GC-MS Chemical Profiling, Biological Investigation of Three Salvia Species Growing in Uzbekistan
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC-MS Analysis of the Essential Oils of Salvia Species
2.2. Antioxidant Effect of the Essential Oils of Salvia Species
2.3. Enzyme Inhibitory Effects of the Essential Oils of Salvia Species
2.4. Chemometric Analysis
3. Materials and Methods
3.1. Plant Material
3.2. Extraction of Essential Oils of Salvia Species
3.3. GC-MS Analysis of Essential Oils of Salvia Species
3.4. Antioxidant Assays
3.5. Enzyme Inhibitory Assays
3.6. Statistical Analysis
3.7. Chemometric Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bagchi, G.D.; Srivastava, G.N. Spices and Flavoring (Flavoring) crops|Leaf and Floral Structures. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 5477–5486. [Google Scholar]
- Tamokou, J.D.D.; Mbaveng, A.T.; Kuete, V. Chapter 8—Antimicrobial Activities of African Medicinal Spices and Vegetables. In Medicinal Spices and Vegetables from Africa; Kuete, V., Ed.; Academic Press: Oxford, UK, 2017; pp. 207–237. [Google Scholar]
- Andrews, A.C. Sage as a Condiment in the Graeco-Roman Era. Econ. Bot. 1956, 10, 263–266. [Google Scholar] [CrossRef]
- Khalil, R.; Li, Z. Antimicrobial activity of essential oil of Salvia officinalis L. collected in Syria. Afr. J. Biotechnol. 2011, 10, 8397–8402. [Google Scholar]
- Walch, S.G.; Tinzoh, L.N.; Zimmermann, B.F.; Stühlinger, W.; Lachenmeier, D.W. Antioxidant Capacity and Polyphenolic Composition as Quality Indicators for Aqueous Infusions of Salvia officinalis L. (sage tea). Front. Pharmacol. 2011, 2, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuttolomondo, T.; Iapichino, G.; Licata, M.; Virga, G.; Leto, C.; La Bella, S. Agronomic Evaluation and Chemical Characterization of Sicilian Salvia sclarea L. Accessions. Agronomy 2020, 10, 1114. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R.; Menichini, F.; Saab, A.M.; Statti, G.A.; Menichini, F. Cytotoxic activity of essential oils from Labiatae and Lauraceae families against in vitro human tumor models. Anticancer Res. 2007, 27, 3293–3299. [Google Scholar] [PubMed]
- Vuković-Gacić, B.; Nikcević, S.; Berić-Bjedov, T.; Knezević-Vukcević, J.; Simić, D. Antimutagenic effect of essential oil of sage (Salvia officinalis L.) and its monoterpenes against UV-induced mutations in Escherichia coli and Saccharomyces cerevisiae. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2006, 44, 1730–1738. [Google Scholar] [CrossRef]
- Ghavam, M.; Manca, M.L.; Manconi, M.; Bacchetta, G. Chemical composition and antimicrobial activity of essential oils obtained from leaves and flowers of Salvia hydrangea DC. ex Benth. Sci. Rep. 2020, 10, 15647. [Google Scholar] [CrossRef]
- Koubaa, F.G.; Chaâbane, M.; Turki, M.; Ayadi, F.M.; El Feki, A. Anti-oxidant and hepatoprotective effects of Salvia officinalis essential oil against vanadium-induced oxidative stress and histological changes in the rat liver. Environ. Sci. Pollut. Res. Int. 2021, 28, 11001–11015. [Google Scholar] [CrossRef]
- Benny, A.; Thomas, J. Essential Oils as Treatment Strategy for Alzheimer’s Disease: Current and Future Perspectives. Planta Med. 2019, 85, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef]
- Akkol, E.K.; Göger, F.; Koşar, M.; Başer, K.H.C. Phenolic composition and biological activities of Salvia halophila and Salvia virgata from Turkey. Food Chem. 2008, 108, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Kuźma, L.; Kalemba, D.; Rózalski, M.; Rózalska, B.; Wieckowska-Szakiel, M.; Krajewska, U.; Wysokińska, H. Chemical composition and biological activities of essential oil from Salvia sclarea plants regenerated in vitro. Molecules 2009, 14, 1438–1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barra, A. Factors Affecting Chemical Variability of Essential Oils: A Review of Recent Developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golparvar, A.R.; Hadipanah, A.; Gheisari, M.M.; Naderi, D.; Rahmaniyan, S.; Khorrami, M. Chemical composition and antimicrobial activity of essential oil of Salvia officinalis L. and Salvia virgata Jacq. J. Herb. Drugs 2017, 08, 71–78. [Google Scholar] [CrossRef]
- El Euch, S.K.; Hassine, D.B.; Cazaux, S.; Bouzouita, N.; Bouajila, J. Salvia officinalis essential oil: Chemical analysis and evaluation of anti-enzymatic and antioxidant bioactivities. S. Afr. J. Bot. 2018, 120, 253–260. [Google Scholar] [CrossRef]
- Oniga, I.; Oprean, R.; Toiu, A.; Benedec, D. Chemical composition of the essential oil of Salvia officinalis L. from Romania. Rev. Med.-Chir. Soc. Med. Nat. Din Iasi 2010, 114, 593–595. [Google Scholar]
- Németh, É.Z.; Nguyen, H.T. Thujone, a widely debated volatile compound: What do we know about it? Phytochem. Rev. 2020, 19, 405–423. [Google Scholar] [CrossRef]
- Baddar, N.W.; Aburjai, T.A.; Taha, M.O.; Disi, A.M. Thujone corrects cholesterol and triglyceride profiles in diabetic rat model. Nat. Prod. Res. 2011, 25, 1180–1184. [Google Scholar] [CrossRef]
- Coşge, S.B.; Uskutoğlu, T.; Cesur, C.; Ozavcı, V.; Doğan, H. Determination of essential oil components, mineral matter, and heavy metal content of Salvia virgata Jacq. Grown in culture conditions. Turk. J. Agric. For. 2019, 43, 395–404. [Google Scholar] [CrossRef]
- Morteza-Semnani, K.; Saeedi, M.; Sh, C.; Vosoughi, M. Essential Oil Composition of Salvia virgata Jacq. from Iran. J. Essent. Oil-Bear. Plants 2005, 8, 330–333. [Google Scholar] [CrossRef]
- Rajabi, Z.; Ebrahimi, M.; Farajpour, M.; Mirza, M.; Ramshini, H. Compositions and yield variation of essential oils among and within nine Salvia species from various areas of Iran. Ind. Crops Prod. 2014, 61, 233–239. [Google Scholar] [CrossRef]
- Acimovic, M.; Kiprovski, B.; Rat, M.; Sikora, V.; Popovic, V.; Koren, A.; Brdar-Jokanovic, M. Salvia sclarea: Chemical composition and biological activity. J. Agron. Technol. Eng. Manag. 2018, 1, 18–28. [Google Scholar]
- El-Gohary, A.E.; Amer, H.M.; Salama, A.B.; Wahba, H.E.; Khalid, K.A. Characterization of the Essential Oil Components of Adapted Salvia sclarea L. (Clary sage) Plant Under Egyptian Environmental Conditions. J. Essent. Oil Bear. Plants 2020, 23, 788–794. [Google Scholar] [CrossRef]
- Kurutas, E.B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr. J. 2016, 15, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Zengin, H.; Baysal, A.H. Antibacterial and antioxidant activity of essential oil terpenes against pathogenic and spoilage-forming bacteria and cell structure-activity relationships evaluated by SEM microscopy. Molecules 2014, 19, 17773–17798. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, R.; Aruna, A.; Lee, J.S.; Kim, M.; Shivakumar, M.S.; Natarajan, D. Antioxidant and Antiproliferative Potential of Bioactive Molecules Ursolic Acid and Thujone Isolated from Memecylon edule and Elaeagnus indica and Their Inhibitory Effect on Topoisomerase II by Molecular Docking Approach. Biomed. Res. Int. 2020, 2020, 8716927. [Google Scholar] [CrossRef] [Green Version]
- Miguel, G.; Cruz, C.; Faleiro, M.L.; Simões, M.T.F.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Salvia officinalis L. essential oils: Effect of hydrodistillation time on the chemical composition, antioxidant and antimicrobial activities. Nat. Prod. Res. 2011, 25, 526–541. [Google Scholar] [CrossRef]
- Sarbanha, S.; Masoomi, F.; Kamalinejad, M.; Yassa, N. Chemical Composition and Antioxidant Activity of Salvia virgata Jacq. and S. verticillata L. Volatile Oils from Iran. Planta Med. 2011, 77, PE19. [Google Scholar] [CrossRef]
- Alizadeh, A. Essential Oil Constituents, Antioxidant and Antimicrobial Activities of Salvia virgata Jacq. from Iran. J. Essent. Oil Bear. Plants 2013, 16, 172–182. [Google Scholar] [CrossRef]
- Blažeković, B.; Yang, W.; Wang, Y.; Li, C.; Kindl, M.; Pepeljnjak, S.; Vladimir-Knežević, S. Chemical composition, antimicrobial and antioxidant activities of essential oils of Lavandula intermedia ‘Budrovka’ and L. angustifolia cultivated in Croatia. Ind. Crops Prod. 2018, 123, 173–182. [Google Scholar] [CrossRef]
- Tsimogiannis, D.; Bimpilas, A.; Oreopoulou, V. DPPH radical scavenging and mixture effects of plant o-diphenols and essential oil constituents. Eur. J. Lipid Sci. Technol. 2017, 119, 16003473. [Google Scholar] [CrossRef]
- Ciesla, L.M.; Wojtunik-Kulesza, K.A.; Oniszczuk, A.; Waksmundzka-Hajnos, M. Antioxidant synergism and antagonism between selected monoterpenes using the 2,2-diphenyl-1-picrylhydrazyl method. Flavour Fragr. J. 2016, 31, 412–419. [Google Scholar] [CrossRef]
- Meziane-Assami, D.; Ghouila, Z.; Assami, K.; Meklati, B.Y.; Chemat, F. The deep impacting microwave irradiation on the quality and antioxidant capacity of rosemary essential oils obtained by solvent-free microwave extraction. J. Essent. Oil Res. 2022, 34, 12–20. [Google Scholar] [CrossRef]
- Rees, T.M.; Brimijoin, S. The role of acetylcholinesterase in the pathogenesis of Alzheimer’s disease. Drugs Today 2003, 39, 75–83. [Google Scholar] [CrossRef]
- Greig, N.H.; Lahiri, D.K.; Sambamurti, K. Butyrylcholinesterase: An important new target in Alzheimer’s disease therapy. Int. Psychogeriatr. 2002, 14 (Suppl. 1), 77–91. [Google Scholar] [CrossRef]
- Babault, N.; Noureddine, A.; Amiez, N.; Guillemet, D.; Cometti, C. Acute Effects of Salvia Supplementation on Cognitive Function in Athletes During a Fatiguing Cycling Exercise: A Randomized Cross-Over, Placebo-Controlled, and Double-Blind Study. Front. Nutr. 2021, 8, 949. [Google Scholar] [CrossRef]
- Kennedy, D.O.; Pace, S.; Haskell, C.; Okello, E.J.; Milne, A.; Scholey, A.B. Effects of cholinesterase inhibiting sage (Salvia officinalis) on mood, anxiety and performance on a psychological stressor battery. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2006, 31, 845–852. [Google Scholar] [CrossRef]
- Iozumi, K.; Hoganson, G.E.; Pennella, R.; Everett, M.A.; Fuller, B.B. Role of Tyrosinase as the Determinant of Pigmentation in Cultured Human Melanocytes. J. Investig. Dermatol. 1993, 100, 806–811. [Google Scholar] [CrossRef] [Green Version]
- Aumeeruddy-Elalfi, Z.; Gurib-Fakim, A.; Mahomoodally, M.F. Kinetic studies of tyrosinase inhibitory activity of 19 essential oils extracted from endemic and exotic medicinal plants. S. Afr. J. Bot. 2016, 103, 89–94. [Google Scholar] [CrossRef]
- Poovitha, S.; Parani, M. In vitro and in vivo α-amylase and α-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complement. Altern. Med. 2016, 16, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashed, A.A.; Rathi, D.-N.G. Bioactive Components of Salvia and Their Potential Antidiabetic Properties: A Review. Molecules 2021, 26, 3042. [Google Scholar] [CrossRef] [PubMed]
- Savelev, S.; Okello, E.; Perry, N.S.L.; Wilkins, R.M.; Perry, E.K. Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacol. Biochem. Behav. 2003, 75, 661–668. [Google Scholar] [CrossRef]
- Yakoubi, R.; Megateli, S.; Sadok, T.H.; Bensouici, C.; Bağci, E. A synergistic interactions of Algerian essential oils of Laurus nobilis L., Lavandula stoechas L. and Mentha pulegium L. on anticholinesterase and antioxidant activities. Biocatal. Agric. Biotechnol. 2021, 31, 101891. [Google Scholar] [CrossRef]
- Bektašević, M.; Politeo, O. Biological Application of Essential Oils and Essential Oils Components in Terms of Antioxidant Activity and Inhibition of Cholinesterase Enzymes. In Essential Oils—Advances in Extractions and Biological Applications; de Oliveira, M.A., de Aguiar Andrade, E.E., Eds.; IntechOpen: London, UK, 2022. [Google Scholar]
- Kammoun, A.K.; Altyar, A.E.; Gad, H.A. Comparative metabolic study of Citrus sinensis leaves cultivars based on GC–MS and their cytotoxic activity. J. Pharm. Biomed. Anal. 2021, 198, 113991. [Google Scholar] [CrossRef]
- Zengin, G.; Aktumsek, A. Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: An endemic plant to Turkey. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 481–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamadalieva, N.Z.; Böhmdorfer, S.; Zengin, G.; Bacher, M.; Potthast, A.; Akramov, D.K.; Janibekov, A.; Rosenau, T. Phytochemical and biological activities of Silene viridiflora extractives. Development and validation of a HPTLC method for quantification of 20-hydroxyecdysone. Ind. Crops Prod. 2019, 129, 542–548. [Google Scholar] [CrossRef]
- Zengin, G. A study on in vitro enzyme inhibitory properties of Asphodeline anatolica: New sources of natural inhibitors for public health problems. Ind. Crops Prod. 2016, 83, 39–43. [Google Scholar] [CrossRef]
- Brereton, R.G. Chemometrics, Data Analysis for the Laboratory and Chemical Plant; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2003. [Google Scholar]
No | KI† | Compound | Relative Abundance % | |||
---|---|---|---|---|---|---|
Cal. | Rep. | S. officinalis | S. virgata | S. sclarea | ||
1 | 1067 | 1067 | Camphene | 1.9 | 2.6 | - |
2 | 1130 | 1133 | β-Thujene | 0.9 | - | - |
3 | 1134 | 1137 | β-Pinene | 0.4 | - | - |
4 | 1148 | 1149 | δ-3-Carene | - | 0.6 | - |
5 | 1180 | 1184 | β-Myrcene | 0.9 | 1.2 | 0.8 |
6 | 1193 | 1195 | α-Terpinene | - | 3.0 | - |
7 | 1201 | 1203 | Limonene | 0.5 | 6.2 | 0.4 |
8 | 1207 | 1208 | 1,8-Cineole | 8.9 | - | 1.2 |
9 | 1215 | 1216 | (E)-2-Hexenal | 0.2 | 1.6 | 0.4 |
10 | 1230 | 1232 | γ-Terpinene | 0.6 | 5.2 | 0.3 |
11 | 1238 | 1240 | β-trans-Ocimene | - | - | 0.5 |
12 | 1267 | 1268 | p-Cymene | 0.5 | 4.5 | 0.2 |
13 | 1274 | 1276 | α-Terpinolene | 0.3 | 3.0 | tr |
14 | 1296 | 1298 | 1-Octen-3-one | tr | - | - |
15 | 1304 | 1305 | 2,4-Nonadienal | - | 3.3 | - |
16 | 1340 | 1342 | 6-Methyl-5-heptene-2-one | - | 0.2 | - |
17 | 1357 | 1359 | 1-Hexanol | - | 0.2 | - |
18 | 1370 | 1372 | allo-Ocimene | - | - | 0.2 |
19 | 1390 | 1390 | Nonanal | - | - | 0.2 |
20 | 1391 | 1391 | (Z)-Hex-3-en-1-ol | 0.4 | - | - |
21 | 1394 | 1395 | 2,4-Hexadienal | - | 9.4 | - |
22 | 1413 | 1414 | Butyl hexanoate | - | tr | 0.7 |
23 | 1427 | 1427 | trans-2-Octenal | - | tr | - |
24 | 1431 | 1435 | cis-Thujone | 18.6 | 0.9 | 0.7 |
25 | 1445 | 1445 | cis-Linalool oxide | - | - | 1.3 |
26 | 1447 | 1448 | trans-Thujone | 3.3 | 0.2 | tr |
27 | 1452 | 1453 | 1-Octen-3-ol | 0.0 | - | - |
28 | 1455 | 1456 | 1-Heptanol | 0.2 | - | 0.3 |
29 | 1464 | 1466 | trans-Linalool oxide | 0.4 | 0.2 | 1.1 |
30 | 1470 | 1470 | Fenchyl acetate | - | tr | - |
31 | 1484 | 1485 | α-Campholenal | - | 1.1 | 1.0 |
32 | 1493 | 1493 | α-Copaene | - | 0.8 | 1.3 |
33 | 1498 | 1498 | n-Decanal | tr | 0.3 | 0.2 |
34 | 1506 | 1505 | Camphor | 12.2 | - | 0.4 |
35 | 1521 | 1520 | Benzaldehyde | - | 0.4 | 0.7 |
36 | 1532 | 1532 | (Z)-2-Nonenal | - | 0.2 | - |
37 | 1553 | 1554 | Linalool | 0.4 | 0.2 | - |
38 | 1562 | 1564 | Linalyl acetate | 0.0 | 0.2 | 4.7 |
39 | 1565 | 1566 | trans-Pinocamphone | tr | tr | 0.3 |
40 | 1568 | 1569 | (E,E)-3,5-Octadien-2-one | - | 0.2 | - |
41 | 1573 | 1574 | Iso pulegone | 0.9 | tr | 0.2 |
42 | 1574 | 1574 | Pinocarvone | 0.2 | 0.2 | - |
43 | 1579 | 1579 | Bornyl acetate | 0.0 | 0.2 | 0.2 |
44 | 1581 | 1582 | 6-Methyl-3,5-heptadien-2-one | - | tr | 0.3 |
45 | 1588 | 1589 | trans-β-Caryophyllene | 3.2 | - | 0.9 |
46 | 1599 | 1598 | Terpinen-4-ol | 0.9 | 1.3 | tr |
47 | 1608 | 1608 | Aromadendrene | - | 0.3 | tr |
48 | 1617 | 1619 | Butyl octanoate | tr | - | 0.9 |
49 | 1623 | 1624 | β-Cyclocitral | tr | - | tr |
50 | 1629 | 1628 | 1-Terpineol | tr | tr | 0.2 |
51 | 1643 | 1644 | Pulegone | - | 0.5 | 0.2 |
52 | 1649 | 1650 | Alloaromadendrene | 1.0 | 0.2 | 0.3 |
53 | 1655 | 1658 | Sabinyl acetate | 0.3 | - | tr |
54 | 1672 | 1670 | 4-Vinylanisole | - | 0.2 | 0.2 |
55 | 1677 | 1679 | β-Citral | 0.2 | 0.5 | tr |
56 | 1680 | 1681 | α-Humulene | 6.1 | 1.2 | 0.3 |
57 | 1684 | 1684 | δ-Terpineol | 0.2 | - | 0.5 |
58 | 1702 | 1703 | γ-Muurolene | 0.6 | 1.7 | - |
59 | 1711 | 1712 | α-Terpineol | 1.6 | 1.0 | 2.5 |
60 | 1714 | 1715 | Borneol | 4.0 | 0.3 | 0.2 |
61 | 1720 | 1722 | Dodecanal | - | tr | 0.2 |
62 | 1723 | 1725 | Butyl nonanoate | - | 1.0 | 0.3 |
63 | 1728 | 1729 | Piperitone | 0.5 | 1.7 | 0.2 |
64 | 1733 | 1733 | Neryl acetate | tr | - | 0.7 |
65 | 1742 | 1746 | Carvyl acetate | tr | 0.3 | tr |
66 | 1750 | 1750 | Epoxylinalool | tr | - | 0.2 |
67 | 1752 | 1752 | δ-Cadinene | tr | - | 1.4 |
68 | 1761 | 1763 | 1-Decanol | - | 3.2 | - |
69 | 1782 | 1783 | Cubenene | 0.7 | 0.3 | 0.3 |
70 | 1784 | 1785 | α-Cadinene | - | 0.9 | tr |
71 | 1792 | 1793 | Myrtenol | 0.6 | - | tr |
72 | 1796 | 1797 | 2,4-Decadienal | - | tr | - |
73 | 1803 | 1805 | 2-Tridecanone | - | tr | 0.8 |
74 | 1814 | 1815 | β-Damascenone | 0.4 | - | - |
75 | 1822 | 1824 | β-Damascone | - | 2.2 | 0.3 |
76 | 1844 | 1845 | trans-Calamenene | - | 0.9 | 0.3 |
77 | 1855 | 1856 | cis-Carveol | 0.6 | tr | - |
78 | 1857 | 1857 | trans-Carveol | tr | 0.4 | 0.3 |
79 | 1867 | 1868 | (Z)-Geranyl acetone | - | 0.2 | 2.0 |
80 | 1869 | 1870 | exo-2-Hydroxycineole | tr | tr | 0.2 |
81 | 1884 | 1885 | Benzyl alcohol | tr | 0.2 | 0.4 |
82 | 1887 | 1887 | (E)-2-Dodecenal | - | 0.5 | - |
83 | 1915 | 1916 | α-Calacorene | - | 0.8 | - |
84 | 1917 | 1918 | Piperitenone | tr | 0.8 | 1.5 |
85 | 1920 | 1921 | Tetradecanal | 0.2 | - | - |
86 | 1926 | 1927 | Phenylethyl alcohol | 0.1 | 0.7 | 0.6 |
87 | 1930 | 1931 | trans-β-Ionone | tr | 0.3 | 0.3 |
88 | 1937 | 1938 | cis-Jasmone | tr | 0.2 | - |
89 | 1945 | 1945 | 2,6-Dimethyl-3,7-octadiene-2,6-diol | tr | 0.2 | 0.3 |
90 | 1949 | 1951 | (2E)-Hexenoic acid | 0.4 | 0.2 | 0.6 |
91 | 1953 | 1955 | cis-Caryophyllene oxide | 0.2 | tr | 2.3 |
92 | 1954 | 1954 | 2-Ethyl-hexanoic acid | - | tr | 0.4 |
93 | 1966 | 1967 | β-Ionone epoxide | tr | 0.5 | 0.3 |
94 | 1992 | 1993 | trans-β-Ionone-5,6-epoxide | 0.6 | 0.2 | 2.1 |
95 | 2000 | 2000 | Eicosane | - | 0.6 | 0.8 |
96 | 2000 | 2203 | 2-Methoxy-4-vinylphenol | tr | 0.5 | 0.7 |
97 | 2001 | 2003 | Methyl eugenol | 0.5 | - | 0.3 |
98 | 2012 | 2014 | Methyl tetradecanoate | 0.2 | tr | - |
99 | 2022 | 2024 | Glubulol | tr | 0.4 | tr |
100 | 2030 | 2032 | Cinnamaldehyde | 1.2 | tr | 0.7 |
101 | 2034 | 2035 | Nerolidol | tr | 0.4 | 0.2 |
102 | 2041 | 2042 | Pentadecanal | 0.3 | 0.3 | 0.4 |
103 | 2051 | 2052 | Octanoic acid | 0.7 | 0.2 | 0.4 |
104 | 2080 | 2081 | Viridiflorol | 4.3 | 0.5 | 0.4 |
105 | 2095 | 2099 | β-Elemenone | tr | 0.9 | tr |
106 | 2121 | 2121 | Spatulenol | tr | 1.0 | 2.5 |
107 | 2130 | 2131 | Hexahydrofarnesyl acetone | tr | 0.5 | 0.4 |
108 | 2133 | 2135 | 2-Hydroxy-4-methoxy-benzaldehyde | - | 0.4 | 0.2 |
109 | 2178 | 2179 | γ-Eudesmol | - | 0.5 | 0.2 |
110 | 2185 | 2186 | Eugenol | tr | - | 1.1 |
111 | 2192 | 2192 | Nonanoic acid | 0.3 | 0.7 | 0.6 |
112 | 2197 | 2198 | Thymol | 0.6 | 0.3 | 0.4 |
113 | 2205 | 2206 | Carvacrol | 0.7 | 0.5 | 0.2 |
114 | 2210 | 2210 | Methyl hexadecanoate | - | 0.3 | 0.5 |
115 | 2213 | 2215 | β-Eudesmol | - | 1.2 | 1.3 |
116 | 2217 | 2219 | Ledene oxide-(I) | - | tr | 0.7 |
117 | 2220 | 2223 | Sclareoloxide | 1.3 | - | 1.5 |
118 | 2240 | 2241 | Ethyl hexadecanoate | 0.4 | 0.5 | 2.4 |
119 | 2262 | 2264 | n-Decanoic acid | tr | 0.3 | 0.7 |
120 | 2300 | 2300 | n-Tricosane | 0.5 | 0.6 | 0.4 |
121 | 2321 | 2324 | Dihydroactinolide | - | 0.6 | 0.4 |
122 | 2330 | 2331 | (6R)-(β)-Caryophyllene oxide | - | 0.4 | 0.6 |
123 | 2340 | 2343 | Octadecanal | 0.5 | - | 3.4 |
124 | 2378 | 2379 | 4-Vinylphenol | tr | 0.4 | 1.5 |
125 | 2389 | 2390 | Isoelemicin | 0.5 | - | 0.7 |
126 | 2394 | 2396 | Tetracosane | tr | - | 0.2 |
127 | 2416 | 2419 | Butyl hexadecanoate | - | - | 0.2 |
128 | 2450 | 2451 | Dodecanoic acid | - | 0.3 | 0.2 |
129 | 2465 | 2469 | Penatcosane | tr | tr | 0.3 |
130 | 2541 | 2545 | Vanillin | - | 0.9 | 0.3 |
131 | 2547 | 2550 | 9,12,15-Octadecatrienoic acid, methyl ester | - | tr | tr |
132 | 2595 | 2597 | n-Hexacosane | - | - | 0.3 |
133 | 2650 | 2650 | Benzyl benzoate | tr | - | tr |
134 | 2654 | 2655 | n-Butyl octadecanoate | 5.6 | 0.2 | 5.7 |
135 | 2700 | 2712 | n-Heptacosane | tr | 0.5 | 0.4 |
136 | 2819 | 2819 | Pentadecanoic acid | - | - | - |
137 | 2826 | 2828 | n-Octacosane | - | tr | - |
138 | 2896 | 2899 | n-Hexadecanoic acid | - | 1.7 | 0.4 |
139 | 3000 | 3000 | n-Triacontane | - | tr | 0.4 |
140 | 3102 | 3100 | n-Hentriacontane | - | tr | tr |
141 | 3103 | 3104 | Octadecanoic acid | - | tr | - |
142 | 3153 | 3157 | 9-Octadecenoic acid | - | 0.2 | 6.9 |
143 | 3165 | 3168 | 9,12-Octadecadienoic acid | - | 0.2 | tr |
144 | 3192 | 3193 | 9,12,15-Octadecatrienoic acid | - | 0.4 | tr |
Total % of identified compounds | 91.1 | 84.7 | 78.1 |
Samples | DPPH | ABTS | CUPRAC | FRAP | Chelating | PBD | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg TE/g oil) | IC50 | (mg TE/g oil) | IC50 | (mg TE/g oil) | IC50 | (mg TE/g oil) | IC50 | (mg EDTAE/g oil) | IC50 | (mmol TE/g oil) | IC50 | |
S. officinalis | NA | NA | 55.7 ± 2.99 | 2.56 ± 0.19 | 74.3 ± 1.78 | 1.44 ± 0.01 | 55.3 ± 0.89 | 0.80 ± 0.02 | 62.3 ± 1.42 | 0.60 ± 0.01 | 26.4 ± 0.16 | 0.10 ± 0.01 |
S. virgata | 26.6 ± 1.60 | 1.98 ± 0.23 | 190.1 ± 2.04 | 0.75 ± 0.01 | 275.2 ± 8.50 | 0.39 ± 0.02 | 155.9 ± 1.33 | 0.28 ± 0.01 | NA | NA | 15.1 ± 0.03 | 0.18 ± 0.01 |
S. sclarea | NA | NA | 42.6 ± 0.51 | 3.34 ± 0.06 | 83.6 ± 0.72 | 1.28 ± 0.01 | 69.1 ± 2.02 | 0.64 ± 0.03 | 65.8 ± 2.85 | 0.58 ± 0.02 | 14.6 ± 0.26 | 0.19 ± 0.01 |
Trolox | - | 0.22 ± 0.01 | - | 0.65 ± 0.09 | - | 0.44 ± 0.02 | - | 0.17 ± 0.01 | - | - | - | 0.68 ± 0.01 |
EDTA | - | - | - | - | - | - | - | - | 0.04 ± 0.01 | - | - |
Samples | AChE İnhibition | BChE İnhibition | Tyrosinase İnhibition | Amylase İnhibition |
Glucosidase İnhibition | |||||
---|---|---|---|---|---|---|---|---|---|---|
(mg GALAE/g oil) | IC50 | (mg GALAE/g oil) | IC50 | (mg KAE/g oil) | IC50 | (mmol ACAE/g oil) | IC50 | (mmol ACAE/g oil) | IC50 | |
S. officinalis | 4.3 ± 0.01 | 0.68 ± 0.01 | 12.0 ± 0.53 | 0.61 ± 0.03 | 128.4 ± 4.35 | 0.73 ± 0.01 | 0.7 ± 0.05 | 1.27 ± 0.07 | NA | NA |
S. virgata | NA | NA | 12.1 ± 0.16 | 0.60 ± 0.01 | 94.0 ± 1.75 | 0.90 ± 0.01 | 0.1 ± 0.01 | >5 | NA | NA |
S. sclarea | 2.9 ± 0.01 | 1.01 ± 0.01 | 11.5 ± 0.10 | 0.63 ± 0.01 | 66.1 ± 0.61 | 1.27 ± 0.07 | 1.1 ± 0.03 | 0.96 ± 0.01 | NA | NA |
Galantamine | - | 0.01 ± 0.001 | - | 0.02 ± 0.01 | - | - | - | - | - | - |
Kojic acid | - | - | - | - | - | 0.75 ± 0.01 | - | - | - | - |
Acarbose | - | - | - | - | - | - | - | 0.66 ± 0.01 | - | 0.58 ± 0.01 |
Antioxidant Activity | Data Type | PLS-R1 | |||
---|---|---|---|---|---|
Slope | Offset | RMSE | R2 | ||
DPPH | Cal. | 0.9992 | 0.0066 | 0.3428 | 0.9992 |
Val. | 0.9959 | 0.0432 | 0.5325 | 0.9985 | |
ABTS | Cal. | 0.9998 | 0.0121 | 0.7539 | 0.9998 |
Val. | 0.9969 | 0.3342 | 1.1553 | 0.9997 | |
FRAP | Cal. | 0.9988 | 0.1088 | 1.5135 | 0.9988 |
Val. | 0.9959 | 0.4324 | 2.2877 | 0.9978 | |
CUPRAC | Cal. | 0.9996 | 0.0525 | 1.7693 | 0.9996 |
Val. | 0.9968 | 0.5267 | 2.6944 | 0.9993 | |
EDTA | Cal. | 0.9990 | 0.0414 | 0.9411 | 0.9990 |
Val. | 0.9959 | 0.1521 | 1.4157 | 0.9982 | |
PBD | Cal. | 0.9937 | 0.1166 | 0.4353 | 0.9937 |
Val. | 0.9874 | 0.2277 | 0.6550 | 0.9887 |
DPPH | ABTS | FRAP | ||||
---|---|---|---|---|---|---|
Y Reference | Y Predicted | Y Reference | Y Predicted | Y Reference | Y Predicted | |
So1 | 0.00 | 0.00 | 55.70 | 56.22 | 55.30 | 55.08 |
So2 | 0.00 | 0.00 | 56.80 | 56.52 | 54.70 | 55.17 |
So3 | 0.00 | 0.00 | 57.10 | 56.87 | 55.90 | 55.67 |
Sv1 | 25.90 | 26.72 | 191.60 | 191.62 | 155.90 | 155.87 |
Sv2 | 26.60 | 26.13 | 190.10 | 188.53 | 156.70 | 153.84 |
Sv3 | 27.5 | 27.13 | 192.40 | 193.87 | 154.50 | 157.27 |
Ss1 | 0.00 | 0.00 | 42.60 | 42.47 | 71.10 | 69.58 |
Ss2 | 0.00 | 0.00 | 42.90 | 43.14 | 68.50 | 69.95 |
Ss3 | 0.00 | 0.00 | 41.80 | 41.72 | 69.10 | 69.23 |
CUPRAC | EDTA | PBD | ||||
Y Reference | Y Predicted | Y Reference | Y Predicted | Y Reference | Y Predicted | |
So1 | 74.30 | 73.88 | 63.50 | 62.61 | 26.40 | 26.38 |
So2 | 75.20 | 74.17 | 62.30 | 62.49 | 25.80 | 26.42 |
So3 | 73.50 | 74.99 | 61.60 | 62.29 | 26.90 | 26.27 |
Sv1 | 274.88 | 275.83 | 0.00 | 0.00 | 14.80 | 15.08 |
Sv2 | 275.20 | 271.55 | 0.00 | 0.00 | 15.10 | 15.19 |
Sv3 | 276.30 | 278.85 | 0.00 | 0.00 | 15.40 | 15.03 |
Ss1 | 82.50 | 83.46 | 65.80 | 65.54 | 14.60 | 14.41 |
Ss2 | 83.60 | 84.30 | 66.50 | 65.25 | 14.90 | 14.42 |
Ss3 | 84.20 | 82.60 | 64.40 | 65.86 | 13.70 | 14.36 |
Enzyme Inhibition | Data Type | PLS-R2 | |||
---|---|---|---|---|---|
Slope | Offset | RMSE | R2 | ||
AChE Inhibition | Cal. | 0.9983 | 0.0039 | 0.0717 | 0.9983 |
Val. | 0.9948 | 0.0095 | 0.1062 | 0.9970 | |
BChE Inhibition | Cal. | 0.5769 | 5.0525 | 0.3346 | 0.5769 |
Val. | 0.3626 | 7.6161 | 0.5017 | 0.2483 | |
Tyrosinase Inhibition | Cal. | 0.9990 | 0.0894 | 0.7721 | 0.9990 |
Val. | 0.9947 | 0.4708 | 1.1165 | 0.9984 | |
Amylase Inhibition | Cal. | 0.9885 | 0.0076 | 0.0484 | 0.9885 |
Val. | 0.9792 | 0.0134 | 0.0732 | 0.9792 |
AChE Inhibition | BChE Inhibition | |||
---|---|---|---|---|
Y Reference | Y Predicted | Y Reference | Y Predicted | |
So1 | 0.00 | 0.00 | 55.70 | 56.22 |
So2 | 0.00 | 0.00 | 56.80 | 56.52 |
So3 | 0.00 | 0.00 | 57.10 | 56.87 |
Sv1 | 25.90 | 26.72 | 191.60 | 191.62 |
Sv2 | 26.60 | 26.13 | 190.10 | 188.53 |
Sv3 | 27.5 | 27.13 | 192.40 | 193.87 |
Ss1 | 0.00 | 0.00 | 42.60 | 42.47 |
Ss2 | 0.00 | 0.00 | 42.90 | 43.14 |
Ss3 | 0.00 | 0.00 | 41.80 | 41.72 |
Tyrosinase Inhibition | Amylase Inhibition | |||
Y Reference | Y Predicted | Y Reference | Y Predicted | |
So1 | 74.30 | 73.88 | 63.50 | 62.61 |
So2 | 75.20 | 74.17 | 62.30 | 62.49 |
So3 | 73.50 | 74.99 | 61.60 | 62.29 |
Sv1 | 274.88 | 275.83 | 0.00 | 0.00 |
Sv2 | 275.20 | 271.55 | 0.00 | 0.00 |
Sv3 | 276.30 | 278.85 | 0.00 | 0.00 |
Ss1 | 82.50 | 83.46 | 65.80 | 65.54 |
Ss2 | 83.60 | 84.30 | 66.50 | 65.25 |
Ss3 | 84.20 | 82.60 | 64.40 | 65.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gad, H.A.; Mamadalieva, R.Z.; Khalil, N.; Zengin, G.; Najar, B.; Khojimatov, O.K.; Al Musayeib, N.M.; Ashour, M.L.; Mamadalieva, N.Z. GC-MS Chemical Profiling, Biological Investigation of Three Salvia Species Growing in Uzbekistan. Molecules 2022, 27, 5365. https://doi.org/10.3390/molecules27175365
Gad HA, Mamadalieva RZ, Khalil N, Zengin G, Najar B, Khojimatov OK, Al Musayeib NM, Ashour ML, Mamadalieva NZ. GC-MS Chemical Profiling, Biological Investigation of Three Salvia Species Growing in Uzbekistan. Molecules. 2022; 27(17):5365. https://doi.org/10.3390/molecules27175365
Chicago/Turabian StyleGad, Haidy A., Rano Z. Mamadalieva, Noha Khalil, Gokhan Zengin, Basma Najar, Olim K. Khojimatov, Nawal M. Al Musayeib, Mohamed L. Ashour, and Nilufar Z. Mamadalieva. 2022. "GC-MS Chemical Profiling, Biological Investigation of Three Salvia Species Growing in Uzbekistan" Molecules 27, no. 17: 5365. https://doi.org/10.3390/molecules27175365
APA StyleGad, H. A., Mamadalieva, R. Z., Khalil, N., Zengin, G., Najar, B., Khojimatov, O. K., Al Musayeib, N. M., Ashour, M. L., & Mamadalieva, N. Z. (2022). GC-MS Chemical Profiling, Biological Investigation of Three Salvia Species Growing in Uzbekistan. Molecules, 27(17), 5365. https://doi.org/10.3390/molecules27175365