Application of Calcium Citrate in the Manufacture of Acid Rennet Cheese Produced from High-Heat-Treated Goat’s Milk from Spring and Autumn Season
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quality of Raw Goat’s Milk
2.2. Effect of Calcium Dose on the pH Value of Goat’s Milk after Pasteurization
2.3. Quality of Acid Rennet Goat Cheese with Calcium Addition
2.3.1. Physicochemical Properties and Yield of Acid Rennet Goat Cheese
2.3.2. Mineral Composition of Acid Rennet Goat Cheese
2.3.3. Texture Profile of Acid Rennet Goat Cheese
2.3.4. Organoleptic Evaluation of Cheese
3. Materials and Methods
3.1. Materials
3.2. Goat’s Milk Analysis
3.3. Control of the pH Value of Milk with Added Calcium after Pasteurization
3.4. Acid Rennet Cheese Production
3.5. pH of Acid Rennet Curd and Cheese
3.6. Fat and Total Solids Content in Cheese
3.7. Degree of Protein Retention in Cheese
3.8. Cheese Yield
3.9. Mineral Composition of Cheese
3.10. Texture Analysis of Cheese
3.11. Organoleptic Evaluation of Cheese
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tarapata, J.; Smoczyński, M.; Maciejczyk, M.; Zulewska, J. Effect of Calcium Chloride Addition on Properties of Acid-Rennet Gels. Int. Dairy J. 2020, 106, 104707. [Google Scholar] [CrossRef]
- Ramasubramanian, L.; D’Arcy, B.R.; Deeth, H.C.; Oh, H.E. The Rheological Properties of Calcium-Induced Milk Gels. J. Food Eng. 2014, 130, 45–51. [Google Scholar] [CrossRef]
- Umeda, T.; Aoki, T. Relation between Micelle Size and Micellar Calcium Phosphate. Milchwiss. Milk Sci. Int. 2002, 57, 131–133. [Google Scholar]
- Ozcan, T.; Horne, D.; Lucey, J.A. Effect of Increasing the Colloidal Calcium Phosphate of Milk on the Texture and Microstructure of Yogurt. J. Dairy Sci. 2011, 94, 5278–5288. [Google Scholar] [CrossRef] [PubMed]
- Akkerman, M.; Larsen, L.B.; Sørensen, J.; Poulsen, N.A. Natural Variations of Citrate and Calcium in Milk and Their Effects on Milk Processing Properties. J. Dairy Sci. 2019, 102, 6830–6841. [Google Scholar] [CrossRef] [PubMed]
- Nian, Y.; Chen, B.Y.; Aikman, P.; Grandison, A.; Lewis, M. Naturally Occurring Variations in Milk pH and Ionic Calcium and Their Effects on Some Properties and Processing Characteristics of Milk. Int. J. Dairy Technol. 2012, 65, 490–497. [Google Scholar] [CrossRef]
- Udabage, P.; McKinnon, I.R.; Augustin, M.A. Effects of Mineral Salts and Calcium Chelating Agents on the Gelation of Renneted Skim Milk. J. Dairy Sci. 2001, 84, 1569–1575. [Google Scholar] [CrossRef]
- Sundekilde, U.K.; Gustavsson, F.; Poulsen, N.A.; Glantz, M.; Paulsson, M.; Larsen, L.B.; Bertram, H.C. Association between the Bovine Milk Metabolome and Rennet-Induced Coagulation Properties of Milk. J. Dairy Sci. 2014, 97, 6076–6084. [Google Scholar] [CrossRef]
- Boumpa, T.; Tsioulpas, A.; Grandison, A.S.; Lewis, M.J. Effects of Phosphates and Citrates on Sediment Formation in UHT Goats’ Milk. J. Dairy Res. 2008, 75, 160–166. [Google Scholar] [CrossRef]
- Guyomarc’h, F.; Law, A.J.R.; Dalgleish, D.G. Formation of Soluble and Micelle-Bound Protein Aggregates in Heated Milk. J. Agric. Food Chem. 2003, 51, 4652–4660. [Google Scholar] [CrossRef]
- Corredig, M.; Dalgleish, D.G. The Mechanisms of the Heat-Induced Interaction of Whey Proteins with Casein Micelles in Milk. Int. Dairy J. 1999, 9, 233–236. [Google Scholar] [CrossRef]
- Kelly, A.L.; Huppertz, T.; Sheehan, J.J. Pre-Treatment of Cheese Milk: Principles and Developments. Dairy Sci. Technol. 2008, 88, 549–572. [Google Scholar] [CrossRef]
- Barłowska, A.; Wolanciuk, A.; Kędzierska-Matysek, M.; Litwińczuk, Z. Wpływ sezonu produkcji na podstawowy skład chemiczny oraz zawartość makro- i mikroelementów w mleku krowim i kozim. Effect of production season on basic chemical composition and content of macro- and microelements in cow’s and goat’s milk. ZNTJ 2013, 6, 69–78. (In Polish) [Google Scholar] [CrossRef]
- Park, Y.W.; Jeanjulien, C.; Siddique, A. Factors Affecting Sensory Quality of Goat Milk Cheeses: A Review. J. Adv. Dairy Res. 2017, 5, 1–9. [Google Scholar] [CrossRef]
- Ragab, E.S.; Zhang, S.; Pang, X.; Lu, J.; Nassar, K.S.; Yang, B.; Obaroakpo, U.J.; Lv, J. Ultrasound Improves the Rheological Properties and Microstructure of Rennet-Induced Gel from Goat Milk. Int. Dairy J. 2020, 104, 104642. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, S.; Uluko, H.; Liu, L.; Lu, J.; Xue, H.; Kong, F.; Lv, J. Effect of Ultrasound Pretreatment on Rennet-Induced Coagulation Properties of Goat’s Milk. Food Chem. 2014, 165, 167–174. [Google Scholar] [CrossRef]
- Danków, R.; Pikul, J. Przydatność technologiczna mleka koziego do przetwórstwa. Technological suitability of goat milk for processing. Nauka Przyr. Technol. 2011, 5, 7. (In Polish) [Google Scholar]
- Pawlos, M.; Znamirowska, A.; Szajnar, K. Effect of Calcium Compound Type and Dosage on the Properties of Acid Rennet Goat’s Milk Gels. Molecules 2021, 26, 5563. [Google Scholar] [CrossRef]
- Siefarth, C.; Buettner, A. The Aroma of Goat Milk: Seasonal Effects and Changes through Heat Treatment. J. Agric. Food Chem. 2014, 62, 11805–11817. [Google Scholar] [CrossRef]
- Casper, J.L.; Wendorff, W.L.; Thomas, D.L. Seasonal Changes in Protein Composition of Whey from Commercial Manufacture of Caprine and Ovine Specialty Cheeses. J. Dairy Sci. 1998, 81, 3117–3122. [Google Scholar] [CrossRef]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-Chemical Characteristics of Goat and Sheep Milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef]
- Zamberlin, Š.; Antunac, N.; Havranek, J.; Smarzija, D. Mineral elements in milk and dairy products. Mljekarstvo 2012, 62, 111–125. [Google Scholar]
- Guo, M.R.; Dixon, P.H.; Park, Y.W.; Gilmore, J.A.; Kindstedt, P.S. Seasonal Changes in the Chemical Composition of Commingled Goat Milk. J. Dairy Sci. 2001, 84, E79–E83. [Google Scholar] [CrossRef]
- Paszczyk, B.; Polak-Śliwińska, M.; Zielak-Steciwko, A.E. Chemical Composition, Fatty Acid Profile, and Lipid Quality Indices in Commercial Ripening of Cow Cheeses from Different Seasons. Animals 2022, 12, 198. [Google Scholar] [CrossRef] [PubMed]
- Kljajevic, N.V.; Tomasevic, I.B.; Miloradovic, Z.N.; Nedeljkovic, A.; Miocinovic, J.B.; Jovanovic, S.T. Seasonal Variations of Saanen Goat Milk Composition and the Impact of Climatic Conditions. J. Food Sci. Technol. 2018, 55, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Kędzierska-Matysek, M.; Barłowska, J.; Litwińczuk, Z.; Koperska, N. Content of macro- and microelements in goat milk in relation to the lactation stage and region of production. J. Elem. 2015, 20, 107–114. [Google Scholar] [CrossRef]
- Norris, D.; Ngambi, J.W.; Benyi, K.; Mbajiorgu, C.A. Milk Production of Three Exotic Dairy Goat Genotypes in Limpopo Province, South Africa. Asian J. Anim. Vet. Adv. 2011, 6, 274–281. [Google Scholar] [CrossRef]
- No 1662/2006; Commission Regulation (EC) of 6 November 2006 Amending Regulation (EC) No 853/2004 of the European Parliament and of the Council Laying down Specific Hygiene Rules for Food of Animal Origin (Text with EEA Relevance). EC: Brussels, Belgium, 2006; L320, pp. 1–10.
- Danków, R.; Cais-Sokolińska, D.; Pikul, J.; Wójtowski, J. Jakość cytologiczna mleka koziego. Cytological quality of goat’s milk. Med. Weter. 2003, 59, 77–80. (In Polish) [Google Scholar]
- Brodziak, A.; Król, J.; Barłowska, J.; Litwińczuk, Z. Effect of Production Season on Protein Fraction Content in Milk of Various Breeds of Goats in Poland. Int. J. Dairy Technol. 2014, 67, 410–419. [Google Scholar] [CrossRef]
- Mayer, H.K.; Fiechter, G. Physical and Chemical Characteristics of Sheep and Goat Milk in Austria. Int. Dairy J. 2012, 24, 57–63. [Google Scholar] [CrossRef]
- Strzałkowska, N.; Jóźwik, A.; Bagnicka, E.; Krzyżewski, J.; Horbańczuk, K.; Pyzel, B.; Horbańczuk, J.O. Chemical composition, physical traits and fatty acid profile of goat milk as related to the stage of lactation. Anim. Sci. Pap. Rep. 2009, 27, 311–320. [Google Scholar]
- Zhao, X.; Cheng, M.; Zhang, X.; Li, X.; Chen, D.; Qin, Y.; Wang, J.; Wang, C. The Effect of Heat Treatment on the Microstructure and Functional Properties of Whey Protein from Goat Milk. J. Dairy Sci. 2020, 103, 1289–1302. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhu, Y.; Wang, J. Comparative Study on the Heat Stability of Goat Milk and Cow Milk. Indian J. Anim. Res. 2015, 50, 610–613. [Google Scholar] [CrossRef]
- Ziarno, M.; Zaręba, D.; Piskorz, J. Wzbogacanie maślanki w wapń, magnez oraz białka serwatkowe. Fortifying buttermilk with calcium, magnesium, and whey proteins. ZNTJ 2009, 2, 14–27. Available online: http://wydawnictwo.pttz.org/wp-content/uploads/2015/02/02_Ziarno.pdf (accessed on 20 June 2022). (In Polish).
- Huang, M.; Wang, C.; Cheng, M.; Zhang, X.; Jiang, H.; Wang, J. Effects of Quantity and Source of Calcium on the Behavior of Goat Milk after Heating and Acidification. LWT 2022, 153, 112535. [Google Scholar] [CrossRef]
- Smits, P.; Brouwershaven, J.H.V. Heat-Induced Association of β-Lactoglobulin and Casein Micelles. J. Dairy Res. 1980, 47, 313–325. [Google Scholar] [CrossRef]
- Dmytrów, I.; Mituniewicz-Małek, A.; Dmytrów, K. Fizykochemiczne i sensoryczne cechy sera twarogowego kwasowego wyprodukowanego z mleka koziego oraz mieszaniny mleka koziego i krowiego. Physicochemical and Sensory Features of Acid Curd Cheese (Tvarog) Produced from Goat’s Milk and Mixture of Cow’s and Goat’s Milk. ZNTJ 2010, 2, 46–61. (In Polish) [Google Scholar]
- Janštová, B.; Dračková, M.; Cupáková, Š.; Přidalová, H.; Pospíšilová, M.; Karpíšková, R.; Vorlová, L. Safety and Quality of Farm Fresh Goat’s Cheese in the Czech Republic. Czech J. Food Sci. 2010, 28, 1–8. [Google Scholar] [CrossRef]
- Wiatr-Szczepanik, A.; Libudzisz, Z. 1997. Porównanie wzrostu i aktywności kwaszącej szczepów Lb. acidophilus w mleku kozim i krowim. Comparison of growth and acidification activity of Lb. acidophilus strains in goat and cow milk. Przegląd. Mleczarski. 1997, 6, 173–175. (In Polish) [Google Scholar]
- Masle, I.; Morgan, F. Aptitude Du Lait de Chèvre à l’acidification Par Les Ferments Lactiques—Facteurs de Variation Liés à La Composition Du Lait. Lait 2001, 81, 561–569. [Google Scholar] [CrossRef]
- Coulon, J.-B.; Delacroix-Buchet, A.; Martin, B.; Pirisi, A. Relationships between Ruminant Management and Sensory Characteristics of Cheeses: A Review. Lait 2004, 84, 221–241. [Google Scholar] [CrossRef]
- Miloradovic, Z.; Kljajevic, N.; Miocinovic, J.; Tomic, N.; Smiljanic, J.; Macej, O. High Heat Treatment of Goat Cheese Milk. The Effect on Yield, Composition, Proteolysis, Texture and Sensory Quality of Cheese during Ripening. Int. Dairy J. 2017, 68, 1–8. [Google Scholar] [CrossRef]
- Siemianowski, K.; Szpendowski, J.; Bohdziewicz, K.; Kołakowski, P.; Pawlikowska, K.; Żylińska, J.; Bardowski, J.K. Wpływ zawartości suchej masy w mleku na skład oraz cechy sensoryczne twarogu kwasowego. Effect of the dry matter content in milk on the composition and sensory properties of acid tvarog cheese. Folia Pomer. Univ. Technol. Stetin. 2013, 302, 113–124. Available online: https://oa.zut.edu.pl/bitstream/handle/20.500.12539/798/133.pdf?sequence=1&isAllowed=y (accessed on 20 June 2022). (In Polish).
- Koutina, G.; Christensen, M.; Bakman, M.; Andersen, U.; Skibsted, L.H. Calcium induced skim-milk gelation during heating as affected by pH. Dairy Sci. Technol. 2016, 96, 79–93. [Google Scholar] [CrossRef]
- Szpendowski, J.; Śmietana, Z.; Płodzień, T.; Lewandowski, K.; Owczarzak, A.; Buczma, E. Technologia serów twarogowych o podwyższonej wartości odżywczej. Technology of acid curd cheese with increased nutritional value. Przegląd. Mleczarski. 2007, 1, 4–9. (In Polish) [Google Scholar]
- Siemianowski, K.; Szpendowski, J. Znaczenie twarogu w żywieniu człowieka. Importance of tvorog in human nutrition. Probl. Hig. Epidemiol. 2014, 95, 115–119. Available online: http://www.phie.pl/pdf/phe-2014/phe-2014-1-115.pdf (accessed on 20 June 2022). (In Polish).
- Bohdziewicz, K. Wpływ transglutaminazy na proces produkcji, wydatek oraz jakość twarogów. Effect of transglutaminase on production process, yield and quality of tvarog. Przegląd. Mleczarski. 2010, 2, 4–9. (In Polish) [Google Scholar]
- Siemianowski, K.; Bohdziewicz, K.; Szpendowski, J.; Kołakowski, P.; Żylińska, J.; Bardowski, J. The effect of increased dry matter content of raw material on the texture and microstructure of acid tvorog. Acta Agrophysica. 2015, 2, 183–192. [Google Scholar]
- Popović-Vranješ, A.; Paskaš, S.; Krstović, S.; Jurakić, Ž.; Štrbac, L.; Grubješić, G. Quality of Hard Cheese Made from Value Aded Organic Goat Milk. Contemp. Agric. 2016, 65, 51–56. [Google Scholar] [CrossRef]
- Srbinovska, S.; Čizbanovski, T.; Džabirski, V.; Andonov, S.; Palasevski, B. Dynamics of salt diffusion and yield of three types of goat’s milk cheese. Mljekarstvo 2001, 51, 15–26. [Google Scholar]
- Barłowska, M.; Litwińczuk, Z.; Wolanciuk, A.; Pastuszka, R. The chemical composition, cytological quality and technological suitability of the milk of three breeds of red and white cows fed in a TMR system. Sci. Ann. Pol. Soc. Anim. Prod. 2014, 10, 115–124. Available online: http://rn.ptz.icm.edu.pl/wp-content/uploads/2014/01/Bar%C5%82owska-ang.pdf (accessed on 20 June 2022).
- Sikora, J.; Kawęcka, A. Jakość produktu tradycyjnego z mleka koziego—Sera podkarpackiego białego. Quality of the white podkarpacki cheese, a traditional goat milk product. Wiadomości. Zootech. 2015, 53, 10–15. (In Polish) [Google Scholar]
- Siemianowski, K.; Szpendowski, J. Możliwość zwiększania zawartości wapnia w serach twarogowych w świetle dotychczasowych badań. Possibilities of Tvarog cheeses enrichment with calcium in the light of hitherto existing research. Nauk. Inż. Technol. 2012, 4, 83–98. Available online: https://dbc.wroc.pl/Content/22852/Siemianowski_Mozliwosci_Zwiekszania_Zawartosci_Wapnia_w_Serach_2012.pdf (accessed on 22 June 2022). (In Polish).
- Fekadu, B.; Soryal, K.; Zeng, S.; Hekken, D.V.; Bah, B.; Villaquiran, M. Changes in Goat Milk Composition during Lactation and Their Effect on Yield and Quality of Hard and Semi-Hard Cheeses. Small Rumin. Res. 2005, 59, 55–63. [Google Scholar] [CrossRef]
- Britten, M.; Giroux, H.J. Acid-Induced Gelation of Whey Protein Polymers: Effects of PH and Calcium Concentration during Polymerization. Food Hydrocoll. 2001, 15, 609–617. [Google Scholar] [CrossRef]
- Baran, J.; Pieczonka, W.; Pompa-Roborzyński, M. Składniki mineralne w serach i w serwatce otrzymanych z mleka owczego i koziego. Mineral components in cheeses and whey made from ewe’s and goat’s milk. ZNTJ 2011, 78, 132–140. (In Polish) [Google Scholar]
- Ziajka, S. Mleczarstwo 1; Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego w Olsztynie: Olsztyn, Poland, 2008. [Google Scholar]
- Dolik, K.; Kubiak, M.S. Instrumentalny test analizy profilu tekstury w badaniu jakości wybranych produktów spożywczych. Instrumental Test of Texture Profile Analysis in the Study of Selected Food Quality. Nauki Inż. Technol. 2013, 3, 35–44. (In Polish) [Google Scholar]
- Burgos, L.; Pece, N.; Maldonado, S. Proteolysis, Texture and Microstructure of Goat Cheese. Int. J. Eng. App. Sci. 2016, 3, 14–19. Available online: https://www.ijeas.org/download_data/IJEAS0305016.pdf (accessed on 21 June 2022).
- Bourne, M.C. Food Texture and Viscosity: Concept and Measurement, 2nd ed.; Food Science and Technology International Series; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Mazur, J.; Sobczak, P.; Zawiślak, K.; Panasiewicz, M.; Kobus, Z.; Andrejko, D.; Żukiewicz-Sobczak, W. Korelacja wyznaczników profilowej analizy tekstury (TPA) kwasowych serów twarogowych z jego podstawowym składem. Correlation texture profile analysis (TPA) determinants of acid curd cheese with its basic composition. Zesz. Probl. Postęp. Nauk Rol. 2015, 582, 23–33. Available online: http://www.zppnr.sggw.pl/582-03.pdf (accessed on 20 June 2022). (In Polish).
- Mulawka, E.; Dmytrów, I.; Mituniewicz-Małek, A.; Godula, K. Rodzaj kultury starterowej a wybrane cechy fizykochemiczne sera twarogowego w czasie przechowywania. Type of starter culture and selected physicochemical characteristics of curd cheese (tvarog) during storage. ZNTJ 2019, 118, 95–110. [Google Scholar] [CrossRef]
- Dzwolak, I.; Przybylski, R.; Jankowski, P.; Żuraw, J. Wpływ stosowanego zakwasu roboczego na wydatek sera. Effect of the working sourdough starter used on cheese yield. Przegląd. Mleczarski. 2006, 2, 8–10. (In Polish) [Google Scholar]
- Dmytrów, I.; Mituniewicz-Małek, A.; Dmytrów, K. Ocena wybranych wyróżników jakości serków twarogowych kwasowo-podpuszczkowych dostępnych w handlu detalicznym. Evaluation of selected quality characteristics of acid-rennet cheese available in retail trade. Chłodnictwo 2009, 44, 66–73. (In Polish) [Google Scholar]
- Kusińska, E.; Starek, A. Właściwości mechaniczne tekstury ciasta biszkoptowo-tłuszczowego. Mechanical properties of sponge cake texture. Inż. Roln. 2011, 5, 157–164. (In Polish) [Google Scholar]
- Chen, S.X.; Wang, J.Z.; Van Kessel, J.S.; Ren, F.Z.; Zeng, S.S. Effect of Somatic Cell Count in Goat Milk on Yield, Sensory Quality, and Fatty Acid Profile of Semisoft Cheese. J. Dairy Sci. 2010, 93, 1345–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, N.R.; Drake, M.A.; Daubert, C.R.; McMahon, D.J.; Bletsch, T.K.; Foegeding, E.A. The Effect of Aging on Low-Fat, Reduced-Fat, and Full-Fat Cheddar Cheese Texture. J. Dairy Sci. 2009, 92, 4756–4772. [Google Scholar] [CrossRef]
- Chevanan, N.; Muthukumarappan, K.; Upreti, P.; Metzger, L.E. Effect of calcium and phosphorus, residual lactose and salt-to-moisture ratio on textural properties of cheddar cheese during ripening. J. Texture Stud. 2006, 37, 711–730. [Google Scholar] [CrossRef]
- Cankurt, H. The Effects of Adding Different Stabilizers in Brine on the Physicochemical, Sensory, Microbiological and Textural Properties of White Cheese. Foods 2019, 8, 133. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Z.; Mo, B. Texture Profile Analysis of Sliced Cheese in Relation to Chemical Composition and Storage Temperature. J. Chem. 2016, 2016, 8690380. [Google Scholar] [CrossRef]
- Shabbir, U.; Huma, N.; Javed, A. Compositional and Textural Properties of Goat’s Milk Cheese Prepared Using Dahi (Yogurt) as the Starter Culture. Braz. J. Food Technol. 2019, 22, e2018289. [Google Scholar] [CrossRef]
- Bohdziewicz, K.; Jasińska, A.M. Metoda profilowania smakowitości jako narzędzie określające charakter zmian deskryptorów podczas przechowywania serów camembert. In Innowacyjne Rozwiązania w Technologii Żywności i Żywieniu Człowieka; Tarko, T., Drożdż, I., Najgebauer-Lejko, D., Duda-Chodak, A., Eds.; Oddział Małopolski Polskiego Towarzystwa Technologów Żywności: Kraków, Poland, 2016; pp. 293–303. [Google Scholar]
- Vasbinder, A.J. Casein-Whey Protein Interactions in Heated Milk. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 22 November 2002. Available online: https://dspace.library.uu.nl/bitstream/handle/1874/765/full.pdf;jsessionid=1B5A8D719D80C744291B4B439C2C2467?sequence=1 (accessed on 22 June 2022).
- Znamirowska, A.; Szajnar, K.; Pawlos, M.; Kalicka, D. Effect of magnesium d—Gluconate fortification on heat stability of goat’s milk and physicochemical properties, sensory characteristic and texture profile of yoghurts during cold storage. J. Microb. Biotech. Food Sci. 2015, 5, 68–72. [Google Scholar] [CrossRef]
- Znamirowska, A.; Szajnar, K.; Pawlos, M. Organic Magnesium Salts Fortification in Fermented Goat’s Milk. Int. J. Food Prop. 2019, 22, 1615–1625. [Google Scholar] [CrossRef]
- Chaudhari, R.; Fanion, M. Technical aspects of micronutrient addition to foods. In Food Fortification and Supplementation: Technological, Safety and Regulatory Aspects; Ottaway, P.B., Ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Sheehan, J.J.; Patel, A.D.; Drake, M.A.; McSweeney, P.L.H. Effect of Partial or Total Substitution of Bovine for Caprine Milk on the Compositional, Volatile, Non-Volatile and Sensory Characteristics of Semi-Hard Cheeses. Int. Dairy J. 2009, 19, 498–509. [Google Scholar] [CrossRef]
- Szwocer, J.; Wituszyńska, B.; Obrusiewicz, T.; Najdeker, M.; Januszewska, H. Próby zastosowania ultrafiltracji w produkcji serków twarogowych z mleka koziego. Attempts to use ultrafiltration in the production of acid-curd cheese from goat’s milk. Postępy Technol. Przetwórstwa Spożywczego 2001, 1, 10–16. (In Polish) [Google Scholar]
- Mleko i Przetwory Mleczarskie Sery Metody Badań. Milk and Dairy Products Cheeses Methods of Analysis; PN-A-86232:1973; Polski Komitet Normalizacyjny: Warszawa, Poland, 1973. (In Polish) [Google Scholar]
- Kowalska, M.; Ambroziak, A.; Aljewicz, M.; Cichosz, G. Wzbogacone w wapń i magnez produkty mleczarskie. Fortification of dairy products by calcium and magnesium. Postępy Technol. Przetwórstwa Spożywczego 2012, 1, 93–98. (In Polish) [Google Scholar]
- Jarzynkowska, A.; Kłopotek, E. Charakterystyka składu chemicznego i frakcji lipidowej półtwardego sera dojrzewającego produkowanego z mleka owczego i owczo-krowiego w sezonie letnim. Characterization of the chemical composition and lipid fraction of semi-hard ripened cheese produced from sheep’s and sheep-cow’s milk during the summer season. Rocz. Nauk. Pol. Tow. Zootech. 2013, 9, 39–52. (In Polish) [Google Scholar]
- Pawlos, M.; Znamirowska, A.; Kluz, M.; Szajnar, K.; Kowalczyk, M. Low-lactose fermented goat milks with Bifidobacterium animals ssp. lactis Bb-12. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 751–755. [Google Scholar] [CrossRef]
- ISO 4121:2003; Sensory Analysis—Guidelines for the Use of Quantitative Response Scales. International Organization for Standardization (ISO): Geneva, Switzerland, 2003.
Properties | Season | |
---|---|---|
Spring | Autumn | |
TBC, cfu 1 mL−1 | 408,230 a ± 19,490 | 566,190 b ± 31,140 |
SCC, in 1 mL−1 | 1,032,220 a ± 33,370 | 1,608,490 b ± 45,910 |
Freezing point, °C | −0.571 a ± 0.017 | −0,588 b ± 0.022 |
pH | 6.67 a ± 0.03 | 6.62 a ± 0.07 |
Protein, g 100 g−1 | 2.69 a ± 0.29 | 3.26 b ± 0.23 |
Fat, g 100 g−1 | 2.83 a ± 0.48 | 3.52 b ± 0.27 |
Lactose, g 100 g−1 | 4.65 a ± 0.25 | 4.55 a ± 0.30 |
Total solids, g 100 g−1 | 10.29 a ± 0.42 | 11.63 b ± 0.70 |
Ca, mg 100 g−1 | 153.17 a ± 5.22 | 185.67 b ± 15.02 |
K, mg 100 g−1 | 178.57 a ± 1.49 | 207.84 b ± 2.00 |
Mg, mg 100 g−1 | 19.20 a ± 1.17 | 27.03 b ± 2.11 |
P, mg 100 g−1 | 128.11 a ± 3.34 | 144.87 b ± 2.56 |
Mn, µg 100 g−1 | 3.16 a ± 0.82 | 5.66 b ± 0.59 |
Mo, µg 100 g−1 | 5.20 a ± 1.12 | 7.80 b ± 1.01 |
Se, µg 100 g−1 | 3.14 a ± 0.78 | 4.75 b ± 0.45 |
Properties | Season | Calcium Dose, mg Ca 100 g−1 of Milk | r | ||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | |||
pH | Spring | 4.60 aA ± 0.01 | 4.61 aA ± 0.02 | 4.64 bA ± 0.01 | 4.64 bA ± 0.02 | 4.70 cA ± 0.05 | 0.7901 * |
Autumn | 4.67 aB ± 0.04 | 4.67 aB ± 0.04 | 4.67 aB ± 0.03 | 4.70 aB ± 0.05 | 4.78bB ± 0.03 | 0.6666 * | |
Fat, g 100 g−1 | Spring | 20.11 aA ± 1.67 | 19.42 aA ± 1.93 | 20.01 aA ± 1.64 | 19.50 aA ± 4.72 | 20.81 aA ± 4.06 | 0.2601 |
Autumn | 21.13 aA ± 1.55 | 20.82 aA ± 0.89 | 22.42 aA ± 0.78 | 22.15 aA ± 3.12 | 22.00 aA ± 0.85 | 0.4463 | |
Total solids, g 100 g−1 | Spring | 30.82 aA ± 2.07 | 33.49 aA ± 1.67 | 34.00 aA ± 1.42 | 34.29 aA ± 2.13 | 34.49 aA ± 2.40 | 0.3857 |
Autumn | 36.16 aB ± 0.63 | 36.47 aA ± 2.92 | 37.81 aA ± 3.33 | 37.35 aA ± 3.63 | 40.18 aB ± 2.15 | 0.4299 | |
Yield, % | Spring | 15.23 aA ± 4.14 | 15.48 aA ± 3.09 | 15.80 aA ± 3.07 | 17.60 aA ± 3.13 | 17.60 aA ± 3.02 | 0.1263 |
Autumn | 22.08 aB ± 2.55 | 24.25 aB ± 4.98 | 23.58 aB ± 4.91 | 23.58 aB ± 2.00 | 23.60 aB ± 2.53 | 0.1233 |
Properties | Season | Calcium Dose, mg Ca 100 g−1 of Milk | r | ||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | |||
Ca, mg 100 g−1 | Spring | 120.83 aA ± 5.63 | 127.95 bA ± 2.80 | 130.15 cA ± 3.78 | 142.62 dA ± 5.64 | 147.45 eA ± 2.18 | 0.9823 * |
Autumn | 130.66 aB ± 1.90 | 139.02 bB ± 3.30 | 142.01 bB ± 1.55 | 145.06 cB ± 3.90 | 151.21 dB ± 1.03 | 0.9367 * | |
K, mg 100 g−1 | Spring | 54.18 aA ± 10.49 | 56.26 aA ± 6.89 | 52.68 aA ± 4.32 | 52.61 aA ± 4.71 | 51.26 aA ± 5.21 | –0.1222 |
Autumn | 55.73 aA ± 3.22 | 53.56 aA ± 2.26 | 55.05 aA ± 2.55 | 54.91 aA ± 3.01 | 54.15 aA ± 2.59 | –0.3782 | |
Mg, mg 100 g−1 | Spring | 14.72 aA ± 2.11 | 14.74 aA ± 1.09 | 14.53 aA ± 1.44 | 15.26 aA ± 2.54 | 14.70 aA ± 3.02 | –0.0072 |
Autumn | 24.12 aB ± 2.72 | 21.37 aB ± 2.44 | 22.82 aB ± 2.85 | 22.71 aB ± 1.90 | 24.12 aB ± 3.14 | –0.1257 | |
P, mg 100 g−1 | Spring | 121.71 aA ± 1.02 | 125.88 abA ± 7.78 | 126.25 abA ± 7.90 | 133.87 bA ± 6.34 | 137.60 bA ± 7.12 | 0.7521 * |
Autumn | 141.98 aB ± 3.63 | 141.39 aB ± 3.52 | 148.78 bB ± 2.78 | 151.96 bB ± 3.02 | 151.95 bB ± 3.32 | 0.7001 * | |
Mn, µg 100 g−1 | Spring | 6.23 aA ± 0.57 | 6.21 aA ± 0.11 | 6.14 aA ± 0.55 | 6.24 aA ± 0.14 | 6.25 aA ± 0.39 | 0.0112 |
Autumn | 6.61 aA ± 0.31 | 6.93 aB ± 0.35 | 7.02 aB ± 0.23 | 6.35 aA ± 0.10 | 6.99 aB ± 0.20 | 0.1145 | |
Mo, µg 100 g−1 | Spring | 2.71 aA ± 0.39 | 2.71 aA ± 0.21 | 2.78 aA ± 0.12 | 2.81 aA ± 0.21 | 2.72 aA ± 0.17 | 0.1155 |
Autumn | 3.57 aB ± 0.10 | 3.58 aB ± 0.11 | 3.64 aB ± 0.12 | 3.61 aB ± 0.24 | 3.61 aB ± 0.21 | 0.2331 | |
Se, µg 100 g−1 | Spring | 7.07 aA ± 0.56 | 7.55 aA ± 0.49 | 7.21 aA ± 0.48 | 6.01 aA ± 1.12 | 6.56 aA ± 0.44 | 0.0022 |
Autumn | 8.00 aB ± 0.67 | 8.25 aA ± 1.02 | 8.50 aA ± 0.90 | 8.22 aB ± 0.63 | 8.07 aB ± 0.85 | 0.1878 |
Properties | Season | Calcium Dose, mg Ca 100 g−1 of Milk | r | ||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | |||
Hardness, N | Spring | 2.16 aA ± 0.01 | 2.86 aA ± 0.57 | 2.89 aA ± 0.67 | 3.53 bA ± 1.42 | 3.45 bA ± 1.39 | 0.4662 |
Autumn | 2.26 aA ± 0.24 | 2.38 aA ± 0.30 | 2.88 aA ± 0.66 | 3.05 bA ± 0.69 | 3.16 bA ± 0.78 | 0.5481 * | |
Cohesiveness | Spring | 0.30 aB ± 0.06 | 0.23 aA ± 0.14 | 0.26 aB ± 0.14 | 0.25 aA ± 0.06 | 0.33 aA ± 0.06 | 0.1675 |
Autumn | 0.18 aA ± 0.06 | 0.19 aA ± 0.11 | 0.19 aA ± 0.11 | 0.31 aB ± 0.01 | 0.27 aA ± 0.13 | 0.3754 | |
Springiness, mm | Spring | 3.56 aA ± 0.48 | 2.89 aA ± 0.71 | 3.26 aA ± 0.29 | 3.26 aB ± 0.28 | 4.40 aB ± 0.30 | 0.2959 |
Autumn | 3.06 aA ± 0.90 | 2.79 aA ± 1.48 | 2.87 aA ± 1.48 | 2.72 aA ± 0.52 | 3.22 aA ± 1.07 | 0.0353 | |
Adhesiveness, mJ | Spring | 1.52 aA ± 0.48 | 1.48 aA ± 0.33 | 1.25 aA ± 0.22 | 1.34 aA ± 0.32 | 1.59 aA ± 0.54 | 0.1293 |
Autumn | 1.76 aA ± 0.41 | 1.96 abB ± 0.27 | 2.23 abB ± 0.74 | 2.46 abB ± 0.27 | 2.55 bB ± 0.09 | 0.6091 * |
Properties | Season | Calcium Dose, mg Ca 100 g−1 of Milk | r | ||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | |||
Overall acceptability | Spring | 4.89 aA ± 0.19 | 4.84 aA ± 0.30 | 4.88 aA ± 0.16 | 4.77 aA ± 0.27 | 4.78 aA ± 0.52 | –0.4689 |
Autumn | 4.83 aA ± 0.24 | 4.76 aA ± 0.23 | 4.75 aA ± 0.30 | 4.79 aA ± 0.27 | 4.79 aA ± 0.29 | –0.0704 | |
Appearance | Spring | 5.00 aA ± 0.00 | 4.93 aA ± 0.26 | 4.97 aA ± 0.13 | 4.76 aA ± 0.37 | 4.60 aA ± 0.73 | –0.3300 |
Autumn | 5.00 aA ± 0.00 | 4.75 aA ± 0.29 | 4.75 aA ± 0.29 | 4.88 aA ± 0.25 | 4.98 aA ± 0.25 | –0.1581 | |
Taste | Spring | 4.92 aA ± 0.29 | 4.82 aA ± 0.41 | 4.78 aA ± 0.36 | 4.77 aA ± 0.46 | 4.50 aA ± 0.73 | –0.2554 |
Autumn | 5.00 aA ± 0.00 | 4.75 aA ± 0.50 | 4.50 aA ± 0.71 | 4.63 aA ± 0.48 | 4.75 aA ± 0.29 | –0.2044 | |
Odor | Spring | 4.96 aA ± 0.14 | 4.97 aA ± 0.13 | 4.99 aA ± 0.03 | 5.00 aA ± 0.00 | 4.99 aA ± 0.26 | 0.0130 |
Autumn | 5.00 aA ± 0.00 | 5.00 aA ± 0.00 | 4.75 aA ± 0.50 | 4.75 aA ± 0.29 | 4.88 aA ± 0.25 | –0.2637 | |
Consistency | Spring | 4.79 aA ± 0.33 | 4.73 aA ± 0.56 | 4.87 aA ± 0.30 | 4.57 aA ± 0.59 | 4.47 aA ± 0.61 | –0.2287 |
Autumn | 5.00 bA ± 0.00 | 4.63 aA ± 0.63 | 4.75 abA ± 0.29 | 4.75 abA ± 0.29 | 4.88 abA ± 0.25 | –0.1232 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlos, M.; Znamirowska-Piotrowska, A.; Kowalczyk, M.; Zaguła, G. Application of Calcium Citrate in the Manufacture of Acid Rennet Cheese Produced from High-Heat-Treated Goat’s Milk from Spring and Autumn Season. Molecules 2022, 27, 5523. https://doi.org/10.3390/molecules27175523
Pawlos M, Znamirowska-Piotrowska A, Kowalczyk M, Zaguła G. Application of Calcium Citrate in the Manufacture of Acid Rennet Cheese Produced from High-Heat-Treated Goat’s Milk from Spring and Autumn Season. Molecules. 2022; 27(17):5523. https://doi.org/10.3390/molecules27175523
Chicago/Turabian StylePawlos, Małgorzata, Agata Znamirowska-Piotrowska, Magdalena Kowalczyk, and Grzegorz Zaguła. 2022. "Application of Calcium Citrate in the Manufacture of Acid Rennet Cheese Produced from High-Heat-Treated Goat’s Milk from Spring and Autumn Season" Molecules 27, no. 17: 5523. https://doi.org/10.3390/molecules27175523
APA StylePawlos, M., Znamirowska-Piotrowska, A., Kowalczyk, M., & Zaguła, G. (2022). Application of Calcium Citrate in the Manufacture of Acid Rennet Cheese Produced from High-Heat-Treated Goat’s Milk from Spring and Autumn Season. Molecules, 27(17), 5523. https://doi.org/10.3390/molecules27175523