Quantitation of 1,4-Dichlorobenzene and Thymol in Beeswax Using Dynamic Headspace Vacuum Transfer in Trap Extraction Prior to Gas Chromatography-Mass Spectrometry
Abstract
:1. Introduction
2. Results
2.1. Sensitivity and Linearity of the DHS-VTT-GC-MS Method
2.2. Validation of the DHS-VTT-GC-MS Method
2.2.1. Quantitation of PDCB and Thymol Using External Calibration
2.2.2. Quantitation of PDCB Using the Internal Standard PDCB-d4
2.2.3. Recoveries of PDCB and Limits of Quantitation
2.2.4. Recoveries of Thymol and Limits of Quantitation
2.3. Analysis of PDCB and Thymol in Commercial Swiss Beeswax
2.4. Method Comparison
2.4.1. SPE-GC-MS/MS versus DHS-VTT-GC-MS for Quantitation of PDCB in Beeswax
2.4.2. SPE-GC-MS/MS versus DHS-VTT-GC-MS for Quantitation of Thymol in Beeswax
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Spiked Wax Samples
4.3. Beeswax Samples
4.4. Sample Preparation
4.5. Extraction of Volatile Compounds
4.6. GC-MS Analysis of PDCB and Thymol
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Appendix A
References
- Wallner, K. Wachs vergisst nicht. Allg. Dtsch. Imkerztg. 2014, 12, 10–12. [Google Scholar]
- Calatayud-Vernich, P.; Calatayud, F.; Simo, E.; Pico, Y. Occurrence of pesticide residues in Spanish beeswax. Sci. Total Environ. 2017, 605–606, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Alkassab, A.T.; Thorbahn, D.; Frommberger, M.; Bischoff, G.; Pistorius, J. Effect of contamination and adulteration of wax foundations on the brood development of honeybees. Apidologie 2020, 51, 642–651. [Google Scholar] [CrossRef]
- Marti, J.N.G.; Kilchenmann, V.; Kast, C. Evaluation of pesticide residues in commercial Swiss beeswax collected in 2019 using ultra-high performance liquid chromatographic analysis. Environ. Sci. Pollut. Res. 2022, 29, 32054–32064. [Google Scholar] [CrossRef] [PubMed]
- D’Ascenzi, C.; Formato, G.; Martin, P. Chemical hazards in honey. In Chemical Hazards in Foods of Animal Origin, 1st ed.; Smulders, F.J.M., Rietjens, I.M.C.M., Rose, M.D., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; Volume 7, pp. 443–475. [Google Scholar]
- Brodschneider, R.; Schlagbauer, J.; Arakelyan, I.; Ballis, A.; Brus, J.; Brusbardis, V.; Cadahía, L.; Charrière, J.D.; Chlebo, R.; Coffey, M.F.; et al. Spatial clusters of Varroa destructor control strategies in Europe. J. Pest Sci. 2022. [Google Scholar] [CrossRef]
- Bogdanov, S.; Imdorf, A.; Kilchenmann, V. Residues in wax and honey after Apilife VAR treatment. Apidologie 1998, 29, 513–524. [Google Scholar] [CrossRef]
- Kast, C.; Kilchenmann, V.; Charrière, J.D. Long-term monitoring of lipophilic acaricide residues in commercial Swiss beeswax. Pest Manag. Sci. 2021, 77, 4026–4033. [Google Scholar] [CrossRef] [PubMed]
- Garibay, S.; Amsler, T. Merkblatt Anforderungen an die Bioimkerei, Best. Nr. 1397, Ausgabe Schweiz. Forschungsinstitut für biologischen landbau FiBL. 2017. Available online: https://www.fibl.org/fileadmin/documents/shop/1397-bienen.pdf (accessed on 20 July 2022).
- Bogdanov, S.; Kilchenmann, V.; Seiler, K.; Pfefferli, H.; Frey, T.; Roux, B.; Wenk, P.; Noser, J. Residues of p-dichlorobenzene in honey and beeswax. J. Apic. Res. 2004, 43, 14–16. [Google Scholar] [CrossRef]
- Bogdanov, S. Beeswax: Quality issues today. Bee World 2004, 85, 46–50. [Google Scholar] [CrossRef]
- Nozal, M.J.; Bernal, J.L.; Jiménez, J.J.; González, M.J.; Higes, M. Extraction of thymol, eucalyptol, menthol, and camphor residues from honey and beeswax: Determination by gas chromatography with flame ionization detection. J. Chromatogr. A 2002, 954, 207–215. [Google Scholar] [CrossRef]
- Gómez-Ramos, M.M.; García-Valcárcel, A.I.; Tadeo, J.L.; Fernández-Alba, A.R.; Hernando, M.D. Screening of environmental contaminants in honey bee wax comb using gas chromatography–high-resolution time-of-flight mass spectrometry. Environ. Sci. Pollut. Res. 2016, 23, 4609–4620. [Google Scholar] [CrossRef] [PubMed]
- Manzano Sánchez, L.; Gómez Ramos, M.J.; Gómez-Ramos, M.d.M.; Parrilla Vazquez, P.; Flores, J.M.; Fernández-Alba, A.R. Presence, persistence and distribution of thymol in honeybees and beehive compartments by high resolution mass spectrometry. Environ. Adv. 2021, 5, 100085. [Google Scholar] [CrossRef]
- Fuchsmann, P.; Tena Stern, M.; Bischoff, P.; Badertscher, R.; Breme, K.; Walther, B. Development and performance evaluation of a novel dynamic headspace vacuum transfer “In Trap” extraction method for volatile compounds and comparison with headspace solid-phase microextraction and headspace in-tube extraction. J. Chromatogr. A 2019, 1601, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Hiatt, M.H. Vacuum distillation coupled with gas Chromatography/Mass spectrometry for the analysis of environmental samples. Anal. Chem. 1995, 67, 4044–4052. [Google Scholar] [CrossRef]
- Brunton, N.P.; Cronin, D.A.; Monahan, F.J. The effects of temperature and pressure on the performance of carboxen/PDMS fibres during solid phase microextraction (SPME) of headspace volatiles from cooked and raw turkey breast. Flavour Fragr. J. 2001, 16, 294–302. [Google Scholar] [CrossRef]
- Psillakis, E.; Yiantzi, E.; Sanchez-Prado, L.; Kalogerakis, N. Vacuum-assisted headspace solid phase microextraction: Improved extraction of semivolatiles by non-equilibrium headspace sampling under reduced pressure conditions. Anal. Chim. Acta 2012, 742, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Nyman, P.J.L.; Limm, W.; Begley, T.H.; Chirtel, S.J. Single-laboratory validation of a method for the determination of select volatile organic compounds in foods by using vacuum distillation with gas chromatography/mass spectrometry. J. AOAC Int. 2014, 97, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Yianthi, E.; Kalogerakis, N.; Psillakis, E. Vacuum-assisted headspace solid phase microextraction of polycyclic aromatic hydrocarbons in solid samples. Anal. Chim. Acta 2015, 890, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Yiantzi, E.; Kalogerakis, N.; Psillakis, E. Design and testing of a new sampler for simplified vacuum-assisted headspace solid-phase microextraction. Anal. Chim. Acta 2016, 927, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S.; Kilchenmann, V.; Fluri, P.; Bühler, U.; Lavanchy, P. Influence of organic acids and components of essential oils on honey taste. Am. Bee J. 1999, 139, 61–63. [Google Scholar]
LOD 1) [mg/kg] | LOQ 2) [mg/kg] | Validated Range [mg/kg] | Ex. Calibration [mg/L] | Linearity R 2), 3) | |
---|---|---|---|---|---|
PDCB | 0.015 | 0.050 | 0.050–25 | 0.0025–2.5 | 0.9996 |
Thymol | 0.10 | 0.25 | 0.25–250 | 0.025–25 | 0.9978 |
Spiking Level [mg/kg] | N 1) | Mean [mg/kg] | sr 2) [mg/kg] | RSDr 3) [%] | sI 4) [mg/kg] | RSDI 5) [%] | Recovery [%] |
---|---|---|---|---|---|---|---|
0.050 | 16 | 0.045 | 0.002 | 4.3 | 0.007 | 15.6 | 89.5 |
0.098 | 16 | 0.086 | 0.004 | 4.4 | 0.008 | 8.9 | 87.5 |
0.500 | 16 | 0.414 | 0.010 | 2.4 | 0.026 | 6.2 | 83.0 |
0.980 | 16 | 0.846 | 0.023 | 2.7 | 0.066 | 7.8 | 86.3 |
1.96 | 16 | 1.67 | 0.05 | 2.9 | 0.10 | 6.2 | 84.8 |
9.85 | 16 | 8.37 | 0.14 | 1.7 | 0.75 | 8.9 | 85.0 |
19.6 | 16 | 14.8 | 0.60 | 4.1 | 1.8 | 12.0 | 75.3 |
Spiking Level [mg/kg] | N 1) | Mean [mg/kg] | sr 2) [mg/kg] | RSDr 3) [%] | sI 4) [mg/kg] | RSDI 5) [%] | Recovery [%] |
---|---|---|---|---|---|---|---|
0.050 | 16 | 0.049 | 0.001 | 2.3 | 0.003 | 5.2 | 97.5 |
0.098 | 16 | 0.088 | 0.004 | 4.6 | 0.006 | 6.9 | 89.7 |
0.500 | 16 | 0.405 | 0.009 | 2.2 | 0.013 | 3.3 | 81.1 |
0.980 | 16 | 0.784 | 0.022 | 2.8 | 0.034 | 4.3 | 80.0 |
1.96 | 16 | 1.60 | 0.05 | 2.9 | 0.06 | 3.9 | 81.6 |
9.85 | 16 | 7.75 | 0.10 | 1.3 | 0.34 | 4.3 | 78.7 |
19.6 | 16 | 14.1 | 0.6 | 3.9 | 1.1 | 7.6 | 72.0 |
Spiking Level [mg/kg] | N 1) | Mean [mg/kg] | sr 2) [mg/kg] | RSDr 3) [%] | sI 4) [mg/kg] | RSDI 5) [%] | Recovery [%] |
---|---|---|---|---|---|---|---|
0.246 | 16 | 0.209 | 0.026 | 12.4 | 0.051 | 24.3 | 85.0 |
0.499 | 16 | 0.421 | 0.055 | 13.0 | 0.063 | 14.9 | 84.3 |
4.89 | 16 | 4.17 | 0.30 | 7.2 | 0.34 | 8.2 | 85.2 |
9.96 | 16 | 9.22 | 0.71 | 7.8 | 1.25 | 13.5 | 92.6 |
49.0 | 16 | 43.9 | 2.0 | 4.6 | 3.9 | 8.8 | 89.7 |
98.5 | 16 | 86.0 | 4.7 | 5.5 | 5.6 | 6.6 | 87.3 |
196 | 16 | 165 | 13.8 | 8.3 | 20.5 | 12.4 | 84.1 |
N 1) | Mean [mg/kg] | Median [mg/kg] | Minimal Value [mg/kg] | Maximal Value [mg/kg] | Number of Positive Samples | |
---|---|---|---|---|---|---|
PDCB | 40 | 0.077 | <LOQ | <LOQ | 1.53 | 14 |
Thymol | 40 | 22.7 | 17.4 | 3.9 | 84.4 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kast, C.; Fracheboud, M.; Fuchsmann, P. Quantitation of 1,4-Dichlorobenzene and Thymol in Beeswax Using Dynamic Headspace Vacuum Transfer in Trap Extraction Prior to Gas Chromatography-Mass Spectrometry. Molecules 2022, 27, 5367. https://doi.org/10.3390/molecules27175367
Kast C, Fracheboud M, Fuchsmann P. Quantitation of 1,4-Dichlorobenzene and Thymol in Beeswax Using Dynamic Headspace Vacuum Transfer in Trap Extraction Prior to Gas Chromatography-Mass Spectrometry. Molecules. 2022; 27(17):5367. https://doi.org/10.3390/molecules27175367
Chicago/Turabian StyleKast, Christina, Marion Fracheboud, and Pascal Fuchsmann. 2022. "Quantitation of 1,4-Dichlorobenzene and Thymol in Beeswax Using Dynamic Headspace Vacuum Transfer in Trap Extraction Prior to Gas Chromatography-Mass Spectrometry" Molecules 27, no. 17: 5367. https://doi.org/10.3390/molecules27175367
APA StyleKast, C., Fracheboud, M., & Fuchsmann, P. (2022). Quantitation of 1,4-Dichlorobenzene and Thymol in Beeswax Using Dynamic Headspace Vacuum Transfer in Trap Extraction Prior to Gas Chromatography-Mass Spectrometry. Molecules, 27(17), 5367. https://doi.org/10.3390/molecules27175367