, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Castro-Acosta, M.L.; Stone, S.G.; Mok, J.E.; Mhajan, R.K.; Fu, C.-I.; Lenihan-Geels, G.N.; Corpe, C.P.; Hall, W.L. Apple and Blackcurrant Polyphenol-Rich Drinks Decrease Postprandial Glucose, Insulin and Incretin Response to a High-Carbohydrate Meal in Healthy Men and Women. J. Nutr. Biochem. 2017, 49, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Lin, Y.; Tan, Z.; Jiang, B.; Xu, L.; Ren, H.; Tai, W.C.-S.; Chan, C.-O.; Lee, C.-S.; Gu, Z.; et al. Dihydrochalcone-Derived Polyphenols from Tea Crab Apple (Malus Hupehensis) and Their Inhibitory Effects on α-Glucosidase in Vitro. Food Funct. 2019, 10, 2881–2887. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Gao, X.; Wu, C.; Tian, F.; Lei, Q.; Bi, J.; Xie, B.; Wang, H.Y.; Chen, S.; Wang, X. Apple-Derived Pectin Modulates Gut Microbiota, Improves Gut Barrier Function, and Attenuates Metabolic Endotoxemia in Rats with Diet-Induced Obesity. Nutrients 2016, 8, 126. [Google Scholar] [CrossRef]
- Watson, D. A Simple Method for the Determination of Serum Cholesterol. Clin. Chim. Acta 1960, 5, 637–643. [Google Scholar] [CrossRef]
- Burstein, M.; Scholnick, H.R.; Morfin, R. Rapid Method for the Isolation of Lipoproteins from Human Serum by Precipitation with Polyanions. J. Lipid Res. 1970, 11, 583–595. [Google Scholar] [CrossRef]
- Schriewer, H.; Kohnert, U.; Assmann, G. Determination of LDL Cholesterol and LDL Apolipoprotein B Following Precipitation of VLDL in Blood Serum with Phosphotungstic Acid/MgCl2. Clin. Chem. Lab. Med. 1984, 22, 35–40. [Google Scholar] [CrossRef]
- Mcgraw, R.E.; Dunn, D.E.; Biggs, H.G. Manual and Continuous-Flow Colorimetry of Triacylglycerols by a Fully Enzymatic Method. Clin. Chem. 1979, 25, 273–278. [Google Scholar] [CrossRef]
- Vaisi-Raygani, A.; Rahimi, Z.; Kharazi, H.; Tavilani, H.; Aminiani, M.; Kiani, A.; Vaisi-Raygani, A.; Pourmotabbed, T. Determination of Butyrylcholinesterase (BChE) Phenotypes to Predict the Risk of Prolonged Apnea in Persons Receiving Succinylcholine in the Healthy Population of Western Iran. Clin. Biochem. 2007, 40, 629–633. [Google Scholar] [CrossRef] [PubMed]
- De Melo, C.L.; Queiroz, M.G.R.; Fonseca, S.G.C.; Bizerra, A.M.C.; Lemos, T.L.G.; Melo, T.S.; Santos, F.A.; Rao, V.S. Oleanolic Acid, a Natural Triterpenoid Improves Blood Glucose Tolerance in Normal Mice and Ameliorates Visceral Obesity in Mice Fed a High-Fat Diet. Chem. Biol. Interact. 2010, 185, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Poudyal, H.; Campbell, F.; Brown, L. Olive Leaf Extract Attenuates Cardiac, Hepatic, and Metabolic Changes in High Carbohydrate—, High Fat—Fed Rats. J. Nutr. 2010, 140, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase In Vitro. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 105, pp. 121–126. ISBN 0076-6879. [Google Scholar]
- Reitman, S.; Frankel, S. A Colorimetric Method for the Determination of Serum Glutamic Oxalacetic and Glutamic Pyruvic Transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Owen, J.A.; Iggo, B.; Scandrett, F.J.; Stewart, C.P. The Determination of Creatinine in Plasma or Serum, and in Urine; a Critical Examination. Biochem. J. 1954, 58, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, J.K.; Scott, J.E. A Rapid and Precise Method for the Determination of Urea. J. Clin. Pathol. 1960, 13, 156–159. [Google Scholar] [CrossRef]
- Watts, R.W.E. Determination of Uric Acid in Blood and in Urine. Ann. Clin. Biochem. 1974, 11, 103–111. [Google Scholar] [CrossRef]
- Turkington, R.W.; Estkowski, A.; Link, M. Secretion of Insulin or Connecting Peptide: A Predictor of Insulin Dependence of Obese ‘Diabetics’. Arch. Intern. Med. 1982, 142, 1102–1105. [Google Scholar] [CrossRef]
- Trinder, P. Determination of Glucose in Blood Using Glucose Oxidase with an Alternative Oxygen Acceptor. Ann. Clin. Biochem. 1969, 6, 24–27. [Google Scholar] [CrossRef]
- Cacho, J.; Sevillano, J.; de Castro, J.; Herrera, E.; Ramos, M.D.P. Validation of Simple Indexes to Assess Insulin Sensitivity during Pregnancy in Wistar and Sprague-Dawley Rats. Am. J. Physiol. Metab. 2008, 295, E1269–E1276. [Google Scholar] [CrossRef]
- Fatmawati, S.; Shimizu, K.; Kondo, R. Ganoderol B: A Potent α-Glucosidase Inhibitor Isolated from the Fruiting Body of Ganoderma lucidum. Phytomedicine 2011, 18, 1053–1055. [Google Scholar] [CrossRef] [PubMed]
No. | Measured Parameters | Tested Groups | |||
---|---|---|---|---|---|
Normal | Obese | Orly | CLL | ||
1 | Initial BW (g) | 115.7 a ± 1.7 | 115.8 a ± 2.6 | 115.8 a ± 2.7 | 115.7 a ± 5.1 |
2 | BW after induction of obesity (g) | 217.7 a ± 7.8 | 248.7 b ± 8.3 | 248.8 b ± 7.5 | 249 b ± 3.8 |
3 | Final BW (g) | 246.5 b ± 10.1 | 291 d ± 4.9 | 233.2 a ± 11.2 | 258 c ± 8.7 |
4 | Leptin (ng/mL) | 12.8 a ± 0.3 | 24.1 d ± 0.4 | 21.09 c ± 0.1 | 18.0 b ± 0.2 |
5 | Insulin (µg/L) | 6.4 a ± 0.1 | 12.2 e ± 0.3 | 10.1 d ± 0.1 | 9.4 b ± 0.2 |
6 | Glucose (mg/dL) | 69.8 a ± 2.01 | 106.6 e ± 3.3 | 89.9 c ± 2.1 | 80.0 d ± 1.7 |
7 | IR | 1.1 a± 0.1 | 3.2 e± 0.1 | 2.2 d ± 0.1 | 1.9 c ± 0.1 |
8 | BChE (U/L) | 250.7 a ± 5.2 | 415.7 e ± 8.5 | 285.2 d ± 7.3 | 274.8 c ± 5.8 |
9 | α-amylase (U/L) | 9.2 a ± 0.4 | 15.33 e ± 0.3 | 13.7 d ± 0.3 | 12.4 c ± 0.2 |
10 | MDA (nmol/mL) | 5.6 a ± 0.2 | 15.1 e ± 0.6 | 12.9 d ± 0.6 | 10.4 c ± 0.4 |
11 | CAT (U/L) | 598.1 a ± 14.8 | 319.5 e ± 0.4 | 329.3 d ± 12.7 | 473.2 c ± 10.7 |
12 | T-Ch (mg/dL) | 70.4 a ± 2.1 | 136.6 e ± 5.4 | 97.9 d ± 3.9 | 89.7 c ± 3.8 |
13 | TG (mg/dL) | 67.7 a ± 1.9 | 113.3 e ± 2.4 | 99.5 d ± 4.2 | 87.6 c ± 2.4 |
14 | HDL-Ch (mg/dL) | 42.8 a ± 0.7 | 27.8 e ± 1.2 | 31.5 d ± 0.8 | 37 c ± 0.6 |
15 | LDL-Ch (mg/dL) | 19.5 a± 0.7 | 85.5 d ± 3.5 | 69.2 c ± 1.8 | 49.8 c ± 1.4 |
16 | T-Ch/HDL-Ch ratio | 1.64 a ± 0.03 | 4.9 e ± 0.2 | 3.1 d ± 0.2 | 2.4 c ± 0.1 |
17 | ALT (IU/L) | 18.6 a ± 0.6 | 25.3 d ± 1.1 | 21.0 c ± 0.6 | 19.7 d ± 0.4 |
18 | AST (IU/L) | 41.9 a ± 0.7 | 49.7 b ± 1.1 | 43.8 c ± 0.6 | 43.2 d ± 0.7 |
19 | Creatinine (mg/dL) | 0.624 a ± 0.01 | 0.76 d ± 0.02 | 0.68 c ± 0.02 | 0.617 b ± 0.02 |
20 | Urea (mg/dL) | 24.6 a ± 1.1 | 33.2 d ± 0.9 | 26.8 c ± 0.6 | 25.0 b ± 0.6 |
21 | Uric acid (mg/dL) | 0.8 a ± 0.04 | 1.3 b ± 0.09 | 1.4 c ± 0.1 | 1.9 c ± 0.1 |
H/C | 1 | 2 | 3 | 4 | ||||
---|---|---|---|---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | |
2 | 168.0 | 166.4 | 166.2 | 166.4 | ||||
3 | 6.58, s | 102.4 | 6.55, s | 104.1 | 6.58, s | 103.9 | 6.57, s | 103.2 |
4 | 184.0 | 184.2 | 184.1 | 184.0 | ||||
5 | 159.9 | 160.8 | 162.1 | 160.8 | ||||
6 | 113.6 | 110.0 | 109.3 | 110.3 | ||||
7 | 164.5 | 164.7 | 165.2 | 163.5 | ||||
8 | 7.02, s | 96.4 | 6.52, s | 96.2 | 6.49, s | 95.4 | 6.49, s | 96.6 |
9 | 158.5 | 158.9 | 158.8 | 159.1 | ||||
10 | 106.9 | 105.5 | 105.2 | 104.9 | ||||
1″ | 118.8 | 123.7 | 123.2 | 122.9 | ||||
2′ | 7.8, d (8.8) | 129.8 | 7.38, br.s | 114.2 | 7.82, d (8.4) | 129.5 | 7.83, d (8.4) | 129.4 |
3′ | 6.77, d (8.8) | 119.3 | 147.1 | 6.92, d (8.5) | 117.1 | 6.91, d (8.5) | 117.3 | |
4′ | 170.2 | 151.1 | 162.9 | 162.3 | ||||
5′ | 6.77, d (8.8) | 119.3 | 6.90, d (8.3) | 116.9 | 6.92, d (8.5) | 117.1 | 6.91, d (8.5) | 117.3 |
6′ | 7.8, d (8.8) | 129.8 | 7.39, br.s | 120.4 | 7.82, d (8.4) | 129.5 | 7.83, d (8.4) | 129.4 |
1″ | 5.10, dd (12.1, 2.4) | 70.5 | 4.92, d (9.8) | 73.7 | 4.9, d (9.9) | 75.4 | 4.91, d (9.5) | 73.7 |
2″ | 2.83, q (12.1), 1.59, m | 32.3 | 4.27, t-like (9.3) | 75.8 | 4.16, t (8.9) | 72.7 | 4.31, t (9.3) | 76.1 |
3″ | 3.80, ddd (11.7, 4.9. 2.8) | 71.6 | 3.75, dd (9.1, 6.2) | 77.8 | 3.8, m | 80.2 | 3.73, d (8.5) | 77.9 |
4″ | 3.59, d (2.1) | 78.7 | 3.70, br.s | 74.1 | 3.7, dd (12.2, 5.4) | 71.8 | 3.68, br.s | 74.2 |
5″ | 3.60, d (2.1) | 76.1 | 3.78, m | 76.3 | 3.42, br.s | 82.7 | 3.77, d (6.3) | 76.1 |
6″ | 4.02, dd (12.1, 2.1), 3.74, dd (12.1, 6.4) | 62.8 | 1.29, d (6.2) | 17.2 | 3.48, m | 62.9 | 1.28, d (5.9) | 18.0 |
1‴ | 4.92, d (7.7) | 103.8 | 5.19, br.s | 102.4 | 5.17, s | 102.4 | ||
2‴ | 3.64, dd (9.5, 7.8) | 75 | 3.85, br.d | 72.4 | 3.36, s | 72.4 | ||
3‴ | 3.53, t (9.1) | 77.1 | 3.47, d (8.2) | 72.1 | 3.48, dd (3.2, 9.5) | 72.2 | ||
4‴ | 3.40, t (9.4) | 71.8 | 3.10, t-like (9.4) | 73.4 | 3.10, t (9.5) | 73.5 | ||
5‴ | 3.62, d (6.7) | 72.1 | 2.56, m | 69.9 | 2.63, m | 69.9 | ||
6‴ | 1.26, d (3H, 6.5) | 17.9 | 0.72, d (3H, 6) | 18.0 | 0.73, d (5.9) | 17.3 |
H/C | 5 | 6 | 7 | 8 | 9 | |||||
---|---|---|---|---|---|---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | |
1 | 134.2 | 134.2 | 134.1 | 134.2 | 134.1 | |||||
2 | 7.07, d (8.4) | 130.5 | 7.11, d (8.4) | 130.5 | 6.89, br.s | 130.5 | 6.91, br.s | 130.5 | 7.09, d (8.3) | 130.5 |
3 | 6.67, d (8.4) | 116.1 | 6.72, d (8.4) | 116.3 | 6.61, br.s | 116.4 | 6.62, br.s | 116.3 | 6.70, d (8.4) | 116.3 |
4 | 156.5 | 156.7 | 156.6 | 156.6 | 156.6 | |||||
5 | 6.67, d (8.4) | 116.1 | 6.72, d (8.4) | 116.3 | 6.61, br.s | 116.4 | 6.70, d (8.4) | 116.3 | 6.70, d (8.4) | 116.3 |
6 | 7.07, d (8.4) | 130.5 | 7.11, d (8.4) | 130.5 | 6.89, br.s | 130.5 | 7.09, d (8.4) | 130.5 | 7.09, d (8.3) | 130.5 |
7 | 2.87, t (7.4) | 31.4 | 2.91, d (5.7) 1.31, s | 30.8 | 2.73/2.65, br.s | 30.9 | 2.73/2.68, br.s | 30.8 | 2.91, m/1.29, s | 30.8 |
8 | 3.36, t (7.4) | 46.6 | 3.41 unresolved | 45.8 | 3.35/3.06 | 47.6 | 3.35/3.19, br.s | 49.1 | 3.35/3.41 | 46.2 |
9 | 204.8 | 203.6 | 205.4 | 205.1 | 205.2 | |||||
1′ | 106.4 | 106.5 | 106.0 | 106.0 | 106.8 | |||||
2′ | 167.5 | 168 | 165.5 | 168 | 165.8 | |||||
3′ | 107.1 | 106.5 | 106.0 | 106.0 | 106.8 | |||||
4′ | 167.5 | 168 | 164.6 | 166.3 | 165.1 | |||||
5′ | 6.05, s | 98.3 | 6.03, s | 99.5 | 6.12, s | 97.4 | 6.00, S | 98.7 | 6.13, S | 97.6 |
6′ | 161.5 | 161.6 | 161.8 | 161.8 | 161.5 | |||||
1″ | 4.77, d (9.9) | 76.8 | 4.78, d (9.8) | 76.1 | 5.11, d (9.5) | 74.1 | 5.09, d (9.9) | 74.1 | 5.07, d (9.7) | 73.9 |
2″ | 4.36, br.s | 71.3 | 4.43, t (9.4) | 70.3 | 5.78, br.s | 71.8 | 5.88, br.s | 71.9 | 4.78, br.s | 75.0 |
3″ | 3.63, dd (9.7, 3.3) | 77.5 | 3.52, dd (9.4, 3.2) | 77.7 | 3.96, br.s | 82.9 | 3.97, br.s | 84.5 | 3.53, dd (9.3, 3) | 77.1 |
4″ | 3.95, d (3) | 84.2 | 3.48, d (1.8) | 74.4 | 3.95, d (2.5) | 73.6 | 3.97, br.s | 74.1 | 3.69, d (2.9) | 73.7 |
5″ | 3.77, q (6.4) | 76.1 | 3.74, q (6.7) | 76 | 3.88, br.s | 76.5 | 3.85, d (5.8) | 76.3 | 3.73, q (6.5) | 76.0 |
6″ | 1.33, d (3H, 6.4) | 17.6 | 1.27, d (3H, 6.5) | 17.2 | 1.33, d (3H, 6) | 17.2 | 1.31, d (3H, 4.2) | 17.2 | 1.32, d (6), 1.26, d (2H, 6.5) | 17.2 |
1‴ | 4.58, d (7.7) | 106.4 | 4.37, d (7.6) | 105.7 | 4.36, d (7.6) | 106.0 | ||||
2‴ | 3.34, m | 76.2 | 3.48, dd (9.7, 7.7) | 72.3 | 3.49, dd (9.7, 7.7) | 72.3 | ||||
3‴ | 3.28, m | 78.2 | 3.38, dd (9.7, 3.4) | 74.8 | 3.38, dd (9.8, 3.4) | 74.7 | ||||
4‴ | 3.35, m | 71.3 | 3.55, d (3.4) | 73.0 | 3.55, d (3.2) | 73.0 | ||||
5‴ | 3.40, m | 78.3 | 3.62, q (6.9) | 72.0 | 3.62, q (6.5) | 72.0 | ||||
6‴ | 3.85, dd (11.9, 2.1) 3.71, dd (11.8, 5.2) | 62.7 | 1.26, d (3H, (6.5) | 16.9 | 1.26, d (3H, 6.4) | 16.8 | ||||
1⁗ | 136.0 | 136.0 | 136.4 | |||||||
2⁗ | 7.50, d (6.1) | 129.3 | 7.51, d (3.8) | 129.3 | 7.52, dd (7.4, 3.5) | 129.2 | ||||
3⁗ | 7.39, br.s | 130.1 | 7.38, br.s | 130.0 | 7.40, m | 130.0 | ||||
4⁗ | 7.39, br.s | 131.4 | 7.38, br.s | 131.4 | 7.40, m | 131.5 | ||||
5⁗ | 7.39, br.s | 130.1 | 7.38, br.s | 130.0 | 7.40, m | 130.0 | ||||
6⁗ | 7.50, d (6.1) | 129.3 | 7.51, d (3.8) | 129.3 | 7.60, dd (7.4, 3.5) | 129.2 | ||||
7⁗ | 7.51, d (16.0) | 146.1 | 7.51, d (16.0) | 146.0 | 7.69, d (16.0) | 146.3 | ||||
8⁗ | 6.27, d (16.0) | 119.2 | 6.26, d (13.1) | 119.3 | 6.53, d (16.0) | 118.6 | ||||
9⁗ | 167.7 | 168.0 | 167.7 | |||||||
A1 | 5.59, d (1.1) | 108.1 | 5.78, d (1.2) | 107.5 | 5.73, s | 106.9 | 5.71, s | 106.6 | 5.78, s | 106.8 |
A2 | 4.04, dd (9.5, 6) | 87.1 | 4.31, dd (4.6, 1.6) | 92.6 | 4.19, br.s | 92.9 | 4.19, br.s | 92.9 | 4.29, m | 92.5 |
A3 | 4.00, dd (6, 3.6) | 78.2 | 4.17, dd (7.7, 4.9) | 76.3 | 4.11, dd (7.9, 4.9) | 76.3 | 4.10, dd (8, 5) | 76.3 | 4.11, dd (7.9, 4.9) | 76.0 |
A4 | 4.25, dd (3.6, 1.7) | 83.5 | 4, m | 84.5 | 3.99, br.s | 84.4 | 3.97, br.s | 84.1 | 4.00, br.s | 84.2 |
A5 | 3.65, dd (12.1, 4.7) 3.73, dd (8.1, 3.1) | 62.7 | 3.67, dd (12.5, 4.6) 3.8, dd (12.5, 2.8) | 62.2 | 3.62, dd (13.3, 6.4), 3.77, dd (13.4, 6.3) | 62.1 | 3.62, dd (13.4, 6.5), 3.78, br.s | 62.0 | 3.66, dd (12.4, 4.8), 3.79, dd (12.4, 2.9) | 62.2 |
F1 | 4.14, s | 105.4 | 3.99, br.s | 105.2 | 3.97, br.s | 105.6 | 4.15, br.s | 105.4 | ||
F2 | 3.48, m | 72.9 | 3.41, br.s | 72.9 | 3.41, br.s | 72.9 | 3.47, dd (9.2, 3.4) | 72.9 | ||
F3 | 3.37, dd (9.7, 3.4) | 72 | 3.25, br.s | 72.2 | 3.23, br.s | 72.2 | 3.25, br.s | 72.2 | ||
F4 | 3.37, s | 75 | 3.43, br.s | 75 | 3.42, br.s | 75 | 3.36, d (3.4) | 75 | ||
F5 | 3.26, q (6.5) | 72.2 | 2.93, br.s | 71.8 | 2.94, br.s | 71.9 | 3.25, q (6.3) | 72.0 | ||
F6 | 1.01, d (6.5) | 16.7 | 1.29, 0.78, s (3H) | 16.9 | 1.29, s (2H), 0.75, br.s | 16.9 | 1.00, d (3H, 6.4) | 16.9 | ||
CH3 CO-4″ | 2.02, S | 20.5 | ||||||||
CO acetyl | 173.6 |
H/C | 10 | 11 | 12 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
10a (Z-isomer) | 10b (E-isomer) | 11a (Z-isomer) | 11b (E-isomer) | |||||||
δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | δC | |
1 | 134.2 | 133.8 | 134.7 | 134.4 | 134.2 | |||||
2 | 6.93/7.00, br.s | 130.5 | 7.09, d (8.2)/7.18, s | 130.6 | 6.93/7.02, br.s | 129.0 | 7.11, d (8.5)/7.23, d (8.2) | 129.1 | 6.90, br.s | 130.5 |
3 | 6.75, d (6.1) | 117.6 | 6.70, d (8.5) | 116.4 | 6.79, d (8.4) | 115.9 | 6.72, d (8.5) | 114.9 | 6.63, d (7.4) | 116.4 |
4 | 156.6 | 156.5 | 155.1 | 155.1 | 156.6 | |||||
5 | 6.75, d (6.1) | 117.6 | 6.70, d (8.5) | 116.4 | 6.79, d (8.4) | 115.9 | 6.72, d (8.5) | 114.9 | 6.63, d (7.4) | 116.4 |
6 | 6.93/7.00, br.s | 130.5 | 7.09, d (8.2)/7.18 s | 130.6 | 6.93/7.02, br.s | 129.0 | 7.11, d (8.5)/7.23, d (8.2) | 129.1 | 6.90, br.s | 130.5 |
7 | 2.77/2.70, br.s | 30.8 | 2.77/2.89, br.s | 30.8 | 2.78/2.68, br.s | 29.3 | 2.78/2.91, br.s | 29.3 | 2.65/2.75, br.s | 30.4 |
8 | 3.35/3.07 | 46.6 | 3.35/3.16 | 46.6 | 3.37/unresolved | 45.0 | 3.37/unresolved | 45.0 | 3.09/3.36, br.s | 47.5 |
9 | 204.9 | 204.9 | 204.1 | 204.1 | 206 | |||||
1′ | 105.8 | 105.8 | 104.5 | 104.5 | 105.7 | |||||
2′ | 165.8 | 165.8 | 167.1 | 167.1 | 165.5 | |||||
3′ | 105.6 | 106.5 | 104.5 | 104.5 | 106 | |||||
4′ | 165.8 | 165.8 | 167.1 | 167.1 | 164.9 | |||||
5′ | 6.09, s | 97.7 | 5.95, s | 97.7 | 6.16, s | 95.7 | 6.11, s | 95.7 | 6.15, s | 96.3 |
6′ | 161.8 | 161.8 | 160.3 | 160.3 | 161.7 | |||||
1″ | 5.09, d (9.9) | 74.1 | 5.02, d (9.8) | 74.1 | 5.04, d (9.9) | 72.6 | 5.12, d (9.5) | 72.6 | 5.07, d (7.8) | 74 |
2″ | 5.79, br.s | 71.9 | 6.23, br.s | 71.5 | 5.78, br.s | 70 | 6.26, br.s | 70 | 5.52, br.s | 72.9 |
3″ | 3.91, br.d (9.7) | 82.5 | 3.91, br.d (9.7) | 82.5 | 3.94, br.s | 82.8 | 3.94, br.s | 82.8 | 3.85, br.s | 74.9 |
4″ | 3.96, br.s | 73.6 | 3.96, br.s | 73.6 | 3.98, s | 71.6 | 3.98, s | 71.6 | 3.78, m | 73.6 |
5″ | 3.82, m | 76.3 | 3.86, br.s | 76.3 | 3.85, br.d (6.7) | 74.8 | 3.88, br.d (6.6) | 74.8 | 3.82, m | 76.9 |
6″ | 1.31, d (3H, 6.8) | 17.2 | 1.29, br.s | 17.2 | 1.31, d (3H, 6.8) | 17.2 | 1.29, br.s | 17.2 | 1.33, d (3H, 6.4) | 17.2 |
1‴ | 4.36, d (7.6) | 105.9 | 4.30, d (6.8) | 105.9 | 4.38, d (7.6) | 104.5 | 4.32, d (6.8) | 104.5 | ||
2‴ | 3.48, dd (9.7, 7.7) | 72.2 | 3.46, br.d (7.2) | 72.2 | 3.50, dd (9.7, 7.7) | 70.8 | 3.46, br.d (7.2) | 70.7 | ||
3‴ | 3.39, dd (9.8, 3.4) | 75.0 | 3.39, dd (9.8, 3.4) | 74.9 | 3.41, dd (9.8, 3.4) | 73.6 | 3.41, dd (9.8, 3.4) | 73.5 | ||
4‴ | 3.55, d (3.5) | 73.0 | 3.56, d (4.0) | 72.9 | 3.57, d (3.6) | 71.4 | 3.58, d (4.1) | 71.5 | ||
5‴ | 3.62, q (6.9) | 72.0 | 3.62, q (6.9) | 72.0 | 3.63, q (6.6) | 70.5 | 3.63, q (6.6) | 70.4 | ||
6‴ | 1.26, d (3H, 6.4) | 16.9 | 1.26, d (3H, 6.4) | 16.9 | 1.26, d (3H, 6.4) | 15.4 | 1.26, d (3H, 6.4) | 15.4 | ||
1⁗ | 127.3 | 127.3 | 125.9 | 125.9 | 127.2 | |||||
2⁗ | 7.33, d (8.4) | 131.3 | 7.18/7.37 | 133.3 | 7.36, d (8.6) | 129.8 | 7.19/7.4 | 132.7 | 7.37, d (8.5) | 131.2 |
3⁗ | 6.65, d (8.4) | 116.1 | 6.95, d (8.9) | 116.3 | 6.67, d (8.5) | 114.5 | 6.81, d (8.5) | 117 | ||
4⁗ | 163.7 | 163.7 | 164.1 | 164.1 | 161.5 | |||||
5⁗ | 6.65, d (8.4) | 116.1 | 6.95, d (8.9) | 116.3 | 6.67, d (8.5) | 114.5 | 6.81, d (8.5) | 117 | ||
6⁗ | 7.33, d (8.4) | 131.3 | 7.18/7.37 | 133.3 | 7.36, d (8.6) | 129.8 | 7.19/7.4 | 132.7 | 7.37, d (8.5) | 131.2 |
7⁗ | 7.43, d (15.9) | 146.8 | 6.66, d (11.2) | 144.7 | 7.45, d (14.3) | 145.2 | 6.69, d (11.2) | 142.4 | 7.45, d (15.9) | 146.4 |
8⁗ | 6.01, d (15.0) | 114.4 | 5.59, d (12.4) | 116.4 | 6.05, d (14.3) | 113.2 | 5.60, d (11.6) | 114.8 | 6.08, d (15.9) | 115.3 |
9⁗ | 168.8 | 168.8 | 168.9 | 168.9 | 168.4 | |||||
A1 | 5.71, s | 105.9 | 105.9 | 5.74, s | 104.5 | 5.92, s | 104.5 | 5.73, br.s | 107.1 | |
A2 | 4.15, m | 93.1 | 4.31, br.s | 93.1 | 4.18, m | 91.5 | 4.31, br.s | 91.5 | 4.17, br.s | 93 |
A3 | 4.10, dd (7.9, 4.9) | 76.1 | 4.16, dd (7.7, 3.8) | 76.3 | 4.13, dd (7.9, 4.9) | 74.8 | 4.18, dd (6.7, 4.4) | 74.8 | 4.11, dd (7.9, 4.8) | 76.3 |
A4 | 3.94, m | 84.1 | 3.94, m | 84.1 | 3.94, m | 84.3 | 3.94, m | 84.3 | 3.95, ddd | 84.5 |
A5 | 3.62, m, 3.77, br.s | 62.0 | 3.62, m, 3.68, br.s | 62.0 | 3.65, d (11.8, 5.3), 3.79, m | 60.6 | 3.65, d (11.8, 5.3), 3.79, m | 60.6 | 3.63, dd (12.1, 4.7), 3.83, br.d (12.3) | 62 |
F1 | 3.97, d (5.6) | 105.1 | 4.06, br.s | 105.1 | 4.00, d (5.2) | 104.5 | 4.08, br.s | 104.5 | 3.96, d (7.6) | 105.4 |
F2 | 3.38, dd (9.8, 6.4) | 72.9 | 3.53, br.d (6.6) | 72.9 | 3.4, dd (9.8, 6.4) | 73.2 | 3.54, m | 71.4 | 3.41, dd (9.6, 7.9) | 72.2 |
F3 | 3.23, br.s | 74.7 | 3.33, m | 74.8 | 3.25, m | 73.2 | 3.35, m | 73.4 | 3.24, br.d (6.7) | 74.90 |
F4 | 3.45, d (3.4) | 72.3 | 3.42, d (3.2) | 72.4 | 3.48, br.s | 70.9 | 3.44, d (3.1) | 70.8 | 3.40, d (3.3) | 72.8 |
F5 | 2.89, br.s | 71.5 | 3.19, m | 71.5 | 2.91, br.s | 70.4 | 3.21, m | 70.5 | 2.9, br.s | 71.8 |
F6 | 0.89, 0.76, s (3H) | 16.9 | 0.94, 0.76 (3H) | 16.9 | 0.89, 0.76, s (3H) | 15.7 | 0.94, 0.76, s (3H) | 15.7 | 0.79, br.s (3H) | 16.9 |
CH3 CO-4″ | 2.04, s | 19.1 | 2.04, s | 19.1 | ||||||
CO acetyl | 172.0 | 172.0 |
Class | Code | Compound Name | IC50 (μM) |
---|---|---|---|
Standard | AC | Acarbose | 661.6 ± 0.01 |
Flavone | Ap | Apigenin | 85.6 ± 0.01 |
LU | Luteolin | 48.2 ± 0.02 | |
1 | Apigenin 6-C-(2-deoxy-β-D-galactopyranoside)-7-O-β-D-quinovopyranoside | 612.9 ± 0.03 | |
2 | Luteolin 6-C-α-L-rhamnopyranosyl-(1-2)-β-D-fucopyranoside | 327.9 ± 0.05 | |
3 | Apigenin 6-C-β-D-galactopyranoside | 439.2 ± 0.01 | |
4 | Apigenin 6-C-α-L-rhamnopyranosyl-(1-2)-β-L-fucopyranoside | 390.4 ± 0.2 | |
Dihydrochalcone | PHL | Phloretin | 110.4 ± 0.06 |
PHZ | Phloridzin | 853.1 ± 0.02 | |
5 | carambolaside M | - | |
6 | carambolaside Ia | - | |
7 | carambolaside J | - | |
8 | 4″-O-acetyl-carambolaside J | - | |
9 | carambolaside I | - | |
10 | mix of carambolaside P and carambolaside O | - | |
11 | Mix of 4″-O-acetyl-carambolaside P and 4″-O-acetyl-carambolaside O | - | |
12 | carambolaside Q | 323.6 ± 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramadan, N.S.; El-Sayed, N.H.; El-Toumy, S.A.; Mohamed, D.A.; Aziz, Z.A.; Marzouk, M.S.; Esatbeyoglu, T.; Farag, M.A.; Shimizu, K. Anti-Obesity Evaluation of Averrhoa carambola L. Leaves and Assessment of Its Polyphenols as Potential α-Glucosidase Inhibitors. Molecules 2022, 27, 5159. https://doi.org/10.3390/molecules27165159
Ramadan NS, El-Sayed NH, El-Toumy SA, Mohamed DA, Aziz ZA, Marzouk MS, Esatbeyoglu T, Farag MA, Shimizu K. Anti-Obesity Evaluation of Averrhoa carambola L. Leaves and Assessment of Its Polyphenols as Potential α-Glucosidase Inhibitors. Molecules. 2022; 27(16):5159. https://doi.org/10.3390/molecules27165159
Chicago/Turabian StyleRamadan, Nehal S., Nabil H. El-Sayed, Sayed A. El-Toumy, Doha Abdou Mohamed, Zeinab Abdel Aziz, Mohamed Sobhy Marzouk, Tuba Esatbeyoglu, Mohamed A. Farag, and Kuniyoshi Shimizu. 2022. "Anti-Obesity Evaluation of Averrhoa carambola L. Leaves and Assessment of Its Polyphenols as Potential α-Glucosidase Inhibitors" Molecules 27, no. 16: 5159. https://doi.org/10.3390/molecules27165159
APA StyleRamadan, N. S., El-Sayed, N. H., El-Toumy, S. A., Mohamed, D. A., Aziz, Z. A., Marzouk, M. S., Esatbeyoglu, T., Farag, M. A., & Shimizu, K. (2022). Anti-Obesity Evaluation of Averrhoa carambola L. Leaves and Assessment of Its Polyphenols as Potential α-Glucosidase Inhibitors. Molecules, 27(16), 5159. https://doi.org/10.3390/molecules27165159