Synthesis of a Magnetic Carnation-like Hydroxyapatite/Basic Calcium Carbonate Nanocomposite and Its Adsorption Behaviors for Lead Ions in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Magnetic HAP/BCC Nanocomposites
2.3. Batch Adsorption Experiments
2.4. Characterization Methods
3. Results and Discussion
3.1. Characterization of Magnetic HAP/BCC Nanocomposites
3.2. Adsorption Analysis
3.2.1. Adsorption Kinetics
3.2.2. Adsorption Isotherms
3.3. Magnetic Performance and Magnetic Separation
3.4. Formation and Adsorption Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tian, Q.; Bai, Y.; Pan, Y.; Chen, C.; Yao, S.; Sasaki, K.; Zhang, H. Application of Geopolymer in Stabilization/Solidification of Hazardous Pollutants: A Review. Molecules 2022, 27, 4570. [Google Scholar] [CrossRef]
- Liu, Y.; Pang, H.W.; Wang, X.X.; Yu, S.J.; Chen, Z.S.; Zhang, P.; Chen, L.; Song, G.; Alharbi, N.S.; Rabah, S.O.; et al. Zeolitic imidazolate framework-based nanomaterials for the capture of heavy metal ions and radionuclides: A review. Chem. Eng. J. 2021, 406, 127139. [Google Scholar] [CrossRef]
- Wu, Y.H.; Pang, H.W.; Liu, Y.; Wang, X.X.; Yu, S.J.; Fu, D.; Chen, J.R.; Wang, X.K. Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environ. Pollut. 2019, 246, 608–620. [Google Scholar] [CrossRef]
- Zhao, G.X.; Huang, X.B.; Tang, Z.W.; Huang, Q.F.; Niu, F.L.; Wang, X.K. Polymer-based nanocomposites for heavy metal ions removal from aqueous solution: A review. Polym. Chem. 2018, 9, 3562–3582. [Google Scholar] [CrossRef]
- Yadanaparthi, S.K.R.; Graybill, D.; von Wandruszka, R. Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. J. Hazard. Mater. 2009, 171, 1–15. [Google Scholar] [CrossRef]
- Gholinejad, B.; Khashij, S.; Ghorbani, F.; Bandak, I.; Farajollahi, A. Effects of lead ions on germination, initial growth, and physiological characteristics of Lolium perenne L. species and its bioaccumulation potential. Environ. Sci. Pollut. Res. 2020, 27, 11155–11163. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011; Available online: https://www.who.int/publications/i/item/9789241548151 (accessed on 6 August 2022).
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Huang, S.Y.; Song, S.; Zhang, R.; Wen, T.; Wang, X.X.; Yu, S.J.; Song, W.C.; Hayat, T.; Alsaedi, A.; Wang, X.K. Construction of Layered Double Hydroxides/Hollow Carbon Microsphere Composites and Its Applications for Mutual Removal of Pb(II) and Humic Acid from Aqueous Solutions. ACS Sustain. Chem. Eng. 2017, 5, 11268–11279. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Wang, X.J.; Wang, H.; Zhao, J.F. Removal of Pb(II) from aqueous solution using hydroxyapatite/calcium silicate hydrate (HAP/C-S-H) composite adsorbent prepared by a phosphate recovery process. Chem. Eng. J. 2018, 344, 53–61. [Google Scholar] [CrossRef]
- Duc, T.H.; Vu, T.K.; Dang, C.T.; Nguyen, V.H.; La, D.D.; Kim, G.M.; Chang, S.W.; Bui, X.T.; Dang, T.D.; Nguyen, D.D. Synthesis and application of hydrogel calcium alginate microparticles as a biomaterial to remove heavy metals from aqueous media. Environ. Technol. Innov. 2021, 22, 101400. [Google Scholar] [CrossRef]
- Song, X.W.; Cao, Y.W.; Bu, X.Z.; Luo, X.P. Porous vaterite and cubic calcite aggregated calcium carbonate obtained from steamed ammonia liquid waste for Cu2+ heavy metal ions removal by adsorption process. Appl. Surf. Sci. 2021, 536, 147958. [Google Scholar] [CrossRef]
- Shao, N.N.; Tang, S.Q.; Liu, Z.; Li, L.; Yan, F.; Liu, F.; Li, S.; Zhang, Z.T. Hierarchically structured calcium silicate hydrate based nanocomposites derived from steel slag for highly efficient heavy metal removal from waste water. ACS Sustain. Chem. Eng. 2018, 6, 14926–14935. [Google Scholar] [CrossRef]
- Shao, N.N.; Li, S.; Yan, F.; Su, Y.P.; Liu, F.; Zhang, Z.T. An all-in-one strategy for the adsorption of heavy metal ions and photodegradation of organic pollutants using steel slag-derived calcium silicate hydrate. J. Hazard. Mater. 2020, 382, 121120. [Google Scholar] [CrossRef]
- Hoa, N.V.; Minh, N.C.; Cuong, H.N.; Dat, P.A.; Nam, P.V.; Viet, P.H.T.; Phuong, P.T.D.; Trung, T.S. Highly Porous Hydroxyapatite/Graphene Oxide/Chitosan Beads as an Efficient Adsorbent for Dyes and Heavy Metal Ions Removal. Molecules 2021, 26, 6127. [Google Scholar] [CrossRef]
- Guo, H.; Jiang, C.; Xu, Z.; Luo, P.; Fu, Z.; Zhang, J. Synthesis of bitter gourd-shaped nanoscaled hydroxyapatite and its adsorption property for heavy metal ions. Mater. Lett. 2019, 241, 176–179. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B. Hydroxyapatite as an advanced adsorbent for removal of heavy metal ions from water: Focus on its applications and limitations. Mater. Today Proc. 2021, 46, 11029–11034. [Google Scholar] [CrossRef]
- Biedrzycka, A.; Skwarek, E.; Osypiuk, D.; Cristóvao, B. Synthesis of Hydroxyapatite/Iron Oxide Composite and Comparison of Selected Structural, Surface, and Electrochemical Properties. Materials 2022, 15, 1139. [Google Scholar] [CrossRef]
- Biedrzycka, A.; Skwarek, E.; Hanna, U.M. Hydroxyapatite with magnetic core: Synthesis methods, properties, adsorption and medical applications. Adv. Colloid Interface Sci. 2021, 291, 102401. [Google Scholar] [CrossRef]
- Ripken, M.; Gallien, F.; Schlotterbach, T.; Lengauer, C.L. Structural and physicochemical characterization of basic calcium carbonate (BCC), Ca3(CO3)2(OH)2·H2O. Eur. J. Mineral. 2018, 30, 85–96. [Google Scholar] [CrossRef]
- Ahn, J.W.; Joo, S.M.; Kim, H.S.; Kim, D.H.; Kim, J.P.; Kim, H. Influence of Final Crystal with Synthesis of Basic Calcium Carbonate by Carbonation Process. Mater. Sci. Forum 2003, 439, 244–253. [Google Scholar] [CrossRef]
- Wang, H.W.; Daemen, L.L.; Cheshire, M.C.; Kidder, M.K.; Stack, A.G.; Allard, L.F.; Neuefein, J.; Olds, D.; Liu, J.; Page, K. Synthesis and structure of synthetically pure and deuterated amorphous (basic) calcium carbonates. Chem. Commun. 2017, 53, 2942–2945. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Yang, L.; Chen, J.; Miki, T.; Li, S.; Bai, H.; Nagasaka, T. Competitive mechanism and influencing factors for the simultaneous removal of Cr(III) and Zn(II) in acidic aqueous solutions using steel slag: Batch and column experiments. J. Clean. Prod. 2019, 230, 69–79. [Google Scholar] [CrossRef]
- Hobson, A.J.; Stewart, D.I.; Mortimer, R.J.G.; Mayes, W.M.; Rogerson, M.; Burke, I.T. Leaching behaviour of co-disposed steel making wastes: Effects of aeration on leachate chemistry and vanadium mobilisation. Waste Manag. 2018, 81, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.M.; Wu, J.S.; Wang, J.S.; Yang, Y.L.; Xu, M.; Liu, J.C.; Yang, C.; Cai, Y.F.; He, H.; Du, Y.C.; et al. In-situ constructing nanostructured magnesium ferrite on steel slag for Cr (VI) photoreduction. J. Hazard. Mater. 2022, 422, 126951. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.L.; Wu, P.Q.; Qiu, J.P.; Guo, Z.B.; Tian, Y.S.; Sun, X.G.; Gu, X.W. Recycling hazardous steel slag after thermal treatment to produce a binder for cemented paste backfill. Powder Technol. 2022, 395, 652–662. [Google Scholar] [CrossRef]
- Guo, J.; Bao, Y.; Wang, M. Steel slag in China: Treatment, recycling, and management. Waste Manag. 2018, 78, 318–330. [Google Scholar] [CrossRef]
- Dong, Q.; Wang, G.; Chen, X.; Tan, J.; Gu, X. Recycling of steel slag aggregate in Portland cement concrete: An overview. J. Clean. Prod. 2021, 282, 124447. [Google Scholar] [CrossRef]
- Wang, X.B.; Li, X.Y.; Yan, X.; Tu, C.; Yu, Z.G. Environmental risks for application of iron and steel slags in soils in China: A review. Pedosphere 2021, 31, 28–42. [Google Scholar] [CrossRef]
- Song, Q.F.; Guo, M.Z.; Wang, L.; Ling, T.C. Use of steel slag as sustainable construction materials: A review of accelerated carbonation treatment. Resour. Conserv. Recycl. 2021, 173, 105740. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Zhao, L.; Zhang, S.; Huang, Y.; Wu, X.; Wang, X. Synthesis of amidoxime-functionalized Fe3O4@SiO2 core-shell magnetic microspheres for highly efficient sorption of U(VI). Chem. Eng. J. 2014, 235, 275–283. [Google Scholar] [CrossRef]
- Zheng, N.C.; Yin, L.Y.; Su, M.H.; Liu, Z.Q.; Tsang, D.C.W.; Chen, D.Y. Synthesis of shape and structure-dependent hydroxyapatite nanostructures as a superior adsorbent for removal of U(VI). Chem. Eng. J. 2020, 384, 123262. [Google Scholar] [CrossRef]
- Esvandi, Z.; Foroutan, R.; Mirjalili, M.; Sorial, G.A.; Ramavandi, B. Physicochemical Behavior of Penaeuse semisulcatuse Chitin for Pb and Cd Removal from Aqueous Environment. J. Polym. Environ. 2019, 27, 263–274. [Google Scholar] [CrossRef]
- Wang, F.F.; Guo, Y.M.; Wang, H.J.; Yang, L.; Wang, K.; Ma, X.M.; Yao, W.G.; Zhang, H. Facile preparation of hydroxyapatite with a three dimensional architecture and potential application in water treatment. CrystEngComm 2011, 13, 5634–5637. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Liu, Y.X.; Lu, H.H.; Yang, R.Q.; Yang, S.M. Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions. J. Solid State Chem. 2018, 261, 53–61. [Google Scholar] [CrossRef]
- Wu, W.L.; Liu, Z.H.; Azeem, M.; Guo, Z.Q.; Li, R.H.; Li, Y.G.; Peng, Y.R.; Ali, E.F.; Wang, H.L.; Wang, S.S.; et al. Hydroxyapatite tailored hierarchical porous biochar composite immobilized Cd(II) and Pb(II) and mitigated their hazardous effects in contaminated water and soil. J. Hazard. Mater. 2022, 437, 129330. [Google Scholar] [CrossRef]
Sample | Langmuir Isotherm | Freundlich Isotherm | ||||
---|---|---|---|---|---|---|
qmax (mg g−1) | kLan (L mg−1) ×10−1 | R2 | n | kFre (mg g−1(L/mg)−1/n) | R2 | |
S0(Raw steel slag) | 15.66 | 0.014 | 0.989 | 2.278 | 0.396 | 0.972 |
S1(0 g-MDP) | 623.7 | 0.010 | 0.974 | 1.960 | 8.151 | 0.989 |
S2(10 g-MDP) | 753.4 | 0.013 | 0.982 | 2.228 | 17.43 | 0.993 |
S3(30 g-MDP) | 859.7 | 0.023 | 0.951 | 2.856 | 48.43 | 0.971 |
Absorbent | Surface Area (m2 g−1) | qmax (mg g−1) | References |
---|---|---|---|
Raw steel slag (300 mesh) (S0) | 3.31 | 15.66 | This work |
Lappa-like HAP nanocomposite (S1) | 52.24 | 623.7 | This work |
Mixed nanoflower-like HAP/BCC nanocomposite (S2) | 78.94 | 753.4 | This work |
Carnation-like HAP/BCC nanocomposite (S3) | 46.67 | 859.7 | This work |
Steel slag-derived calcium silicate hydrate | 76.5 | 550 | [13,14] |
3D flower-like HAP | N | 30 | [34] |
Bitter gourd-shaped nanoscale HAP | 77.25 | 815 | [16] |
HAP-biochar nanocomposite | 126.4 | 961.5 | [35] |
HAP/calcium silicate hydrate | 84.54 | 946.7 | [10] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Hu, S.; Wang, Z.; Li, Y.; Guo, X.; He, Z.; Wang, W.; Feng, J.; Yang, K.; Zheng, H. Synthesis of a Magnetic Carnation-like Hydroxyapatite/Basic Calcium Carbonate Nanocomposite and Its Adsorption Behaviors for Lead Ions in Water. Molecules 2022, 27, 5565. https://doi.org/10.3390/molecules27175565
Guo H, Hu S, Wang Z, Li Y, Guo X, He Z, Wang W, Feng J, Yang K, Zheng H. Synthesis of a Magnetic Carnation-like Hydroxyapatite/Basic Calcium Carbonate Nanocomposite and Its Adsorption Behaviors for Lead Ions in Water. Molecules. 2022; 27(17):5565. https://doi.org/10.3390/molecules27175565
Chicago/Turabian StyleGuo, Haifeng, Siru Hu, Zongli Wang, Yutong Li, Xinshuang Guo, Ziling He, Wenbin Wang, Jun Feng, Kangyun Yang, and Hong Zheng. 2022. "Synthesis of a Magnetic Carnation-like Hydroxyapatite/Basic Calcium Carbonate Nanocomposite and Its Adsorption Behaviors for Lead Ions in Water" Molecules 27, no. 17: 5565. https://doi.org/10.3390/molecules27175565
APA StyleGuo, H., Hu, S., Wang, Z., Li, Y., Guo, X., He, Z., Wang, W., Feng, J., Yang, K., & Zheng, H. (2022). Synthesis of a Magnetic Carnation-like Hydroxyapatite/Basic Calcium Carbonate Nanocomposite and Its Adsorption Behaviors for Lead Ions in Water. Molecules, 27(17), 5565. https://doi.org/10.3390/molecules27175565