Bauhinia forficata Link Infusions: Chemical and Bioactivity of Volatile and Non-Volatile Fractions
Abstract
:1. Introduction
2. Results
2.1. Bioactive Compounds and Antioxidant Capacity of B. forficata Infusions
2.2. LC-HRMS Analysis
2.3. HS-SPME/CG–MS
2.4. Assay for α-Amylase Inhibition
3. Material and Methods
3.1. Plant Material
3.2. Preparing the Infusions
3.3. Analysis
3.3.1. Total Phenolic Content (TPC)
3.3.2. Total Flavonoid Content (TFC)
3.3.3. ABTS•+ Assay
3.3.4. DPPH• Assay
3.3.5. FRAP Assay
3.3.6. LC-HRMS Analysis
3.3.7. HS-SPME/CG–MS
3.3.8. Assay for α-Amylase Inhibition
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Vaz, A.M.S.F.; Tozzi, A.M.G.A. Sinopse de Bauhinia sect. Pauletia (Cav.) DC. (Leguminosae: Caesalpinioideae: Cercideae) no Brasil. Braz. J. Bot. 2005, 28, 477–491. [Google Scholar] [CrossRef]
- López, R.E.S.; Santos, B.C. Bauhinia forficata Link (Fabaceae). Ver. Fitos. 2015, 9, 217–232. [Google Scholar]
- Cechinel-Zanchett, C.C.; de Andrade, S.F.; Cechinel-Filho, V. Ethnopharmacological, Phytochemical, Pharmacological and Toxicological Aspects of Bauhinia Forficata: A Mini-Review Covering the Last Five Years. Nat. Prod. Commun. 2018, 13, 1934578X1801300732. [Google Scholar] [CrossRef]
- Tonelli, C.A.; de Oliveira, S.Q.; da Silva Vieira, A.A.; Biavatti, M.W.; Ritter, C.; Reginatto, F.H.; de Campos, A.M.; Dal-Pizzol, F. Clinical Efficacy of Capsules Containing Standardized Extract of Bauhinia Forficata Link (Pata-de-Vaca) as Adjuvant Treatment in Type 2 Diabetes Patients: A Randomized, Double Blind Clinical Trial. J. Ethnopharmacol. 2022, 282, 114616. [Google Scholar] [CrossRef]
- Maffioletti, N.S.; Rossato, E.A.; Dal-B’o, S.; Amaral, P.A.; Zanette, V.C. Bauhinia forficata Link (Fabaceae) no combate ao diabetes mellitus: Aspectos taxonômicos, agroecológicos, etnobotânicos e terapêuticos. Ver. Tecnol. Ambiente. 2012, 18, 1–18. [Google Scholar]
- Farag, M.A.; Sakna, S.T.; El-fiky, N.M.; Shabana, M.M.; Wessjohann, L.A. Phytochemical, Antioxidant and Antidiabetic Evaluation of Eight Bauhinia L. Species from Egypt Using UHPLC–PDA–qTOF-MS and Chemometrics. Phytochemistry 2015, 119, 41–50. [Google Scholar] [CrossRef]
- Ministério da Saúde; Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegiada n. 267, de 22 de setembro de 2005. In Approves the Technical Regulation of Plant Species for the Preparation of Teas Diário Oficial; União da República Federativa do Brasil: Brasília, Brasil, 2005. [Google Scholar]
- Salgueiro, A.C.F.; Folmer, V.; da Silva, M.P.; Mendez, A.S.L.; Zemolin, A.P.P.; Posser, T.; Franco, J.L.; Puntel, R.L.; Puntel, G.O. Effects of Bauhinia Forficata Tea on Oxidative Stress and Liver Damage in Diabetic Mice. Oxid. Med. Cell. Longev. 2016, 2016, 8902954. [Google Scholar] [CrossRef]
- Sotiropoulou, Ν.S.D.; Flampouri, E.; Skotti, E.; Pappas, C.; Kintzios, S.; Tarantilis, P.A. Bioactivity and Toxicity Evaluation of Infusions from Selected Greek Herbs. Food Biosci. 2020, 35, 100598. [Google Scholar] [CrossRef]
- Lamien-Meda, A.; Nell, M.; Lohwasser, U.; Börner, A.; Franz, C.; Novak, J. Investigation of Antioxidant and Rosmarinic Acid Variation in the Sage Collection of the Genebank in Gatersleben. J. Agric. Food Chem. 2010, 58, 3813–3819. [Google Scholar] [CrossRef] [PubMed]
- Tschiggerl, C.; Bucar, F. Investigation of the Volatile Fraction of Rosemary Infusion Extracts. Sci. Pharm. 2010, 78, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Arsenijević, J.; Drobac, M.; Šoštarić, I.; Ražić, S.; Milenković, M.; Couladis, M.; Maksimović, Z. Bioactivity of Herbal Tea of Hungarian Thyme Based on the Composition of Volatiles and Polyphenolics. Ind. Crops Prod. 2016, 89, 14–20. [Google Scholar] [CrossRef]
- Ma, C.; Li, J.; Chen, W.; Wang, W.; Qi, D.; Pang, S.; Miao, A. Study of the Aroma Formation and Transformation during the Manufacturing Process of Oolong Tea by Solid-Phase Micro-Extraction and Gas Chromatography–mass Spectrometry Combined with Chemometrics. Food Res. Int. 2018, 108, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-Y.; Lo, L.-C.; Chen, I.-Z.; Chen, P.-A. Effect of Shaking Process on Correlations between Catechins and Volatiles in Oolong Tea. J. Food Drug Anal. 2016, 24, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Li, J.; Li, W.; Li, Y.; Li, T.; Xiao, D. Characterization of Volatile Compounds of Pu-Erh Tea Using Solid-Phase Microextraction and Simultaneous Distillation–extraction Coupled with Gas Chromatography–mass Spectrometry. Food Res. Int. 2014, 57, 61–70. [Google Scholar] [CrossRef]
- Lv, H.-P.; Zhong, Q.-S.; Lin, Z.; Wang, L.; Tan, J.-F.; Guo, L. Aroma Characterisation of Pu-Erh Tea Using Headspace-Solid Phase Microextraction Combined with GC/MS and GC–olfactometry. Food Chem. 2012, 130, 1074–1081. [Google Scholar] [CrossRef]
- Augusto, F.; Luiz Pires Valente, A. Applications of Solid-Phase Microextraction to Chemical Analysis of Live Biological Samples. TrAC Trends Anal. Chem. 2002, 21, 428–438. [Google Scholar] [CrossRef]
- Port’s, P.S.; Chisté, R.C.; Godoy, H.T.; Prado, M.A. The Phenolic Compounds and the Antioxidant Potential of Infusion of Herbs from the Brazilian Amazonian Region. Food Res. Int. 2013, 53, 875–881. [Google Scholar] [CrossRef]
- Ferreres, F.; Gil-Izquierdo, A.; Vinholes, J.; Silva, S.T.; Valentão, P.; Andrade, P.B. Bauhinia Forficata Link Authenticity Using Flavonoids Profile: Relation with Their Biological Properties. Food Chem. 2012, 134, 894–904. [Google Scholar] [CrossRef]
- Hwang, D.; Kang, M.; Kang, C.; Kim, G. Kaempferol-3-O-β-rutinoside Suppresses the Inflammatory Responses in Lipopolysaccharide-stimulated RAW264.7 Cells via the NF-κB and MAPK Pathways. Int. J. Mol. Med. 2019, 44, 2321–2328. [Google Scholar] [CrossRef]
- Jiang, H.; Yamashita, Y.; Nakamura, A.; Croft, K.; Ashida, H. Quercetin and Its Metabolite Isorhamnetin Promote Glucose Uptake through Different Signalling Pathways in Myotubes. Sci. Rep. 2019, 9, 2690. [Google Scholar] [CrossRef]
- Aquino, A.J.; Alves, T.d.C.; Oliveira, R.V.; Ferreira, A.G.; Cass, Q.B. Chemical Secondary Metabolite Profiling of Bauhinia longifolia Ethanolic Leaves Extracts. Ind. Crops Prod. 2019, 132, 59–68. [Google Scholar] [CrossRef]
- Engels, C.; Gräter, D.; Esquivel, P.; Jiménez, V.M.; Gänzle, M.G.; Schieber, A. Characterization of Phenolic Compounds in Jocote (Spondias Purpurea L.) Peels by Ultra High-Performance Liquid Chromatography/electrospray Ionization Mass Spectrometry. Food Res. Int. 2012, 46, 557–562. [Google Scholar] [CrossRef]
- de Oliveira Ribeiro, L.; Conrado Thomaz, G.F.; de Brito, M.; de Figueiredo, N.; Przytyk Jung, E.; Norie Kunigami, C. Siriguela Peels Provide Antioxidant Compounds-Rich Extract by Solid–liquid Extraction. J. Food Process. Preserv. 2020, 44, e14719. [Google Scholar] [CrossRef]
- Jung, E.P.; Conrado Thomaz, G.F.; de Brito, M.O.; de Figueiredo, N.G.; Kunigami, C.N.; de Oliveira Ribeiro, L.; Alves Moreira, R.F. Thermal-Assisted Recovery of Antioxidant Compounds from Bauhinia Forficata Leaves: Effect of Operational Conditions. J. Appl. Res. Med. Aromat. Plants 2021, 22, 100303. [Google Scholar] [CrossRef]
- Duarte-Almeida, J.M.; Negri, G.; Salatino, A. Volatile Oils in Leaves of Bauhinia (Fabaceae Caesalpinioideae). Biochem. Syst. Ecol. 2004, 32, 747–753. [Google Scholar] [CrossRef]
- Sartorilli, P.; Correa, D.S. Constituents of Essential Oil from Bauhinia Forficata Link. J. Essent. Oil Res. 2007, 19, 468–469. [Google Scholar] [CrossRef]
- Butnariu, M. Plants as Source of Essential Oils and Perfumery Applications. In Bioprospecting of Plant Biodiversity for Industrial Molecules; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2021; pp. 261–292. [Google Scholar]
- Nascimento, K.F.; Moreira, F.M.F.; Alencar Santos, J.; Kassuya, C.A.L.; Croda, J.H.R.; Cardoso, C.A.L.; do Carmo Vieira, M.; Góis Ruiz, A.L.T.; Ann Foglio, M.; de Carvalho, J.E.; et al. Antioxidant, Anti-Inflammatory, Antiproliferative and Antimycobacterial Activities of the Essential Oil of Psidium Guineense Sw. and Spathulenol. J. Ethnopharmacol. 2018, 210, 351–358. [Google Scholar] [CrossRef]
- Zellner, B.D.; Amorim, A.C.L.; Miranda, A.L.P.; Alves, R.J.V.; Barbosa, J.P.; Costa, G.L.; Rezende, C.M. Screening of the odour-activity and bioactivity of the essential oils of leaves and flowers of Hyptis Passerina Mart. from the Brazilian Cerrado. J. Braz. Chem. Soc. 2009, 20, 322–332. [Google Scholar] [CrossRef]
- Eyres, G.; Dufour, J.-P. 22-Hop Essential Oil: Analysis, Chemical Composition and Odor Characteristics. In Beer in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2009; pp. 239–254. ISBN 978-0-12-373891-2. [Google Scholar]
- He, Z.; Fan, W.; Xu, Y.; He, S.; Liu, X. Aroma Profile of Folium Isatidis Leaf as a Raw Material of Making Bingqu Chixiang Aroma- and Flavor-Type Baijiu. In Sex, Smoke, and Spirits: The Role of Chemistry; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2019; Volume 1321, pp. 16–263. ISBN 9780841234673. [Google Scholar]
- Chavan, M.J.; Wakte, P.S.; Shinde, D.B. Analgesic and Anti-Inflammatory Activity of Caryophyllene Oxide from Annona Squamosa L. Bark. Phytomedicine Int. J. Phyther. Phytopharm. 2010, 17, 149–151. [Google Scholar] [CrossRef]
- Yang, D.; Michel, L.; Chaumont, J.-P.; Millet-Clerc, J. Use of Caryophyllene Oxide as an Antifungal Agent in an in Vitro Experimental Model of Onychomycosis. Mycopathologia 2000, 148, 79–82. [Google Scholar] [CrossRef]
- Kotseridis, Y.; Baumes, R. Identification of Impact Odorants in Bordeaux Red Grape Juice, in the Commercial Yeast Used for Its Fermentation, and in the Produced Wine. J. Agric. Food Chem. 2000, 48, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Ong, P.K.C.; Acree, T.E. Gas Chromatography/Olfactory Analysis of Lychee (Litchi Chinesis Sonn.). J. Agric. Food Chem. 1998, 46, 2282–2286. [Google Scholar] [CrossRef]
- Mahattanatawee, K.; Rouseff, R.; Valim, M.F.; Naim, M. Identification and Aroma Impact of Norisoprenoids in Orange Juice. J. Agric. Food Chem. 2005, 53, 393–397. [Google Scholar] [CrossRef]
- Rozentale, I.; Yan Lun, A.; Zacs, D.; Bartkevics, V. The Occurrence of Polycyclic Aromatic Hydrocarbons in Dried Herbs and Spices. Food Control 2018, 83, 45–53. [Google Scholar] [CrossRef]
- Di Bella, G.; Ben Mansour, H.; Ben Tekaya, A.; Beltifa, A.; Potortì, A.G.; Saiya, E.; Bartolomeo, G.; Dugo, G.; Lo Turco, V. Plasticizers and BPA Residues in Tunisian and Italian Culinary Herbs and Spices. J. Food Sci. 2018, 83, 1769–1774. [Google Scholar] [CrossRef]
- Lo Turco, V.; Potortì, A.G.; Ben Mansour, H.; Dugo, G.; Di Bella, G. Plasticizers and BPA in Spices and Aromatic Herbs of Mediterranean Areas. Nat. Prod. Res. 2020, 34, 87–92. [Google Scholar] [CrossRef]
- Rohn, S.; Rawel, H.M.; Kroll, J. Inhibitory Effects of Plant Phenols on the Activity of Selected Enzymes. J. Agric. Food Chem. 2002, 50, 3566–3571. [Google Scholar] [CrossRef] [PubMed]
- Papoutsis, K.; Zhang, J.; Bowyer, M.C.; Brunton, N.; Gibney, E.R.; Lyng, J. Fruit, Vegetables, and Mushrooms for the Preparation of Extracts with α-Amylase and α-Glucosidase Inhibition Properties: A Review. Food Chem. 2021, 338, 128119. [Google Scholar] [CrossRef] [PubMed]
- Marmitt, D.J.; Bitencourt, S.; Silva, A.d.C.e.; Rempel, C.; Goettert, M.I. The Healing Properties of Medicinal Plants Used in the Brazilian Public Health System: A Systematic Review. J. Wound Care 2018, 27, S4–S13. [Google Scholar] [CrossRef]
- Franco, R.R.; Mota Alves, V.H.; Ribeiro Zabisky, L.F.; Justino, A.B.; Martins, M.M.; Saraiva, A.L.; Goulart, L.R.; Espindola, F.S. Antidiabetic Potential of Bauhinia Forficata Link Leaves: A Non-Cytotoxic Source of Lipase and Glycoside Hydrolases Inhibitors and Molecules with Antioxidant and Antiglycation Properties. Biomed. Pharmacother. 2020, 123, 109798. [Google Scholar] [CrossRef]
- Gastaldi, B.; Marino, G.; Assef, Y.; Silva Sofrás, F.M.; Catalán, C.A.N.; González, S.B. Nutraceutical Properties of Herbal Infusions from Six Native Plants of Argentine Patagonia. Plant Foods Hum. Nutr. 2018, 73, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Gião, M.S.; González-Sanjosé, M.L.; Rivero-Pérez, M.D.; Pereira, C.I.; Pintado, M.E.; Malcata, F.X. Infusions of Portuguese Medicinal Plants: Dependence of Final Antioxidant Capacity and Phenol Content on Extraction Features. J. Sci. Food Agric. 2007, 87, 2638–2647. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.; Sánchez-moreno, C.; Pascual-teresa, S. De Flavonoid–Flavonoid Interaction and Its Effect on Their Antioxidant Activity. Food Chem. 2010, 121, 691–696. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of Antioxidant Power: The FRAP Assay. Anal. Biochem. 1996, 76, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, W.; Li, H.; Mao, J.; Guo, C.; Ding, R.; Wang, Y.; Fang, L.; Chen, Z.; Yang, G. Analysis of Volatile Compounds in Pears by HS-SPME-GC×GC-TOFMS. Molecules 2019, 24, 1795. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chrochromatography/Quadrupole Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 2001. [Google Scholar]
- Meng, Y.; Su, A.; Yuan, S.; Zhao, H.; Tan, S.; Hu, C.; Deng, H.; Guo, Y. Evaluation of Total Flavonoids, Myricetin, and Quercetin from Hovenia Dulcis Thunb. As Inhibitors of α-Amylase and α-Glucosidase. Plant Foods Hum. Nutr. 2016, 71, 444–449. [Google Scholar] [CrossRef]
Samples | Assays | ||||
---|---|---|---|---|---|
TPC ¹ | TFC ¹ | DPPH• ² | ABTS•+ ² | FRAP ³ | |
BSB1 | 2126 ± 15 g,h | 648 ± 19 e | 20 ± 2 e,f | 27 ± 4 f | 89 ± 3 h |
BSB2 | 2126 ± 29 g,h | 630 ± 9 e | 19 ± 0 f | 30 ± 2 e,f | 85 ± 6 h |
BSB3 | 2772 ± 49 e | 832 ±11 d,e | 21 ± 1 e,f | 30 ± 2 e,f | 136 ± 3 g |
Overall average | 2342 ± 324 B | 703 ± 97 B | 20 ± 1 C | 29 ± 3 B | 103 ± 25 B |
CS1B1 | 2364 ± 164 f,g | 1026 ± 4 d | 34 ± 1 d,e,f | 41 ± 0 d,e,f | 127 ± 2 g |
CS1B2 | 2733 ± 55 e,f | 1042 ± 24 d | 39 ± 2 d,e | 46 ± 2 d | 133 ± 4 g |
Overall average | 2549 ± 230 B | 1034 ± 18 B | 36 ± 3 B,C | 43 ± 3 B | 130 ± 4 B |
CS2B1 | 4740 ± 69 c | 3122 ± 114 b | 108 ± 1 c | 99 ± 1 c | 242 ± 5 e |
CS2B2 | 2245 ± 79 g,h | 944 ± 40 d | 37 ± 3 d,e,f | 45 ± 2 d,e | 120 ± 2 g |
CS2B3 | 3203 ± 215 d | 626 ± 30 e | 45 ± 2 d | 39 ± 1 d,e,f | 176 ± 1 f |
OverallAverage | 3396 ± 1097 B | 1564 ± 1178 B | 63 ± 34 B,C | 61 ± 29 B | 179 ± 53 B |
CS3B1 | 4681 ± 251 c | 2006 ± 64 d | 114 ± 2 c | 109 ± 10 c | 330 ± 11 d |
CS3B2 | 5448 ± 144 b | 2422 ± 147 c | 173 ± 3 b | 135 ± 12 b | 385 ±11 c |
CS3B3 | 4833 ± 166 c | 3700 ± 161 a | 206 ± 2 a | 204 ± 7 a | 571 ± 4 b |
Overall average | 4987 ± 389 A | 2710 ± 773 A | 164 ± 42 A | 149 ± 44 A | 429 ± 109 A |
CS4B1 | 2169 ± 89 g,h | 1026 ± 18 d | 45 ± 2 d | 47 ± 3 d | 129 ± 1 g |
CS4B2 | 6355 ± 137 a | 2628 ± 90 c | 185 ± 8 b | 149 ± 6 b | 644 ± 19 a |
CS4B3 | 1923 ± 4 h | 482 ± 15 f | 25 ± 1 e,f | 27 ± 1 f | 86 ± 5 h |
Overallaverage | 3483 ± 2158 A,B | 1378 ± 967 B | 85 ± 76 B | 74 ± 57 B | 286 ± 269 A,B |
Compounds | m/z [M–H]− exp. | MS2 | Molecular Formula [M–H]− | Samples | |||||
---|---|---|---|---|---|---|---|---|---|
BS | CS1 | CS2 | CS3 | CS4 | |||||
1 | Caffeoyl tartarate | 311.0401 | 179; 135 | C13H11O9 | + | ||||
2 | Epi-Catechin | 289.0718 | 245; 203 | C15H13O6 | + | ||||
3 | Galloyl hexose | 331.0670 | 169; 125 | C13H15O10 | + | + | + | + | |
4 | Hydroxibenzoic acid | 137.0244 | - | C7H5O3 | + | + | + | + | |
5 | Dihydroxibenzoic acid hexoside | 315.0719 | 108; 152 | C13H15O9 | + | + | |||
6 | 3-Caffeoyl quinic acid | 353.0875 | 191 | C16H17O9 | + | + | + | + | |
7 | Kaempferol 3-O-rhamnosyl-rutinoside | 739.2136 | 284 | C33H39O19 | + | ||||
8 | Rutin | 609.1468 | 300 | C27H29O16 | + | + | + | + | + |
9 | Myricitrin | 463.0880 | 316 | C21H29O12 | + | ||||
10 | Quercetin 3-O-glucopyranoside (Isoquercetin) | 463.0917 | 301; 300 | C21H29O12 | + | + | + | + | + |
11 | Quercetin-O-pentoside (Quercetin-O-arabinoside) | 433.0780 | 300; 301 | C20H17O11 | + | + | + | + | + |
12 | Quercetin 3-O-rhamnoside | 447.0933 | 284; 285 | C21H29O11 | + | + | + | + | + |
13 | Kaempferol 3-O-glucoside | 447.0975 | - | C21H29O11 | + | + | + | + | + |
14 | Kaempferol 3-O-rutinoside | 593.1533 | 327; 284; 285 | C27H29O15 | + | + | + | + | |
15 | Isorhamnetin | 315.0502 | 300 | C16H11O7 | + | + | + | + | + |
16 | Isorhamnetin 3-O-rutinoside | 623.1638 | 300; 315 | C28H31O16 | + | ||||
17 | Quercetin 3-O-rhamnosyl-rutinoside | 755.2087 | 300; 489 | C33H39O20 | + | + | |||
18 | Isorhamnetin 3-O-rhamnosyl-rutinoside | 769.2201 | 605; 315 | C34H41O20 | + | + | |||
19 | Kaempferol 3-O-dirhamnoside | 577.1595 | 431, 285, 284 | C27H29O14 | + | ||||
20 | Kaempferol-O-pentoside | 417.0833 | 285, 284, 255, 227 | C20H17O10 | + |
Rt (min) | LRI (a) | Compound | Chemical Class | BSB3 | CS1B2 | CS2B1 | CS3B2 | CS4B2 |
---|---|---|---|---|---|---|---|---|
14.00 | 1185 | 1-Decanal | A | 0.10 ± 0.04 | - | 0.57 ± 0.22 | - | - |
14.30 | 1193 | 2-Propyl-1-heptanol | AL | 3.35 ± 0.35 | 7.69 ± 0.62 | 19.42 ± 2.52 | 9.66 ± 4.93 | 8.96 ± 3.07 |
16.40 | 1195 | Estragole | PP | - | 0.30 ± 0.00 | - | - | 0.44 ± 0.21 |
18.44 | 1357 | Eugenol | PP | 0.24 ± 0.00 | - | - | - | - |
20.10 | 1428 | β-Caryophyllene | S | 0.85 ± 0.10 | - | - | - | - |
20.30 | 1429 | α-Ionone | N | 3.59 ± 0.47 | 1.55 ± 0.08 | 1.64 ± 0.04 | - | - |
20.90 | 1448 | Geranyl acetone | N | 6.88 ± 1.08 | 7.31 ± 0.00 | 5.18 ± 0.76 | 5.02 ± 1.08 | 4.38 ± 1.25 |
20.92 | 1452 | α-Humulene | S | 1.22 ± 0.45 | - | - | - | - |
21.00 | 1461 | Alloaromadendrene | S | 0.70 ± 0.03 | - | - | - | - |
21.20 | 1472 | p-Benzoquinone | K | - | 0.66 ± 0.04 | 1.50 ± 0.22 | 0.99 ± 0.03 | - |
21.40 | 1480 | Dodecanol | AL | 4.00 ± 3.75 | 3.11 ± 0.51 | 7.14 ± 1.39 | 3.94 ± 1.27 | 8.37 ± 0.01 |
21.70 | 1485 | Deydro-β-ionone | N | - | - | 5.30 ± 0.50 | - | 1.17 ± 0.36 |
21.80 | 1486 | β-Ionone | N | 4.24 ± 0.05 | 3.08 ± 0.11 | 0.71 ± 0.23 | 2.54 ± 0.38 | 5.84 ± 1.19 |
21.99 | 1499 | Germacrene D | S | - | 0.99 ± 0.02 | - | - | - |
22.70 | 1530 | δ-Cadinene | S | 2.03 ± 0.24 | 2.72 ± 0.22 | - | 2.25 ± 0.28 | - |
22.80 | 1538 | Dihydroactinidiolide | OM | 0.70 ± 0.10 | - | - | - | - |
22.90 | 1545 | Eudesma-3,7(11-diene) | S | 0.38 ± 0.07 | - | - | - | - |
23.20 | 1554 | Nerolidol oxygenated | S | - | - | - | 3.55 ± 0.76 | - |
23.20 | 1554 | Nerolidol oxygenated | S | - | - | - | 3.55 ± 0.76 | - |
24.00 | 1582 | Spathulenol | OS | 11.78 ± 1.02 | 30.87 ± 0.15 | 8.53 ± 2.34 | 13.98 ± 1.39 | 25.86 ± 1.76 |
24.10 | 1585 | Caryophyllene oxide | OS | 15.80 ± 0.42 | 14.32 ± 0.66 | 2.76 ± 2.58 | 17.46 ± 1.48 | 14.11 ± 0.28 |
24.40 | 1598 | Ledol | OS | 4.05 ± 0.21 | - | - | - | - |
24.50 | 1603 | Globulol | OS | 1.47 ± 0.04 | - | - | - | - |
24.70 | 1607 | Humulene epoxide II | OS | 14.15 ± 0.78 | - | 1.58 ± 0.14 | 5.71 ± 0.14 | 7.08 ± 006 |
25.20 | 1631 | 1,7,7-Trimethyl-2-vinylbicyclo [2.2.1]hept-2-ene (Vinylbornene) | - | 5.21 ± 0.27 | - | - | - | - |
25.40 | 1634 | Longipinocarveol | OS | 1.68 ± 0.03 | - | - | 2.57 ± 0.26 | - |
25.50 | 1647 | τ-Muurolol | OS | 1.75 ± 0.50 | - | - | - | - |
25.70 | 1659 | α-Cadinol | OS | 5.04 ± 0.50 | 11.99 ± 0.39 | - | 4.36 ± 0.01 | 6.32 ± 0.44 |
27.70 | 1745 | Octanal 2-phenylmethylene | A | - | - | - | 0.85 ± 0.27 | 0.31 ± 0.16 |
27.90 | 1768 | Tetradecanoic acid | CA | - | 0.36 ± 0.25 | 1.87 ± 0.93 | 1.58 ± 1.17 | 0.54 ± 0.63 |
28.30 | 1785 | Anthracene | H | - | - | - | - | 0.68 ± 0.05 |
28.70 | 1800 | Octadecane | H | - | - | 1.04 ± 0.38 | - | - |
29.60 | 1850 | 4,8,12-Tetradecatrienal-5,9,13-trimethyl | A | - | - | 1.91 ± 0.59 | - | 1.08 ± 0.05 |
30.40 | 1880 | 1-Hexadecanol | AL | - | 0.63 ± 0.01 | 3.25 ± 1.85 | 1.49 ± 1.57 | 1.87 ± 1.02 |
34.20 | 1881 | Cyclohexadecane | H | - | 1.39 ± 0.00 | - | 0.99 ± 0.54 | - |
34.50 | 1900 | Nonadecane | H | - | - | 0.81 ± 0.24 | - | - |
34.80 | 1909 | Methyl hexadecanoate | E | - | - | 1.89 ± 0.47 | - | - |
35.00 | 1922 | Dibutyl phtalate | E | - | - | 9.24 ± 3.89 | - | - |
35.90 | 2108 | Bisphenol A | PH | - | 0.10 ± 0.06 | 3.82 ± 0.48 | 2.16 ± 0.30 | - |
39.60 | 2360 | 2-Methyltricosane | H | - | - | 1.23 ± 1.15 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, E.P.; de Freitas, B.P.; Kunigami, C.N.; Moreira, D.d.L.; de Figueiredo, N.G.; Ribeiro, L.d.O.; Moreira, R.F.A. Bauhinia forficata Link Infusions: Chemical and Bioactivity of Volatile and Non-Volatile Fractions. Molecules 2022, 27, 5415. https://doi.org/10.3390/molecules27175415
Jung EP, de Freitas BP, Kunigami CN, Moreira DdL, de Figueiredo NG, Ribeiro LdO, Moreira RFA. Bauhinia forficata Link Infusions: Chemical and Bioactivity of Volatile and Non-Volatile Fractions. Molecules. 2022; 27(17):5415. https://doi.org/10.3390/molecules27175415
Chicago/Turabian StyleJung, Eliane Przytyk, Beatriz Pereira de Freitas, Claudete Norie Kunigami, Davyson de Lima Moreira, Natália Guimarães de Figueiredo, Leilson de Oliveira Ribeiro, and Ricardo Felipe Alves Moreira. 2022. "Bauhinia forficata Link Infusions: Chemical and Bioactivity of Volatile and Non-Volatile Fractions" Molecules 27, no. 17: 5415. https://doi.org/10.3390/molecules27175415
APA StyleJung, E. P., de Freitas, B. P., Kunigami, C. N., Moreira, D. d. L., de Figueiredo, N. G., Ribeiro, L. d. O., & Moreira, R. F. A. (2022). Bauhinia forficata Link Infusions: Chemical and Bioactivity of Volatile and Non-Volatile Fractions. Molecules, 27(17), 5415. https://doi.org/10.3390/molecules27175415