Homologous and Heterologous Expression of Delta(12)-Desaturase in Mucor circinelloides Enhanced the Production of Linolenic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Transformation, and Fermentation Conditions
2.2. The Construction of Δ12-Desaturase Gene Overexpression Plasmids and Transformants
2.3. Biochemical Analysis of the Gene-Overexpressing Transformants during the Fermentation Process
2.4. Genomic DNA Extraction, RNA Preparation, and Quantitative Reverse Transcription-PCR Analysis
2.5. Statistical Analysis
3. Results
3.1. Generation of M. Circinelloide Δ12-Desaturase Gene Overexpression Transformants by Genetic Engineering
3.2. Expression Levels of Δ12-Desaturase Gene from M. Alpina and M. Circinelloides in Mc-D12MA and Mc-D12MC
3.3. Cell Growth and Lipid Accumulation in Mc-D12MC and Mc-D12MA Strains
3.4. Overexpression of Δ12-Desaturase Gene Affected the Levels of Fatty Acid in the Transformants
3.5. The Transcription Level of Key Genes for Fatty Acid Desaturation in Mc-D12MC and Mc-D12MA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Bellou, S.; Triantaphyllidou, I.E.; Aggeli, D.; Elazzazy, A.M.; Baeshen, M.N.; Aggelis, G. Microbial oils as food additives: Recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr. Opin. Biotechnol. 2016, 37, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Kikukawa, H.; Watanabe, K.; Kishino, S.; Takeuchi, M.; Ando, A.; Izumi, Y.; Sakuradani, E. Recent trends in the field of lipid engineering. J. Biosci. Bioeng. 2022, 133, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Lamers, D.; Visscher, B.; Weusthuis, R.A.; Francke, C.; Wijffels, R.H.; Lokman, C. Overexpression of delta-12 desaturase in the yeast Schwanniomyces occidentalis enhances the production of linoleic acid. Bioresour. Technol. 2019, 289, 121672. [Google Scholar] [CrossRef] [PubMed]
- Tavares, S.; Grotkjaer, T.; Obsen, T.; Haslam, R.P.; Napier, J.A.; Gunnarsson, N. Metabolic engineering of Saccharomyces cerevisiae for Production of Eicosapentaenoic Acid, Using a Novel Δ5-Desaturase from Paramecium tetraurelia. Appl. Environ. Microb. 2011, 77, 1854–1861. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Jeyaseelan, C.; Bandyopadhyay, K.K.; Paul, D. Comparative analysis of biodiesel produced by acidic transesterification of lipid extracted from oleaginous yeast Rhodosporidium toruloides. 3 Biotech 2018, 8, 434. [Google Scholar] [CrossRef]
- Carsanba, E.; Papanikolaou, S.; Erten, H. Production of oils and fats by oleaginous microorganisms with an emphasis given to the potential of the nonconventional yeast Yarrowia lipolytica. Crit. Rev. Biotechnol. 2018, 38, 1230–1243. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Kabir Khan, M.A.; Garre, V.; Vongsangnak, W.; Song, Y. Increased lipid accumulation in Mucor circinelloides by overexpression of mitochondrial citrate transporter genes. Ind. Eng. Chem. Res. 2019, 58, 2125–2134. [Google Scholar] [CrossRef]
- Ratledge, C. The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: A reappraisal and unsolved problems. Biotechnol. Lett. 2014, 36, 1557–1568. [Google Scholar] [CrossRef]
- Ledesma-Amaro, R.; Dulermo, R.; Niehus, X.; Nicaud, J.M. Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab. Eng. 2016, 38, 38–46. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, L.; Chen, H.; Chen, Y.Q.; Chen, W.; Song, Y.; Ratledge, C. Complete genome sequence of a high lipid-producing strain of Mucor circinelloides WJ11 and comparative genome analysis with a low lipid-producing strain CBS 277.49. PLoS ONE 2015, 10, e0137543. [Google Scholar] [CrossRef] [Green Version]
- Ratledge, C.; Wynn, J.P. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. 2002, 51, 1–51. [Google Scholar] [PubMed]
- Zhang, Y.; Song, Y. Lipid accumulation by xylose metabolism engineered Mucor circinelloides strains on corn straw hydrolysate. Appl. Biochem. Biotechnol. 2021, 193, 856–868. [Google Scholar] [CrossRef] [PubMed]
- Zan, X.; Sun, J.; Chu, L.; Cui, F.; Huo, S.; Song, Y.; Koffas, M.A.G. Improved glucose and xylose co-utilization by overexpression of xylose isomerase and/or xylulokinase genes in oleaginous fungus Mucor circinelloides. Appl. Microbiol. Biotechnol. 2021, 105, 5565–5575. [Google Scholar] [CrossRef]
- Yang, J.; Canovas-Marquez, J.T.; Li, P.; Li, S.; Niu, J.; Wang, X.; Nazir, Y.; Lopez-Garcia, S.; Garre, V.; Song, Y. Deletion of plasma membrane malate transporters increased lipid accumulation in the oleaginous fungus Mucor circinelloides WJ11. J. Agric. Food Chem. 2021, 69, 9632–9641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Yang, J.; Yang, W.; Wang, X.; Wu, C.; Song, Y. Improved γ-Linolenic acid production from cellulose in Mucor circinelloides via coexpression of cellobiohydrolase and delta-6 desaturase. J. Agric. Food Chem. 2022, 70, 4373–4381. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Tang, X.; Luan, X.; Chen, H.; Chen, Y.Q.; Chen, W.; Song, Y.; Ratledge, C. Role of pentose phosphate pathway in lipid accumulation of oleaginous fungus Mucor circinelloides. RSC Adv. 2015, 5, 97658–97664. [Google Scholar] [CrossRef]
- Wu, C.C.; Ohashi, T.; Kajiura, H.; Sato, Y.; Misaki, R.; Honda, K.; Limtong, S.; Fujiyama, K. Functional characterization and overexpression of Delta12-desaturase in the oleaginous yeast Rhodotorula toruloides for production of linoleic acid-rich lipids. J. Biosci. Bioeng. 2021, 131, 631–639. [Google Scholar] [CrossRef]
- Ye, C.; Xu, N.; Chen, H.; Chen, Y.Q.; Chen, W.; Liu, L. Reconstruction and analysis of a genome-scale metabolic model of the oleaginous fungus Mortierella alpina. BMC Syst. Biol. 2015, 9, 1–11. [Google Scholar] [CrossRef]
- Nicolas, F.E.; de Haro, J.P.; Torres-Martinez, S.; Ruiz-Vazquez, R.M. Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal. Genet. Biol. 2007, 44, 504–516. [Google Scholar] [CrossRef]
- Kendrick, A.; Ratledge, C. Lipid formation in the oleaginous mould Entomophthora exitalis grown in continuous culture: Effects of growth rate, temperature and dissolved oxygen tension on polyunsaturated fatty acids. Appl. Microbiol. Biotechnol. 1992, 3, 18–22. [Google Scholar] [CrossRef]
- Zan, X.; Tang, X.; Chu, L.; Song, Y. Dual functions of lip6 and its regulation of lipid metabolism in the oleaginous fungus Mucor circinelloides. J. Agric. Food Chem. 2018, 66, 2796–2804. [Google Scholar] [CrossRef] [PubMed]
- Garre, V.; Barredo, J.L.; Iturriaga, E.A. Transformation of Mucor circinelloides f. lusitanicus Protoplasts. Genet. Transform. Syst. Fungi 2015, 1, 49–59. [Google Scholar]
- Gutierrez, A.; Lopez-Garcia, S.; Garre, V. High reliability transformation of the basal fungus Mucor circinelloides by electroporation. J. Microbiol. Methods 2011, 84, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.-L.; Madzak, C.; Liu, H.-H.; Song, P.; Ren, L.-J.; Huang, H.; Ji, X.-J. Engineering Yarrowia lipolytica for efficient γ-linolenic acid production. Biochem. Eng. J. 2017, 117, 172–180. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Wang, X.; Mohamed, H.; Bao, Y.; Wu, C.; Shi, W.; Song, Y.; Yang, J. Heterologous expression of two malate transporters from an oleaginous fungus Mucor circinelloides improved the lipid accumulation in Mucor lusitanicus. Front. Microbiol. 2021, 12, 774825. [Google Scholar] [CrossRef]
- Song, Y.; Wynn, J.P.; Li, Y.; Grantham, D.; Ratledge, C. A pre-genetic study of the isoforms of malic enzyme associated with lipid accumulation in Mucor circinelloides. Microbiology 2001, 147, 1507–1515. [Google Scholar] [CrossRef]
- Hao, G.; Chen, H.; Du, K.; Huang, X.; Song, Y.; Gu, Z.; Wang, L.; Zhang, H.; Chen, W.; Chen, Y.Q. Increased fatty acid unsaturation and production of arachidonic acid by homologous over-expression of the mitochondrial malic enzyme in Mortierella alpina. Biotechnol. Lett. 2014, 36, 1827–1834. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Li, P.; Wang, Y.; Li, S.; Gao, M.; Song, Y. Enhanced lipid production by addition of malic acid in fermentation of recombinant Mucor circinelloides Mc-MT-2. Sci. Rep. 2021, 11, 12674. [Google Scholar] [CrossRef]
- Rodriguez-Frometa, R.A.; Gutierrez, A.; Torres-Martinez, S.; Garre, V. Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus Mucor circinelloides. Appl. Microbiol. Biotechnol. 2013, 97, 3063–3072. [Google Scholar] [CrossRef]
- Mhlongo, S.I.; Ezeokoli, O.T.; Roopnarain, A.; Ndaba, B.; Sekoai, P.T.; Habimana, O.; Pohl, C.H. The potential of single-cell oils derived from filamentous fungi as alternative feedstock sources for biodiesel production. Front. Microbiol. 2021, 12, 637381. [Google Scholar] [CrossRef] [PubMed]
- Meeuwse, P.; Sanders, J.P.M.; Tramper, J.; Rinzema, A. Lipids from yeasts and fungi: Tomorrow’s source of biodiesel? Biofuels Bioprod. Biorefining 2013, 7, 512–524. [Google Scholar] [CrossRef]
- Srinivasan, N.; Thangavelu, K.; Sekar, A.; Sanjeev, B.; Uthandi, S. Aspergillus caespitosus ASEF14, an oleaginous fungus as a potential candidate for biodiesel production using sago processing wastewater (SWW). Microb. Cell Fact. 2021, 20, 179. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Chen, H.; Chen, Y.Q.; Chen, W.; Garre, V.; Song, Y.; Ratledge, C. Comparison of Biochemical Activities between High and Low Lipid-Producing Strains of Mucor circinelloides: An Explanation for the High Oleaginicity of Strain WJ11. PLoS ONE 2015, 10, e0128396. [Google Scholar]
- Henderson, C.M.; Block, D.E. Examining the role of membrane lipid composition in determining the ethanol tolerance of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2014, 80, 2966–2972. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Wang, X.; Mohamed, H.; Li, S.; Wu, C.; Shi, W.; Xue, F.; López-García, S.; Song, Y. Homologous and Heterologous Expression of Delta(12)-Desaturase in Mucor circinelloides Enhanced the Production of Linolenic Acid. Molecules 2022, 27, 5511. https://doi.org/10.3390/molecules27175511
Yang J, Wang X, Mohamed H, Li S, Wu C, Shi W, Xue F, López-García S, Song Y. Homologous and Heterologous Expression of Delta(12)-Desaturase in Mucor circinelloides Enhanced the Production of Linolenic Acid. Molecules. 2022; 27(17):5511. https://doi.org/10.3390/molecules27175511
Chicago/Turabian StyleYang, Junhuan, Xiuwen Wang, Hassan Mohamed, Shaoqi Li, Chen Wu, Wenyue Shi, Futing Xue, Sergio López-García, and Yuanda Song. 2022. "Homologous and Heterologous Expression of Delta(12)-Desaturase in Mucor circinelloides Enhanced the Production of Linolenic Acid" Molecules 27, no. 17: 5511. https://doi.org/10.3390/molecules27175511
APA StyleYang, J., Wang, X., Mohamed, H., Li, S., Wu, C., Shi, W., Xue, F., López-García, S., & Song, Y. (2022). Homologous and Heterologous Expression of Delta(12)-Desaturase in Mucor circinelloides Enhanced the Production of Linolenic Acid. Molecules, 27(17), 5511. https://doi.org/10.3390/molecules27175511