Gallium (III) Complexes with 5-Bromosalicylaldehyde Benzoylhydrazones: In Silico Studies and In Vitro Cytotoxic Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization
2.2. Computational Study
2.3. Pharmacology
3. Materials and Methods
3.1. Preparation and Characterization
3.1.1. Synthesis of the Ligands 5-Bromosalicylaldehyde-4-hydroxybenzoylhydrazone (H2L1) and 5-Bromosalicylaldehyde Isonicotinoylhydrazone (H2L2)
3.1.2. Synthesis of the Ga(III) Complexes [Ga(HL1)2]NO3 (1) and [Ga(HL2)2]NO3 (2)
3.2. Computational Details
3.3. Cell Lines and Culture Conditions
3.4. Cytotoxicity Assessment (MTT-Dye Reduction Assay)
3.5. Data Processing and Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lyubchova, A.; Cossé-Barbi, A.; Doucet, J.P.; Robert, F.; Souron, J.-P.; Quarton, M. Salicylaldehyde Benzoyl Hydrazone. Acta Crystallogr. Sect. C 1995, 51, 1893–1895. [Google Scholar] [CrossRef]
- Ponka, P.; Borová, J.; Neuwirt, J.; Fuchs, O. Mobilization of Iron from Reticulocytes. Identification of Pyridoxal Isonicotinoyl Hydrazone as a New Iron Chelating Agent. FEBS Lett. 1979, 97, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Lovejoy, D.B.; Richardson, D.R. Novel “Hybrid” Iron Chelators Derived from Aroylhydrazones and Thiosemicarbazones Demonstrate Selective Antiproliferative Activity against Tumor Cells. Blood 2002, 100, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.R.; Milnes, K. The Potential of Iron Chelators of the Pyridoxal Isonicotinoyl Hydrazone Class as Effective Antiproliferative Agents II: The Mechanism of Action of Ligands Derived from Salicylaldehyde Benzoyl Hydrazone and 2-Hydroxy-1-Naphthylaldehyde Benzoyl Hydrazone. Blood 1997, 89, 3025–3038. [Google Scholar] [CrossRef]
- Nikolova-Mladenova, B.; Halachev, N.; Iankova, R.; Momekov, G.; Ivanov, D. Synthesis, Characterization and Cytotoxic Activity of New Salicylaldehyde Benzoylhydrazone Derivatives as Potential Anti-Proliferative Agents. Arzneimittelforschung 2011, 61, 714–718. [Google Scholar] [CrossRef]
- Nikolova-Mladenova, B.; Momekov, G.; Ivanov, D.; Bakalova, A. Design and Drug-like Properties of New 5-Methoxysalicylaldehyde Based Hydrazones with Anti-Breast Cancer Activity. J. Appl. Biomed. 2017, 15, 233–240. [Google Scholar] [CrossRef]
- Hristova-Avakumova, N.G.; Valcheva, E.P.; Anastassova, N.O.; Nikolova-Mladenova, B.I.; Atanasova, L.A.; Angelova, S.E.; Yancheva, D.Y. In Vitro and in Silico Studies of Radical Scavenging Activity of Salicylaldehyde Benzoylhydrazones. J. Mol. Struct. 2021, 1245, 131021. [Google Scholar] [CrossRef]
- Ponka, P.; Richardson, D.; Baker, E.; Schulman, H.M.; Edward, J.T. Effect of Pyridoxal Isonicotinoyl Hydrazone and Other Hydrazones on Iron Release from Macrophages, Reticulocytes and Hepatocytes. Biochim. Biophys. Acta-Gen. Subj. 1988, 967, 122–129. [Google Scholar] [CrossRef]
- Baker, E.; Richardson, D.; Gross, S.; Ponka, P. Evaluation of the Iron Chelation Potential of Hydrazones of Pyridoxal, Salicylaldehyde and 2-Hydroxy-1-Naphthylaldehyde Using the Hepatocyte in Culture. Hepatology 1992, 15, 492–501. [Google Scholar] [CrossRef]
- Richardson, D.R.; Ponka, P. Pyridoxal Isonicotinoyl Hydrazone and Its Analogs: Potential Orally Effective Iron-Chelating Agents for the Treatment of Iron Overload Disease. J. Lab. Clin. Med. 1998, 131, 306–315. [Google Scholar] [CrossRef]
- Buss, J.L.; Arduini, E.; Ponka, P. Mobilization of Intracellular Iron by Analogs of Pyridoxal Isonicotinoyl Hydrazone (PIH) Is Determined by the Membrane Permeability of the Iron–Chelator Complexes. Biochem. Pharmacol. 2002, 64, 1689–1701. [Google Scholar] [CrossRef]
- Richardson, D.R.; Tran, E.H.; Ponka, P. The Potential of Iron Chelators of the Pyridoxal Isonicotinoyl Hydrazone Class as Effective Antiproliferative Agents. Blood 1995, 86, 4295–4306. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.R. Cytotoxic Analogs of the Iron(III) Chelator Pyridoxal Isonicotinoyl Hydrazone: Effects of Complexation with Copper(II), Gallium(III), and Iron (III) on Their Antiproliferative Activities. Antimicrob. Agents Chemother. 1997, 41, 2061–2063. [Google Scholar] [CrossRef] [PubMed]
- Nikolova-Mladenova, B.; Momekov, G.; Ivanov, D. Synthesis and Physicochemical Characterization of New Salicylaldehyde Benzoyl Hydrazone Derivative with High Cytotoxic Activity. Pharmacia 2011, LVIII, 41–44. [Google Scholar]
- Chitambar, C.R. Gallium-Containing Anticancer Compounds. Future Med. Chem. 2012, 4, 1257–1272. [Google Scholar] [CrossRef]
- Bernstein, L.R. Mechanisms of Therapeutic Activity for Gallium. Pharmacol. Rev. 1998, 50, 665–682. [Google Scholar]
- Collery, P.; Keppler, B.; Madoulet, C.; Desoize, B. Gallium in Cancer Treatment. Crit. Rev. Oncol. Hematol. 2002, 42, 283–296. [Google Scholar] [CrossRef]
- Jakupec, M.A.; Keppler, B.K. Gallium in Cancer Treatment. Curr. Top. Med. Chem. 2004, 4, 1575–1583. [Google Scholar] [CrossRef]
- Hart, M.M.; Adamson, R.H. Antitumor Activity and Toxicity of Salts of Inorganic Group IIIa Metals: Aluminum, Gallium, Indium, and Thallium. Proc. Natl. Acad. Sci. USA 1971, 68, 1623–1626. [Google Scholar] [CrossRef]
- Bernstein, L.R. 31Ga Therapeutic Gallium Compounds. In Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine, 1st ed.; Gielen, M., Tiekink, E.R.T., Eds.; John Wiley & Sons Ltd.: Singapore, 2005; pp. 259–277. [Google Scholar]
- Jakupec, M.A.; Galanski, M.S.; Arion, V.B.; Hartinger, C.G.; Keppler, B.K. Antitumour Metal Compounds: More than Theme and Variations. Dalt. Trans. 2008, 2, 183–194. [Google Scholar] [CrossRef]
- Frezza, M.; Verani, N.C.; Chen, D.; Dou, Q.P. The Therapeutic Potential of Gallium-Based Complexes in Anti-Tumor Drug Design. Lett. Drug Des. Discov. 2007, 4, 311–317. [Google Scholar] [CrossRef]
- Rudnev, A.V.; Foteeva, L.S.; Kowol, C.; Berger, R.; Jakupec, M.A.; Arion, V.B.; Timerbaev, A.R.; Keppler, B.K. Preclinical Characterization of Anticancer Gallium(III) Complexes: Solubility, Stability, Lipophilicity and Binding to Serum Proteins. J. Inorg. Biochem. 2006, 100, 1819–1826. [Google Scholar] [CrossRef] [PubMed]
- Chitambar, C.R.; Purpi, D.P.; Woodliff, J.; Yang, M.; Wereley, J.P. Development of Gallium Compounds for Treatment of Lymphoma: Gallium Maltolate, a Novel Hydroxypyrone Gallium Compound, Induces Apoptosis and Circumvents Lymphoma Cell Resistance to Gallium Nitrate. J. Pharmacol. Exp. Ther. 2007, 322, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Ismail, T.; Rossouw, D.D.; Beukes, P.; Slabbert, J.P.; Smith, G.S. Synthesis, Characterization and Preliminary in Vitro Cellular Uptake Studies of 67Ga(III) Thiosemicarbazones. Inorg. Chem. Commun. 2013, 33, 154–157. [Google Scholar] [CrossRef]
- Lessa, J.A.; Soares, M.A.; dos Santos, R.G.; Mendes, I.C.; Salum, L.B.; Daghestani, H.N.; Andricopulo, A.D.; Day, B.W.; Vogt, A.; Beraldo, H. Gallium(III) Complexes with 2-Acetylpyridine-Derived Thiosemicarbazones: Antimicrobial and Cytotoxic Effects and Investigation on the Interactions with Tubulin. BioMetals 2013, 26, 151–165. [Google Scholar] [CrossRef]
- Mendes, I.C.; Soares, M.A.; Dos Santos, R.G.; Pinheiro, C.; Beraldo, H. Gallium(III) Complexes of 2-Pyridineformamide Thiosemicarbazones: Cytotoxic Activity against Malignant Glioblastoma. Eur. J. Med. Chem. 2009, 44, 1870–1877. [Google Scholar] [CrossRef]
- Qi, J.; Deng, J.; Qian, K.; Tian, L.; Li, J.; He, K.; Huang, X.; Cheng, Z.; Zheng, Y.; Wang, Y. Novel 2-Pyridinecarboxaldehyde Thiosemicarbazones Ga(III) Complexes with a High Antiproliferative Activity by Promoting Apoptosis and Inhibiting Cell Cycle. Eur. J. Med. Chem. 2017, 134, 34–42. [Google Scholar] [CrossRef]
- Gambino, D.; Fernández, M.; Santos, D.; Etcheverría, G.A.; Piro, O.E.; Pavan, F.R.; Leite, C.Q.F.; Tomaz, I.; Marques, F. Searching for Gallium Bioactive Compounds: Gallium(III) Complexes of Tridentate Salicylaldehyde Semicarbazone Derivatives. Polyhedron 2011, 30, 1360–1366. [Google Scholar] [CrossRef]
- Enyedy, É.A.; Petrasheuskaya, T.V.; Kiss, M.A.; Wernitznig, D.; Wenisch, D.; Keppler, B.K.; Spengler, G.; May, N.V.; Frank, É.; Dömötör, O. Complex Formation of an Estrone-Salicylaldehyde Semicarbazone Hybrid with Copper(II) and Gallium(III): Solution Equilibria and Biological Activity. J. Inorg. Biochem. 2021, 220, 111468. [Google Scholar] [CrossRef]
- Enyedy, É.A.; Bognár, G.M.; Nagy, N.V.; Jakusch, T.; Kiss, T.; Gambino, D. Solution Speciation of Potential Anticancer Metal Complexes of Salicylaldehyde Semicarbazone and Its Bromo Derivative. Polyhedron 2014, 67, 242–252. [Google Scholar] [CrossRef]
- Lessa, J.A.; Parrilha, G.L.; Beraldo, H. Gallium Complexes as New Promising Metallodrug Candidates. Inorg. Chim. Acta 2012, 393, 53–63. [Google Scholar] [CrossRef]
- Mehta, S. Synthesis and Biological Activity of Pyrrole and Pyrrolidine Compounds from 4-Bromo-2-Hydroxybenzoic Acid Hydrazide. Int. J. Pharm. Res. Bio-Sci. 2013, 2, 417–429. [Google Scholar]
- Jing, Z.-L.; Yu, M.; Chen, X. (E)-N′-(5-Bromo-2-Hydroxy-benzyl-idene)-4-Hydroxy-benzohydrazide Ethanol Solvate. Acta Crystallogr. Sect. E 2007, 63, o4902. [Google Scholar] [CrossRef]
- Yang, D.-S. N′-[1-(5-Bromo-2-Hydroxy-phen-yl)Methyl-idene]Isonicotinohydrazide. Acta Crystallogr. Sect. E 2006, 62, o3792–o3793. [Google Scholar] [CrossRef]
- Karrouchi, K.; Fettach, S.; Jotani, M.M.; Sagaama, A.; Radi, S.; Ghabbour, H.A.; Mabkhot, Y.N.; Himmi, B.; El Abbes Faouzi, M.; Issaoui, N. Synthesis, Crystal Structure, Hirshfeld Surface Analysis, DFT Calculations, Anti-Diabetic Activity and Molecular Docking Studies of (E)-N′-(5-Bromo-2-Hydroxybenzylidene) Isonicotinohydrazide. J. Mol. Struct. 2020, 1221, 128800. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Wang, H.-Y.; Gao, F.; Lu, Z.-S.; Niu, D.-Z. 5-Bromo-salicylaldehyde Benzoyl-hydrazone. Acta Crystallogr. Sect. E 2006, 62, o4495–o4496. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- The PyMOL Molecular Graphics System, Version 1.7.6.6; Schrödinger, LLC. Available online: https://pymol.org/2/#screenshots (accessed on 13 July 2022).
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
Parameter | H2L1 | H2L2 | HL1 (Anion) | HL2 (Anion) | 1 | 2 |
---|---|---|---|---|---|---|
Dipole moment, μ [D] | 5.46 | 3.49 | 12.23 | 8.75 | 11.73 | 5.96 |
Bond length [Å] | ||||||
C1-N2 | 1.290 | 1.290 | 1.299 | 1.301 | 1.304 | 1.307 |
N2-N3 | 1.357 | 1.359 | 1.381 | 1.379 | 1.375 | 1.376 |
N3-C4 | 1.391 | 1.385 | 1.366 | 1.363 | 1.359 | 1.351 |
C4-C5 | 1.494 | 1.504 | 1.512 | 1.514 | 1.462 | 1.477 |
C4-O11 | 1.223 | 1.221 | 1.230 | 1.230 | 1.263 | 1.259 |
C5-C6 | 1.406 | 1.401 | 1.405 | 1.402 | 1.411 | 1.440 |
C1-C7 | 1.453 | 1.452 | 1.439 | 1.436 | 1.424 | 1.411 |
C7-C8 | 1.422 | 1.422 | 1.472 | 1.473 | 1.437 | 1.429 |
C8-O9 | 1.345 | 1.345 | 1.253 | 1.252 | 1.306 | 1.307 |
O9-H10/O9-Ga | 0.987 | 0.986 | - | - | 1.900 | 1.897 |
N1-Ga | - | - | - | - | 2.025 | 2.024 |
O11-Ga | - | - | - | - | 2.025 | 2.033 |
Angle [◦] | ||||||
C1-N2-N3 | 119.06 | 118.76 | 112.52 | 112.45 | 120.25 | 120.11 |
N2-N3-C4 | 119.85 | 119.87 | 123.69 | 123.58 | 116.40 | 116.07 |
N3-C4-O11 | 121.77 | 122.78 | 125.28 | 125.85 | 117.56 | 118.30 |
N3-C4-C5 | 115.18 | 114.72 | 114.14 | 113.92 | 120.33 | 119.95 |
C5-C4-O11 | 123.05 | 122.50 | 120.58 | 120.23 | 122.11 | 121.75 |
C1-C7-C8 | 121.88 | 121.92 | 124.03 | 123.93 | 122.60 | 122.66 |
Dihedral angle [◦] | ||||||
N2-C1-C7-C8 | 0.66 | 0.45 | −0.44 | −0.08 | 0.28 | 0.32 |
N3-C4-C5-C6 | −22.28 | −27.34 | −27.59 | −27.68 | 4.12 | 3.41/16.31 |
Complex Ion | ∆G1 | ∆G33 |
---|---|---|
1 | −489.7 | −71.2 |
2 | −471.5 | −65.9 |
Compound | IC50 [µmol/L] ± SD | |
---|---|---|
HL-60 a | SKW-3 b | |
H2L1 | 3.14 ± 1.1 | 3.02 ± 1.05 |
H2L2 | 4.13 ± 1.2 | 2.53 ± 1.06 |
1 | 1.31 ± 0.7 | 1.14 ± 0.6 |
2 | 2.45 ± 1.0 | 0.54 ± 0.2 |
cisplatin | 8.70 ± 2.4 | 11.40 ± 2.1 |
melphalan | 18.50 ± 2.1 | 31.30 ± 2.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolova-Mladenova, B.; Angelova, S.; Momekov, G. Gallium (III) Complexes with 5-Bromosalicylaldehyde Benzoylhydrazones: In Silico Studies and In Vitro Cytotoxic Activity. Molecules 2022, 27, 5493. https://doi.org/10.3390/molecules27175493
Nikolova-Mladenova B, Angelova S, Momekov G. Gallium (III) Complexes with 5-Bromosalicylaldehyde Benzoylhydrazones: In Silico Studies and In Vitro Cytotoxic Activity. Molecules. 2022; 27(17):5493. https://doi.org/10.3390/molecules27175493
Chicago/Turabian StyleNikolova-Mladenova, Boryana, Silvia Angelova, and Georgi Momekov. 2022. "Gallium (III) Complexes with 5-Bromosalicylaldehyde Benzoylhydrazones: In Silico Studies and In Vitro Cytotoxic Activity" Molecules 27, no. 17: 5493. https://doi.org/10.3390/molecules27175493
APA StyleNikolova-Mladenova, B., Angelova, S., & Momekov, G. (2022). Gallium (III) Complexes with 5-Bromosalicylaldehyde Benzoylhydrazones: In Silico Studies and In Vitro Cytotoxic Activity. Molecules, 27(17), 5493. https://doi.org/10.3390/molecules27175493