Synthesis of Silver Nanoparticles-Modified Graphitic Carbon Nitride Nanosheets for Highly Efficient Photocatalytic Hydrogen Peroxide Evolution
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Samples
2.2.1. Preparation of PCN and CNNS
2.2.2. Preparation of Ag@CNNS
2.3. Characterization
2.4. Photocatalytic Evaluation
2.5. Electrochemical Tests
3. Results and Discussion
3.1. Microscopic Morphology and Structural Characterization of PCN, CNNS and Ag@CNNS
3.2. Optical Properties and Band Structures of PCN, CNNS and Ag@CNNS
3.3. Photogenerated Carriers Transfer Behavior of PCN, CNNS and Ag@CNNS
3.4. Photocatalytic H2O2 Production of PCN, CNNS and Ag@CNNS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gao, J.; Yang, H.; Huang, X.; Hung, S.-F.; Cai, W.; Jia, C.; Miao, S.; Chen, H.M.; Yang, X.; Huang, Y.; et al. Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst. Chem 2020, 6, 658–674. [Google Scholar] [CrossRef]
- Xia, C.; Kim, J.Y.; Wang, H. Recommended Practice to Report Selectivity in Electrochemical Synthesis of H2O2. Nat. Catal. 2020, 3, 605–607. [Google Scholar] [CrossRef]
- Yamada, Y.; Yoneda, M.; Fukuzumi, S. High and Robust Performance of H2O2 Fuel Cells in the Presence of Scandium Ion. Energy Environ. Sci. 2015, 8, 1698–1701. [Google Scholar] [CrossRef]
- Kou, M.; Wang, Y.; Xu, Y.; Ye, L.; Huang, Y.; Jia, B.; Li, H.; Ren, J.; Deng, Y.; Chen, J.; et al. Molecularly Engineered Covalent Organic Frameworks for Hydrogen Peroxide Photosynthesis. Angew. Chem. 2022, 61, e202200413. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, X.; Feng, Z.; Lu, Z.; Zhang, Z.; Huang, W.; Li, Y.; Vuckovic, D.; Li, Y.; Dai, S.; et al. Organic Wastewater Treatment by a Single-Atom Catalyst and Electrolytically Produced H2O2. Nat. Sustain. 2021, 4, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I.E.L. Toward the Decentralized Electrochemical Production of H2O2: A Focus on the Catalysis. ACS Catal. 2018, 8, 4064–4081. [Google Scholar] [CrossRef]
- Perry, S.C.; Pangotra, D.; Vieira, L.; Csepei, L.-I.; Sieber, V.; Wang, L.; de León, C.P.; Walsh, F.C. Electrochemical Synthesis of Hydrogen Peroxide from Water and Oxygen. Nat. Rev. Chem. 2019, 3, 442–458. [Google Scholar] [CrossRef]
- Yan, H.; Shen, M.; Shen, Y.; Wang, X.-D.; Lin, W.; Pan, J.; He, J.; Ye, Y.-X.; Yang, X.; Zhu, F.; et al. Spontaneous Exciton Dissociation in Organic Photocatalyst under Ambient Conditions for Highly Efficient Synthesis of Hydrogen Peroxide. Proc. Natl. Acad. Sci. USA 2022, 119, e2202913119. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Takii, T.; Hagi, T.; Mori, S.; Kofuji, Y.; Kitagawa, Y.; Tanaka, S.; Ichikawa, S.; Hirai, T. Resorcinol—Formaldehyde Resins as Metal-Free Semiconductor Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion. Nat. Mater. 2019, 18, 985–993. [Google Scholar] [CrossRef]
- Volokh, M.; Shalom, M. Light on Peroxide. Nat. Catal. 2021, 4, 350–351. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y. Origin of Selective Production of Hydrogen Peroxide by Electrochemical Oxygen Reduction. J. Am. Chem. Soc. 2021, 143, 9423–9428. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Back, S.; Ringe, S.; Jiang, K.; Chen, F.; Sun, X.; Siahrostami, S.; Chan, K.; Wang, H. Confined Local Oxygen Gas Promotes Electrochemical Water Oxidation to Hydrogen Peroxide. Nat. Catal. 2020, 3, 125–134. [Google Scholar] [CrossRef]
- Teng, Z.; Zhang, Q.; Yang, H.; Kato, K.; Yang, W.; Lu, Y.-R.; Liu, S.; Wang, C.; Yamakata, A.; Su, C.; et al. Atomically Dispersed Antimony on Carbon Nitride for the Artificial Photosynthesis of Hydrogen Peroxide. Nat. Catal. 2021, 4, 374–384. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Sunlight-Driven Hydrogen Peroxide Production from Water and Molecular Oxygen by Metal-Free Photocatalysts. Angew. Chem. Int. Ed. 2014, 53, 13454–13459. [Google Scholar] [CrossRef] [PubMed]
- Kofuji, Y.; Ohkita, S.; Shiraishi, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Graphitic Carbon Nitride Doped with Biphenyl Diimide: Efficient Photocatalyst for Hydrogen Peroxide Production from Water and Molecular Oxygen by Sunlight. ACS Catal. 2016, 6, 7021–7029. [Google Scholar] [CrossRef]
- Fu, J.; Yu, J.; Jiang, C.; Cheng, B. G-C3N4-Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, Y.; Dong, C.-L.; Huang, Y.-C.; Chen, J.; Xue, F.; Shen, S.; Guo, L. Boron-Doped Nitrogen-Deficient Carbon Nitride-Based Z-Scheme Heterostructures for Photocatalytic Overall Water Splitting. Nat. Energy 2021, 6, 388–397. [Google Scholar] [CrossRef]
- Zhou, G.; Shan, Y.; Hu, Y.; Xu, X.; Long, L.; Zhang, J.; Dai, J.; Guo, J.; Shen, J.; Li, S.; et al. Half-Metallic Carbon Nitride Nanosheets with Micro Grid Mode Resonance Structure for Efficient Photocatalytic Hydrogen Evolution. Nat. Commun. 2018, 9, 3366. [Google Scholar] [CrossRef]
- Feng, C.; Tang, L.; Deng, Y.; Wang, J.; Luo, J.; Liu, Y.; Ouyang, X.; Yang, H.; Yu, J.; Wang, J. Synthesis of Leaf-Vein-Like G-C3N4 with Tunable Band Structures and Charge Transfer Properties for Selective Photocatalytic H2O 2 Evolution. Adv. Funct. Mater. 2020, 30, 2001922. [Google Scholar] [CrossRef]
- Wang, Y.; Du, P.; Pan, H.; Fu, L.; Zhang, Y.; Chen, J.; Du, Y.; Tang, N.; Liu, G. Increasing Solar Absorption of Atomically Thin 2D Carbon Nitride Sheets for Enhanced Visible-Light Photocatalysis. Adv. Mater. 2019, 31, 1807540. [Google Scholar] [CrossRef]
- Liang, Q.; Li, Z.; Huang, Z.-H.; Kang, F.; Yang, Q.-H. Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production. Adv. Funct. Mater. 2015, 25, 6885–6892. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, D.; Cho, A.; Weon, S.; Lee, S.; Lee, J.; Han, J.W.; Kim, D.-P.; Choi, W. Modified Carbon Nitride Nanozyme as Bifunctional Glucose Oxidase-eroxidase for Metal-Free Bioinspired Cascade Photocatalysis. Nat. Commun. 2019, 10, 940. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Huang, R.; Zhang, J.; Mao, J.; Wang, D.; Li, Y. Synergistic Modulation of the Separation of Photo-Generated Carriers via Engineering of Dual Atomic Sites for Promoting Photocatalytic Performance. Adv. Mater. 2021, 33, 2105904. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Huang, Y.; Bo, Y.; Duan, D.; Wang, Z.; Cao, J.; Zhu, G.; Ho, W.; Wang, L.; Huang, T.; et al. Highly Selective Photocatalytic CO2 Methanation with Water Vapor on Single-Atom Platinum-Decorated Defective Carbon Nitride. Angew. Chem. Int. Ed. 2022, 134, e202203063. [Google Scholar] [CrossRef]
- Tian, S.; Fu, Q.; Chen, W.; Feng, Q.; Chen, Z.; Zhang, J.; Cheong, W.-C.; Yu, R.; Gu, L.; Dong, J.; et al. Carbon Nitride Supported Fe2 Cluster Catalysts with Superior Performance for Alkene Epoxidation. Nat. Commun. 2018, 9, 2353. [Google Scholar] [CrossRef]
- Saha, D.; Gismondi, P.; Kolasinski, K.W.; Shumlas, S.L.; Rangan, S.; Eslami, B.; McConnell, A.; Bui, T.; Cunfer, K. Fabrication of Electrospun Nanofiber Composite of G-C3N4 and Au Nanoparticles as Plasmonic Photocatalyst. Surfaces Interfaces 2021, 26, 101367. [Google Scholar] [CrossRef]
- Ma, P.; Zhang, X.; Wang, C.; Wang, Z.; Wang, K.; Feng, Y.; Wang, J.; Zhai, Y.; Deng, J.; Wang, L.; et al. Band Alignment of Homojunction by Anchoring CN Quantum Dots on G-C3N4 (0D/2D) Enhance Photocatalytic Hydrogen Peroxide Evolution. Appl. Catal. B Environ. 2022, 300, 120736. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, Z.; Zeng, G.; Huang, D.; Xiao, R.; Zhang, C.; Zhou, C.; Xiong, W.; Wang, W.; Cheng, M.; et al. Ti3C2 Mxene/Porous g-C3N4 Interfacial Schottky Junction for Boosting Spatial Charge Separation in Photocatalytic H2O2 Production. Appl. Catal. B Environ. 2019, 258, 117956. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, Y.; Lin, Q.; Zhang, L.; Zhang, X.; Wang, H. Noble-Metal Single-Atoms in Thermocatalysis, Electrocatalysis, and Photocatalysis. Energy Environ. Sci. 2021, 14, 2954–3009. [Google Scholar] [CrossRef]
- Cai, J.; Huang, J.; Wang, S.; Iocozzia, J.; Sun, Z.; Sun, J.; Yang, Y.; Lai, Y.; Lin, Z. Crafting Mussel-Inspired Metal Nanoparticle-Decorated Ultrathin Graphitic Carbon Nitride for the Degradation of Chemical Pollutants and Production of Chemical Resources. Adv. Mater. 2019, 31, 1806314. [Google Scholar] [CrossRef]
- Shangguan, W.; Liu, Q.; Wang, Y.; Sun, N.; Liu, Y.; Zhao, R.; Li, Y.; Wang, C.; Zhao, J. Molecular-Level Insight into Photocatalytic CO2 Reduction with H2O over Au Nanoparticles by Interband Transitions. Nat. Commun. 2022, 13, 3894. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Cronin, S.B. A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619. [Google Scholar] [CrossRef]
- Fang, M.; Tan, X.; Liu, Z.; Hu, B.; Wang, X. Recent Progress on Metal-Enhanced Photocatalysis: A Review on the Mechanism. Research 2021, 2021, 9794329. [Google Scholar] [CrossRef]
- Zuo, G.; Liu, S.; Wang, L.; Song, H.; Zong, P.; Hou, W.; Li, B.; Guo, Z.; Meng, X.; Du, Y.; et al. Finely Dispersed Au Nanoparticles on Graphitic Carbon Nitride as Highly Active Photocatalyst for Hydrogen Peroxide Production. Catal. Commun. 2019, 123, 69–72. [Google Scholar] [CrossRef]
- Ding, J.; Sun, X.; Wang, Q.; Li, D.; Li, X.; Li, X.; Chen, L.; Zhang, X.; Tian, X.; Ostrikov, K. Plasma Synthesis of Pt/g-C3N4 Photocatalysts with Enhanced Photocatalytic Hydrogen Generation. J. Alloys Compd. 2021, 873, 159871. [Google Scholar] [CrossRef]
- Xia, P.; Zhu, B.; Yu, J.; Cao, S.; Jaroniec, M. Ultra-Thin Nanosheet Assemblies of Graphitic Carbon Nitride for Enhanced Photocatalytic CO2 Reduction. J. Mater. Chem. A 2017, 5, 3230–3238. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, L.; Liu, H.; Wu, D.; Wu, F.; Tian, L.; Liu, L.; Zou, J.; Luo, S.; Chen, B. Silver Single Atom in Carbon Nitride Catalyst for Highly Efficient Photocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2020, 59, 23112–23116. [Google Scholar] [CrossRef]
- Sui, R.; Zhang, X.; Wang, X.; Wang, X.; Pei, J.; Zhang, Y.; Liu, X.; Chen, W.; Zhu, W.; Zhuang, Z. Silver Based Single Atom Catalyst with Heteroatom Coordination Environment as High Performance Oxygen Reduction Reaction Catalyst. Nano Res. 2022, 15, 7968–7975. [Google Scholar] [CrossRef]
- de Medeiros, A.M.Z.; Khan, L.U.; da Silva, G.H.; Ospina, C.A.; Alves, O.L.; de Castro, V.L.; Martinez, D.S.T. Graphene Oxide-Silver Nanoparticle Hybrid Material: An Integrated Nanosafety Study in Zebrafish Embryos. Ecotoxicol. Environ. Saf. 2021, 209, 111776. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, P.; Wang, C.; Gan, L.; Chen, X.; Zhang, P.; Wang, Y.; Li, H.; Wang, L.; Zhou, X.; et al. Unraveling the Dual Defect Sites in Graphite Carbon Nitride for Ultra-High Photocatalytic H2O2 Evolution. Energy Environ. Sci. 2022, 15, 830–842. [Google Scholar] [CrossRef]
- Jin, Z.; Zhang, Q.; Hu, L.; Chen, J.; Cheng, X.; Zeng, Y.-J.; Ruan, S.; Ohno, T. Constructing Hydrogen Bond Based Melam/WO3 Heterojunction with Enhanced Visible-Light Photocatalytic Activity. Appl. Catal. B Environ. 2017, 205, 569–575. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Wang, P.; Yang, H.; Tang, C.; Wu, Y.; Zheng, Y.; Cheng, T.; Davey, K.; Huang, X.; Qiao, S.-Z. Boosting Electrocatalytic CO2–to–Ethanol Production via Asymmetric C–C Coupling. Nat. Commun. 2022, 13, 3754. [Google Scholar] [CrossRef]
- Shevtsova, T.; Cavallaro, G.; Lazzara, G.; Milioto, S.; Donchak, V.; Harhay, K.; Korolko, S.; Budkowski, A.; Stetsyshyn, Y. Temperature-Responsive Hybrid Nanomaterials Based on Modified Halloysite Nanotubes Uploaded with Silver Nanopar-ticles. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 641, 128525. [Google Scholar] [CrossRef]
- Hou, H.; Zeng, X.; Zhang, X. Production of Hydrogen Peroxide by Photocatalytic Processes. Angew. Chem. Int. Ed. 2020, 59, 17356–17376. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Zhu, Q.; Pan, Z.; Gupta, S.; Huang, D.; Du, Y.; Weon, S.; Wu, Y.; Muhich, C.; Stavitski, E.; et al. Spatially Separating Redox Centers on 2D Carbon Nitride with Cobalt Single Atom for Photocatalytic H2O2 Production. Proc. Natl. Acad. Sci. USA 2020, 117, 6376–6382. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.-X.; Pan, J.; Xie, F.; Gong, L.; Huang, S.; Ke, Z.; Zhu, F.; Xu, J.; Ouyang, G. Highly Efficient Photosynthesis of Hydrogen Peroxide in Ambient Conditions. Proc. Natl. Acad. Sci. USA 2021, 118, e2103964118. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Liu, M.; Zhang, Z.; Yao, W.; Tan, H.; Zhu, Y. Efficient Visible-Light-Driven Selective Oxygen Reduction to Hydrogen Peroxide by Oxygen-Enriched Graphitic Carbon Nitride Polymers. Energy Environ. Sci. 2018, 11, 2581–2589. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, Y.; Kang, Y.; Li, Q.; Xia, Y.; Zhu, Y.; Hou, H.; Uddin, M.H.; Gengenbach, T.R.; Xia, D.; et al. Simultaneously Tuning Charge Separation and Oxygen Reduction Pathway on Graphitic Carbon Nitride by Polyethylenimine for Boosted Photocatalytic Hydrogen Peroxide Production. ACS Catal. 2020, 10, 3697–3706. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride (g-C3N4) Photocatalyst Activated by Visible Light. ACS Catal. 2014, 4, 774–780. [Google Scholar] [CrossRef]
- Luo, J.; Liu, Y.; Fan, C.; Tang, L.; Yang, S.; Liu, M.; Wang, M.; Feng, C.; Ouyang, X.; Wang, L.; et al. Direct Attack and Indirect Transfer Mechanisms Dominated by Reactive Oxygen Species for Photocatalytic H2O2 Production on g-C3N4 Possessing Nitrogen Vacancies. ACS Catal. 2021, 11, 11440–11450. [Google Scholar] [CrossRef]
Photocatalysts | Concentration of Photocatalyst (mg/mL) | Reaction Solution | H2O2 Yields (μmol) | Ref. |
---|---|---|---|---|
Ag@CNNS (This work) | 1.00 | pure water (pH = 7) | 120.53 (1 h) | - |
Nv-C≡N-CN | 1.00 | pure water (pH = 7) | 137 (1 h) | [40] |
HJ-C3N4 | 1.00 | pure water (pH = 7) | 115 (1 h) | [27] |
ZnPPc-NBCN | 0.50 | pure water (pH = 7) | 57 (1 h) | [47] |
OCN-500 | 1.00 | pure water (pH = 7) | 53 (10 h) | [48] |
PEI/C3N4 | 1.00 | pure water (pH = 7) | 208.1 (AM 1.5 G, 1 h) | [49] |
Co1/AQ/C3N4 | 0.50 | pure water (pH = 7) | 62 (AM 1.5 G, 1 h) | [46] |
g-C3N4/PDI51 | 1.67 | pure water (pH = 7) | 31 (24 h) | [15] |
g-C3N4/BDI51 | 1.67 | pure water (pH = 7) | 41 (24 h) | [15] |
Ag@U-g-C3N4-NS | 1.00 | pure water (pH = 3) | 70 (1 h) | [30] |
Sb-SAPC15 | 2.00 | Phosphate buffer solution | 470.5 (8 h) | [13] |
g-C3N4 | 4.00 | 90% ethanol | 30 (12 h) | [50] |
g-C3N4 | 1.67 | 10% isopropanol | 148 (6 h) | [14] |
NDCN | 1.00 | 10% isopropanol | 476 (1 h) | [51] |
TC/pCN | 1.00 | 10% isopropanol | 131.71 (1 h) | [28] |
CN4 | 0.50 | 10% isopropanol | 287 (1 h) | [19] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, J.; Zhang, X.; Wang, K.; Ma, P.; Hu, H.; Zhou, X.; Zheng, K. Synthesis of Silver Nanoparticles-Modified Graphitic Carbon Nitride Nanosheets for Highly Efficient Photocatalytic Hydrogen Peroxide Evolution. Molecules 2022, 27, 5535. https://doi.org/10.3390/molecules27175535
Hou J, Zhang X, Wang K, Ma P, Hu H, Zhou X, Zheng K. Synthesis of Silver Nanoparticles-Modified Graphitic Carbon Nitride Nanosheets for Highly Efficient Photocatalytic Hydrogen Peroxide Evolution. Molecules. 2022; 27(17):5535. https://doi.org/10.3390/molecules27175535
Chicago/Turabian StyleHou, Jixiang, Xu Zhang, Kaiwen Wang, Peijie Ma, Hanwen Hu, Xiyuan Zhou, and Kun Zheng. 2022. "Synthesis of Silver Nanoparticles-Modified Graphitic Carbon Nitride Nanosheets for Highly Efficient Photocatalytic Hydrogen Peroxide Evolution" Molecules 27, no. 17: 5535. https://doi.org/10.3390/molecules27175535
APA StyleHou, J., Zhang, X., Wang, K., Ma, P., Hu, H., Zhou, X., & Zheng, K. (2022). Synthesis of Silver Nanoparticles-Modified Graphitic Carbon Nitride Nanosheets for Highly Efficient Photocatalytic Hydrogen Peroxide Evolution. Molecules, 27(17), 5535. https://doi.org/10.3390/molecules27175535