Dual Inhibition of HIV-1 and Cathepsin L Proteases by Sarcandra glabra
Abstract
:1. Introduction
2. Results and Discussion
2.1. Inhibition of HIV-1, CatL and Renin PRs by SG Extracts
2.2. Characterization of the Major Ingredients in SG Extracts by UPLC-MS
2.3. Inhibition of CatL and HIV-1 PRs by the Major Ingredients in SG Extracts
2.4. Molecular Docking Results
2.5. Quantitation of Antiviral Ingredients in SG Extracts by UPLC-MS
3. Materials and Methods
3.1. Plant Material and Extraction
3.2. Reagents and Instruments
3.3. Preparation of UPLC-MS Analysis Samples
3.4. Fluorescence Resonance Energy Transfer (FRET) Assay
3.5. Data Acquisition with UPLC-MS
3.6. Mass Spectrometry Data Analysis
3.7. Docking Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- WHO. Coronavirus Disease 2019 (COVID-19): Situation Report: COVID-19 Partners Platform. Available online: https://covid19.who.int/ (accessed on 20 July 2022).
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Pruijssers, A.J.; Denison, M.R. Nucleoside analogues for the treatment of coronavirus infections. Curr. Opin. Virol. 2019, 35, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Ma, C.M.; Li, S.M.; Zhou, Y.; Pan, B.W.; Xiao, J.W.; Yang, X. Application of the Bioactivity Integrents from Du Guo Lu Huang as SARS-Cov-19 Drug. Patent Application No. 202111142665.2 (28/09/2021).
- Liu, T.; Luo, S.; Libby, P.; Shi, G.P. Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients. Pharmacol. Ther. 2020, 213, 107587–107601. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, S. Herbal Textual Research on Sarcandra glabra. J. Chin. Med. Mater. 2015, 38, 2628–2631. [Google Scholar] [CrossRef]
- Zeng, Y.L.; Liu, J.Y.; Zhang, Q.; Qin, X.H.; Li, Z.L.; Sun, G.J.; Jin, S.R. The traditional uses, phytochemistry and pharmacology of Sarcandra glabra (Thunb.) Nakai, a Chinese herb with potential for development: Review. Front. Pharmacol. 2021, 12, 652926. [Google Scholar] [CrossRef]
- National Commission of Chinese Pharmacopoeia. The Pharmacopoeia of the People’s Republic of China, 1st ed.; Chemical Industry Press: Beijing, China, 2020; pp. 223, 427, and 1189. [Google Scholar]
- Cao, H.J.; Tan, R.R.; He, R.R.; Tang, L.P.; Wang, X.L.; Yao, N.; Duan, W.J.; Hu, Y.A.; Yao, X.S.; Kurihara, H. Sarcandra glabra extract reduces the susceptibility and severity of Influenza in restraint-stressed mice. Evid. Based Complement. Altern. Med. 2012, 2012, 236539. [Google Scholar] [CrossRef]
- Liu, J.X.; Zhang, Y.; Hu, Q.P.; Liu, J.Q.; Liu, Y.T.; Wu, Q.G.; Wu, J.G.; Lai, X.P.; Zhang, Z.D.; Li, X.; et al. Anti-inflammatory effects of rosmarinic acid-4-O-β-D-glucoside in reducing acute lung injury in mice infected with Influenza virus. Antivir. Res. 2017, 144, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Yaermaimaiti, S.; Wang, P.; Luo, J.; Li, R.J.; Kong, L.Y. Sesquiterpenoids from the seeds of Sarcandra glabra and the potential anti-inflammatory effects. Fitoterapia 2016, 111, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Fang, P.L.; Cao, Y.L.; Yan, H.; Pan, L.L.; Liu, S.C.; Gong, N.B.; Lue, Y.; Chen, C.X.; Zhong, H.M.; Guo, Y. Lindenance disesquiterpenoids from Chloranthus japonicas exhibited potent anti-HIV-1 activities. J. Nat. Prod. 2011, 74, 1408–1413. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, J.; Liu, J.X.; Li, G.; Zhao, Y.; Zeng, X. Systematic analysis of absorbed antiinflammatory constituents and metabolites of Sarcandra glabra in rat plasma using ultra-high-pressure liquid chromatography coupled with linear trap quadrupole orbitrap mass spectrometry. PLoS ONE 2016, 11, e0150063. [Google Scholar]
- Hu, X.R.; Yang, J.S.; Xu, X.D. Three novel sesquiterpene glycosides of Sarcandra glabra. Chem. Pharm. Bull. 2009, 57, 418–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, A.N.; Brenner, M.C.; Punessen, N.; Snodgrass, M.; Byars, C.; Arora, Y.Y.; Linseman, D.A. Comparison of the neuroprotective and anti-inflammatory effects of the anthocyanin metabolites, protocatechuic acid and 4-hydroxybenzoic acid. Oxidative Med. Cell. Longev. 2017, 2017, 6297080–6297092. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; He, Y.; Sheng, F.Y.; Hu, Y.F.; Song, Y.; Li, W.; Chen, J.R.; Zhang, J.M.; Zou, L. Towards a better understanding of Fagopyrum dibotrys: A systematic review. Chin. Med. 2021, 16, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wei, Y.; Tian, W.Y.; Sakharkar, M.K.; Liu, Q.; Yang, X.; Zhou, Y.Z.; Mou, C.L.; Cai, G.L.; Yang, J. Characterization of nine compounds isolated from the acid hydrolysate of Lonicera fulvotomentosa Hsu et S. C. Cheng and evaluation of their In vitro activity towards HIV protease. Molecules 2019, 24, 4526. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Ma, C.M.; Hattori, M. Synthesis of dammarane-type triterpene derivatives and their ability to inhibit HIV and HCV proteases. Bioorg. Med. Chem. 2009, 17, 3003–3010. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; He, X.M.; Wang, X.T.; Yu, B.; Zhao, S.Q.; Jiao, P.L.; Jin, H.W.; Liu, Z.M.; Wang, K.W.; Zhang, L.R.; et al. Design, synthesis and biological activities of piperidine spirooxadiazole derivatives as α7 nicotinic receptor antagonists. Eur. J. Med. Chem. 2020, 207, 112774–112790. [Google Scholar] [CrossRef] [PubMed]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; Macary, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef] [PubMed]
Name | IC50 ± RSD% (mg/mL) | ||
---|---|---|---|
HIV-1 PR | CatL PR | Renin PR | |
SGW | 0.003 ± 0.058% | 0.26 ± 2.38% | 0.13 ± 1.2% |
SG30 | 0.008 ± 0.034% | 0.24 ± 0.87% | 0.12 ± 1.6% |
SG60 | 0.063 ± 0.71% | 0.15 ± 1.06% | 0.13 ± 2.8% |
SG85 | 0.07 ± 0.74% | 0.21 ± 1.19% | >100 |
PC1 | 0.25 ± 0.03% (μM) | - | - |
PC2 | - | 0.0032 ± 0.044% (μM) | - |
PC3 | - | - | 0.95 ± 0.021% (μM) |
No. | Rt [min] | Name | Structures | Formula |
---|---|---|---|---|
1 | 1.12 | Betaine | C5H11NO2 | |
2 | 1.19 | D-(-)-Quinic acid | C7H12O6 | |
3 | 3.47 | Paeonol | C9H10O3 | |
4 | 3.81 | Protocatechuic acid | C7H6O4 | |
5 | 4.30 | Chlorogenic acid | C16H18O9 | |
6 | 4.32 | 7-Hydroxycoumarine | C9H6O3 | |
7 | 4.74 | Caffeic acid | C9H8O4 | |
8 | 5.02 | Fraxetin | C10H8O5 | |
9 | 5.96 | Astilbin | C21H22O11 | |
10 | 6.04 | Isofraxidin | C11H10O5 | |
11 | 6.59 | 3,4-Dicaffeoylquinic acid | C25H24O12 | |
12 | 7.71 | Rosmarinic acid | C18H16O8 | |
13 | 12.65 | Alpinetin | C16H14O4 | |
14 | 13.64 | Artemisinin | C15H22O5 |
No. | Name | CatL PR | |
---|---|---|---|
Inhibition (%) ± SD at 0.01 (mg/mL) | IC50 ± RSD% (mg/mL) | ||
4 | Protocatechuic acid | 42.1 ± 2.25 | >100 |
5 | Chlorogenic acid | 40.8 ± 2.54 | >100 |
7 | Caffeic acid | 32.1 ± 1.68 | >100 |
10 | Isofraxidin | 27.0 ± 2.37 | >100 |
6 | 7-Hydroxycoumarine | 22.6 ± 0.53 | >100 |
12 | Rosmarinic acid | 19.2 ± 1.70 | >100 |
8 | Fraxetin | 15.0 ± 5.25 | >100 |
13 | Alpinetin | 11.9 ± 8.99 | >100 |
2 | D-(-)-Quinic acid | −0.32 ± 8.61 | >100 |
14 | Artemisinin | −1.1 ± 0.52 | >100 |
3 | Paeonol | −15.0 ± 0.56 | >100 |
1 | Betaine | −15.5 ± 5.76 | >100 |
9 | Astilbin | −24.7 ± 8.14 | >100 |
11 | 3,4-Dicaffeoylquinic acid | −31.3 ± 6.24 | >100 |
PC | 99.2 ± 0.13 (0.02 µM) | 0.0032 ± 0.044% (μM) |
No. | Name | HIV-1 PR | |
---|---|---|---|
Inhibition (%) ± SD at 1.0 (mg/mL) | IC50 ± RSD% (mg/mL) | ||
5 | Chlorogenic acid | 100.0 ± 3.75 | 0.026 ± 1.03% |
11 | 3,4-Dicaffeoylquinic acid | 86.1 ± 3.92 | 0.13 ± 2.84% |
7 | Caffeic acid | 65.9 ± 0.00 | 0.48 ± 0.124% |
12 | Rosmarinic acid | 68.8 ± 4.21 | 0.54 ± 0.55% |
9 | Astilbin | 68.4 ± 5.45 | 0.54 ± 4.34% |
13 | Alpinetin | 62.3 ± 0.96 | 0.62 ± 3.44% |
14 | Artemisinin | 50.8 ± 0.58 | 0.95 ± 2.77% |
4 | Protocatechuic acid | 47.9 ± 1.82 | >100 |
6 | 7-Hydroxycoumarine | 28.9 ± 4.41 | >100 |
8 | Fraxetin | 24.1 ± 6.70 | >100 |
1 | Betaine | 8.95 ± 4.61 | >100 |
10 | Isofraxidin | −2.09 ± 8.57 | >100 |
3 | Paeonol | −12.6 ± 0.26 | >100 |
2 | D-(-)-Quinic acid | −20.1 ± 2.61 | >100 |
Pepstatin A | 0.25 ± 0.03% (µM) |
No. | Name | Docking Score | Glide Gscore | Glide Emodel (kcal/mol) |
---|---|---|---|---|
5 | Chlorogenic acid | −8.282 | −8.285 | −48.119 |
12 | Rosmarinic acid | −7.616 | −7.616 | −58.310 |
4 | Protocatechuic acid | −6.043 | −6.043 | −26.518 |
8 | Fraxetin | −5.335 | −5.356 | −30.303 |
7 | Caffeic acid | −4.766 | −4.766 | −30.038 |
6 | 7-Hydroxycoumarine | −4.635 | −4.645 | −27.908 |
13 | Alpinetin | −3.913 | −3.913 | −36.021 |
10 | Isofraxidin | −3.258 | −3.316 | −28.556 |
PC | Cathepsin L inhibitor | −7.822 | −7.823 | −93.170 |
NO. | Name | Docking Score | Glide Gscore | Glide Emodel (kcal/mol) |
---|---|---|---|---|
11 | 3,4-Dicaffeoylquinic acid | −14.079 | −14.079 | −99.795 |
12 | Rosmarinic acid | −11.268 | −11.268 | −72.868 |
5 | Chlorogenic acid | −10.679 | −10.682 | −75.647 |
9 | Astilbin | −9.267 | −9.283 | −77.052 |
7 | Caffeic acid | −7.071 | −7.071 | −35.043 |
13 | Alpinetin | −6.765 | −6.765 | −46.293 |
14 | Artemisinin | −4.971 | −4.971 | −37.755 |
PC | Pepstatin A | −10.940 | −10.941 | −131.591 |
No | Rt (min) | Name | SGW | SG30 | SG60 | SG85 | Regression Equation |
---|---|---|---|---|---|---|---|
Content (μg/mg) | |||||||
4 | 3.81 | Protocatechuic acid | 14.94 | 0.40 | 0.39 | 0.51 | Y = −3.92 × 10−3X2 + 4.938 × 102X − 1.197 × 105; R2 = 0.9998 |
5 | 4.30 | Chlorogenic acid | 12.724 | 15.668 | 15.094 | 15.767 | Y = −5.403 × 10−2X2 + 1.143 × 104X + 1.748 × 104; R2 = 0.9999 |
7 | 4.74 | Caffeic acid | 1.712 | 1.823 | 2.296 | 2.468 | Y = −3.553 × 10−1X2 + 1.433 × 104X + 1.123 × 106; R2 = 0.9996 |
8 | 5.02 | Fraxetin | 0.020 | 0.004 | 0.011 | 0.022 | Y = −2.997 × 10−1X2 + 4.775 × 104X + 1.02 × 107; R2 = 0.9999 |
10 | 6.04 | Isofraxetin | 4.800 | 4.260 | 3.925 | 4.995 | Y = −9.136 × 10−2X2 + 1.43 × 104X + 3.492 × 106; R2 = 0.9993 |
11 | 6.59 | 3,4-Dicaffeoylquinic acid | 5.215 | 6.845 | 6.848 | 7.813 | Y = −3.886 × 10−2X2 + 1.057 × 104X + 4.053 × 106; R2 = 0.9996 |
12 | 7.71 | Rosmarinic acid | 21.242 | 22.804 | 27.730 | 29.943 | Y = −3.942 × 10−3X2 + 1.423 × 103X − 8.076 × 105; R2 = 1.0000 |
13 | 12.65 | Alpinetin | 0.026 | 0.051 | 0.059 | 0.113 | Y = −1.703 × 10−1X2 + 4.281 × 105X + 8.059 × 107; R2 = 0.9998 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, B.; Li, S.; Xiao, J.; Yang, X.; Xie, S.; Zhou, Y.; Yang, J.; Wei, Y. Dual Inhibition of HIV-1 and Cathepsin L Proteases by Sarcandra glabra. Molecules 2022, 27, 5552. https://doi.org/10.3390/molecules27175552
Pan B, Li S, Xiao J, Yang X, Xie S, Zhou Y, Yang J, Wei Y. Dual Inhibition of HIV-1 and Cathepsin L Proteases by Sarcandra glabra. Molecules. 2022; 27(17):5552. https://doi.org/10.3390/molecules27175552
Chicago/Turabian StylePan, Bowen, Sumei Li, Junwei Xiao, Xin Yang, Shouxia Xie, Ying Zhou, Jian Yang, and Ying Wei. 2022. "Dual Inhibition of HIV-1 and Cathepsin L Proteases by Sarcandra glabra" Molecules 27, no. 17: 5552. https://doi.org/10.3390/molecules27175552
APA StylePan, B., Li, S., Xiao, J., Yang, X., Xie, S., Zhou, Y., Yang, J., & Wei, Y. (2022). Dual Inhibition of HIV-1 and Cathepsin L Proteases by Sarcandra glabra. Molecules, 27(17), 5552. https://doi.org/10.3390/molecules27175552