Apoptotic and Cell Cycle Effects of Triterpenes Isolated from Phoradendron wattii on Leukemia Cell Lines
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Compounds
4.2. Controls
4.3. General Procedures
4.4. Cell Lines
4.5. Bioassay of Viability
4.6. Viability Test in Normal Mononuclear Cells
4.7. Proliferation Bioassay
4.8. Apoptosis Assay
4.9. Cell Cycle Assay
4.10. In Silico Studies
4.11. Analysis of Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González-Salas, W.M.; Olarte-Carrillo, I.; Gutiérrez-Romero, M.; Montaño-Figueroa, E.H.; Martínez-Murillo, C.; Ramos-Peñafiel, C.O. Frecuencia de leucemias agudas en un hospital de referencia. Rev. Med. Inst. Mex. Seguro Soc. 2012, 50, 167–171. [Google Scholar] [PubMed]
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef]
- Larson, R.A. Is modulation of multidrug resistance a viable strategy for acute myeloid leukemia? Leukemia 2003, 17, 488–491. [Google Scholar] [CrossRef] [PubMed]
- Caamal-Fuentes, E.; Torres-Tapia, L.W.; Simá-Polanco, P.; Peraza-Sánchez, S.R.; Moo-Puc, R. Screening of plants used in Mayan traditional medicine to treat cancer-like symptoms. J. Ethnopharmacol. 2011, 135, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Chan, L.S.; García-Cámara, I.; Torres-Tapia, L.W.; Moo-Puc, R.E.; Peraza-Sánchez, S.R. Lupane-type triterpenes of Phoradendron vernicosum. J. Nat. Prod. 2017, 80, 3038–3042. [Google Scholar] [CrossRef]
- Chaírez-Ramírez, M.H.; Moreno-Jimenez, M.R.; Gónzalez-Laredo, R.F.; Gallegos-Infante, J.A.; Rocha-Gúzman, N.E. Lupane-type triterpenes and their anti-cancer activities against most common malignant tumors: A review. EXCLI J. 2016, 15, 758–771. [Google Scholar] [CrossRef]
- Ye, B.; Ji, Z.-N. 23-Hydroxybetulinic acid-induced HL-60 cell autophagic apoptosis and its molecular mechanism. Nat. Prod. Res. 2012, 26, 1063–1068. [Google Scholar] [CrossRef]
- Raghuvar Gopal, D.V.; Narkar, A.A.; Badrinath, Y.; Mishra, K.P.; Joshi, D.S. Betulinic acid induces apoptosis in human chronic myelogenous leukemia (CML) cell line K-562 without altering the levels of Bcr-Abl. Toxicol. Lett. 2005, 155, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; He, J.; Fang, J.; Hong, M. Antitumor effect of betulinic acid on human acute leukemia K562 cell in vitro. J. Huazhong Univ Sci. Technol. Med. Sci. 2010, 30, 453–457. [Google Scholar] [CrossRef]
- Erhardt, H.; Fulda, S.; Führer, M.; Debatin, K.M.; Jeremias, I. Betulinic acid induced apoptosis in leukemia cells. Leukemia 2004, 18, 1406–1412. [Google Scholar] [CrossRef]
- Dash, S.K.; Chattopadhyay, S.; Dash, S.S.; Tripathy, S.; Das, B.; Mahapatra, S.K.; Bag, B.G.; Karmakar, P.; Roy, S. Self assembled nano fibers of betulinic acid: A selective inducer for ROS/TNF-alpha pathway mediated leukemic cell death. Bioorg. Chem. 2015, 63, 85–100. [Google Scholar] [CrossRef]
- Barreto-Vianna, D.R.; Gotardi, J.; Baggio Gnoatto, S.C.; Pilger, D.A. Natural and semisynthetic pentacyclic triterpenes for chronic myeloid leukemia therapy: Reality, challenges and perspectives. ChemMedChem 2021, 16, 1835–1860. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 427–517. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.K.; Dhungana, K.; Headley, A.D.; Ni, B. Highly enantioselective and recyclable organocatalytic Michael addition of malonates to α,β-unsaturated aldehydes in aqueous media. Org. Biomol. Chem. 2012, 10, 8322–8325. [Google Scholar] [CrossRef]
- Hata, K.; Ogawa, S.; Makino, M.; Mukaiyama, T.; Hori, K.; Iida, T.; Fujimoto, Y. Lupane triterpenes with a carbonyl group at C-20 induce cancer cell apoptosis. J. Nat. Med. 2008, 62, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Hata, K.; Hori, K.; Ogasawara, H.; Takihashi, S. Anti-leukemia activities of lup-28-al-20(29)-en-3-one, a lupane triterpene. Toxicol. Lett. 2003, 143, 1–7. [Google Scholar] [CrossRef]
- Mutai, C.; Abatis, D.; Vagias, C.; Moreau, D.; Roussakis, C.; Roussis, V. Lupane triterpenoids from Acacia mellifera with cytotoxic activity. Molecules 2007, 12, 1036–1044. [Google Scholar] [CrossRef]
- Mutai, C.; Abatis, D.; Vagias, C.; Moreau, D.; Roussakis, C.; Roussis, V. Cytotoxic lupane-type triterpenoids from Acacia mellifera. Phytochemistry 2004, 65, 1159–1164. [Google Scholar] [CrossRef]
- Nakayachi, T.; Yasumoto, E.; Nakano, K.; Morshed, S.R.; Hashimoto, K.; Kikuchi, H.; Nishikawa, H.; Kawase, M.; Sakagami, H. Structure-activity relationships of α,β-unsaturated ketones as assessed by their cytotoxicity against oral tumor cells. Anticancer Res. 2004, 24, 737–742. [Google Scholar]
- Hossian, M.; Das, U.; Dimmock, J.R. Recent advances in α,β-unsaturated carbonyl compounds as mitochondrial toxins. Eur. J. Med. Chem. 2019, 183, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Lorenzana, D.L.; Avilés-Vazquez, S.; Sandoval-Esquivel, M.A.; Alvarado-Moreno, A.; Ortiz-Navarrete, V.; Torres-Martínez, H.; Ayala-Sánchez, M.; Mayani, H.; Chavez-González, A. CDKIs p18INK4c and p57Kip2 are involved in quiescence of CML leukemic stem cells after treatment with TKI. Cell Cycle 2016, 15, 1276–1287. [Google Scholar] [CrossRef] [PubMed]
- Milojkovic, D.; Apperley, J. Mechanisms of resistance to imatinib and second-generation tyrosine inhibitors in chronic myeloid leukemia. Clin. Cancer Res. 2009, 15, 7519–7527. [Google Scholar] [CrossRef] [PubMed]
- Apperley, J. Part I: Mechanisms of resistance to imatinib in chronic myeloid leukemia. Lancet Oncol. 2007, 8, 1018–1029. [Google Scholar] [CrossRef]
- Sánchez-Martínez, C.; Gelbert, L.M.; Lallena, M.J.; de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorg. Med. Chem. Lett. 2015, 25, 3420–3435. [Google Scholar] [CrossRef]
- Sedlacek, H.H. Mechanisms of action of flavopiridol. Crit. Rev. Oncol. Hematol. 2001, 38, 139–170. [Google Scholar] [CrossRef]
- Rea, D.; Legros, L.; Raffaoux, E.; Thomas, X.; Turlure, P.; Maury, S.; Dupriez, B.; Pigneux, A.; Choufi, B.; Reman, O.; et al. High-dose imatinib mesylate combined with vincristine and dexamethasone (DIV regimen) as induction therapy in patients with resistant Philadelphia-positive acute lymphoblastic leukemia and lymphoid blast crisis of chronic myeloid leukemia. Leukemia 2006, 20, 400–403. [Google Scholar] [CrossRef]
- Pishvaian, M.J.; Slack, R.; Koh, E.Y.; Baumer, J.H.; Hartley, M.; Cotaria, I.; Deeken, J.; He, A.R.; Hwang, J.; Malik, S.; et al. A phase I clinical trial of the combination of imatinib and paclitaxel in patients with advanced or metastatic solid tumors refractory to standard therapy. Cancer Chemother. Pharmacol. 2012, 70, 843–853. [Google Scholar] [CrossRef]
- Kiyoi, H.; Kawashima, N.; Ishikawa, Y. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci. 2020, 111, 312–322. [Google Scholar] [CrossRef]
- He, R.; Liu, B.; Yang, C.R.; Han, Z.C. Inhibition of K562 leukemia angiogenesis and growth by expression of antisense vascular endothelial growth factor (VEGF) sequence. Cancer Gene Ther. 2003, 10, 879–886. [Google Scholar] [CrossRef]
- Song, G.; Li, Y.; Jaing, G. Role of VEGF/VEGFR in the pathogenesis of leukemias and as treatment targets (review). Oncol. Rep. 2012, 28, 1935–1944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bueno-da-Silva, A.; Brumatti, G.; Russo, F.; Green, D.R.; Amarante-Mendes, G.P. Bcr-Abl-mediated resistance to apoptosis is independent of constant tyrosine-kinase activity. Cell Death Differ. 2003, 10, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef]
- Newby, D.; Freitas, A.A.; Ghafourain, T. Decision trees to characterize the roles of permeability and solubility on the prediction of oral absorption. Eur. J. Med. Chem. 2015, 90, 751–765. [Google Scholar] [CrossRef] [PubMed]
- Deodhar, M.; Al-Rihani, S.B.; Arwood, M.J.; Darakjian, L.; Dow, P.; Turgeon, J.; Michaud, V. Mechanisms of CYP450 inhibition: Understanding drug-drug interactions due to mechanism-based inhibition in clinical practice. Pharmaceutics 2020, 12, 846. [Google Scholar] [CrossRef] [PubMed]
- Mlala, S.; Oyedeji, A.O.; Gondwe, M.; Oyedeji, O.O. Ursolic acid and its derivatives as bioactive agents. Molecules 2019, 24, 2751. [Google Scholar] [CrossRef]
- Milan, A.; Mioc, A.; Prodea, A.; Mioc, M.; Buzatu, R.; Ghiulai, R.; Racoviceanu, R.; Caruntu, F.; Şoica, C. The optimized delivery of triterpenes by liposomal nanoformulations: Overcoming the challenges. Int. J. Mol. Sci. 2022, 23, 1140. [Google Scholar] [CrossRef] [PubMed]
- Khwaza, V.; Mlala, S.; Oyedeji, O.O.; Aderibigbe, B.A. Pentacyclic triterpenoids with nitrogen-containing heterocyclic moiety, privileged hybrids in anticancer drug discovery. Molecules 2021, 26, 2401. [Google Scholar] [CrossRef]
- Bachořík, J.; Urban, M. Biocatalysis in the chemistry of lupane triterpenoids. Molecules 2021, 26, 2271. [Google Scholar] [CrossRef]
- Sidova, V.; Zoufaly, P.; Pokorny, J.; Dzubak, P.; Hajduch, M.; Popa, I.; Urban, M. Cytotoxic conjugates of betulinic acid and substituted triazoles prepared by Huisgen Cycloaddition from 30-azidoderivatives. PLoS ONE 2017, 12, e0171621. [Google Scholar] [CrossRef]
- Dubinin, M.V.; Semenova, A.A.; Nedopekina, D.A.; Davletshin, E.V.; Spivak, A.Y.; Belosludtsev, K.N. Effect of F16-Betulin conjugate on mitochondrial membranes and its role in cell death initiation. Membranes 2021, 11, 352. [Google Scholar] [CrossRef] [PubMed]
- Spivak, A.Y.; Nedopekina, D.A.; Gubaidullin, R.R.; Davetshin, E.V.; Tukhbatullin, A.A.; D’yakonov, V.A.; Yunusbaeva, M.M.; Dzhemileva, L.U.; Dzhemilev, U.M. Pentacyclic triterpene acid conjugated with mitochondria-targeting cation F16: Synthesis and evaluation of cytotoxic activities. Med. Chem. Res. 2021, 30, 940–951. [Google Scholar] [CrossRef]
- Karpova, M.B.; Sanmun, D.; Henter, J.I.; Fadeel, B. Betulinic acid, a natural cytotoxic agents, fails to trigger apoptosis in human Burkitt’s lymphoma-derived B-cell lines. Int. J. Cancer 2006, 118, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Soymaya, T.; Lakshmipriya, T.; Klika, K.D.; Jayasree, P.R.; Kumar, P.R.M. Anticancer potential of rhizome extract and a labdane diterpenoid from Curcuma mutabilis plant endemic to Western Ghats of India. Sci. Rep. 2021, 11, 1–20. [Google Scholar] [CrossRef]
- RCSB PDB, Protein Data Bank. Available online: https://www.rcsb.org (accessed on 12 December 2021).
- Zhao, H.; Caflisch, A. Discovery of ZAP70 inhibitors by high-throughput docking into a conformation of its kinase domain generated by molecular dynamics. Bioorg. Med. Chem. Lett. 2013, 23, 5721–5726. [Google Scholar] [CrossRef] [PubMed]
- Kalinichenko, E.; Faryna, A.; Kondrateva, V.; Vlasova, A.; Shevchenko, V.; Melnik, A.; Avdoshko, O.; Belko, A. Synthesis, biological activities and docking studies of novel 4-(arylaminomethyl)benzamide derivatives as potential tyrosine kinase inhibitors. Molecules 2019, 24, 3543. [Google Scholar] [CrossRef]
- Fu, L.; Mou, J.; Deng, Y.; Ren, X.; Qiu, S. Design, synthesis, and activity assays of cyclin-dependent kinase 1 inhibitors with flavone scaffolds. Front. Chem. 2022, 10, 1–16. [Google Scholar] [CrossRef]
- Gokhale, P.; Chauhan, A.; Arora, A.; Khandekar, N.; Nayarisseri, A.; Singh, S. FLT3 inhibitor design using molecular docking based virtual screening for acute myeloid leukemia. Bioinformation 2019, 15, 104–115. [Google Scholar] [CrossRef]
- Yan, T.; Bai, L.; Zhu, H.; Zhang, W.; Lv, P. Synthesis and biological evaluation of glycyrrhetic acid derivatives as potential VEGFR2 inhibitors. ChemMedChem 2017, 12, 1087–1096. [Google Scholar] [CrossRef]
- Yin, Y.; Sha, S.; Wang, Y.; Wu, X.; Wang, S.; Qiao, F.; Lv, P.; Zhu, H. Discovery of new 4-alkoxyquinazoline-based derivatives as potent VEGFR2 inhibitors. Chem. Biol. Drug Des. 2015, 86, 1323–1329. [Google Scholar] [CrossRef]
- Kajal, K.; Panda, A.; Bhat, J.; Chakraborty, D.; Bose, S.; Bhattacharjee, P.; Sarkar, T.; Chatterjee, S.; Kar, S.; Sa, G. Andrographolide binds to ATP-binding pocket of VEGFR2 to impede VEGFA-mediated tumor-angiogenesis. Sci. Rep. 2019, 9, 4073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuartas, V.; Aragón-Muriel, A.; Liscano, Y.; Polo-Cerón, D.; Crespo-Ortiz, M.; Quiroga, J.; Abonia, R.; Insuasty, B. Anticancer activity of pyrimidodiazepines based on 2-chloro-4-anilinoquinazoline: Synthesis, DNA binding and molecular docking. RSC Adv. 2021, 11, 23310–23329. [Google Scholar] [CrossRef] [PubMed]
Compound | Score (kcal/mol) | |||
---|---|---|---|---|
VEGFR2 Kinase Domain | FLT3 | ABL Kinase | CDK1-CyclinB | |
1 | −5.20 | −5.22 | −6.14 | −5.12 |
2 | −4.89 | −6.23 | −7.12 | −6.48 |
3 | −4.62 | −5.54 | −4.92 | −4.72 |
4 | −5.16 | −5.84 | −6.16 | −5.08 |
ATP | −8.33 | −7.65 | −7.41 | −6.44 |
co-crystalized inhibitor | −10.23 | −10.54 | −11.46 | −6.93 |
Compound | |||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
Molecular Weight (g/mol) | 472.70 | 486.68 | 512.76 | 472.70 | |
Physicochemical Parameters | nHBA | 4 | 5 | 4 | 4 |
nHBD | 3 | 3 | 1 | 3 | |
cLogP | 5.52 | 4.69 | 6.65 | 5.45 | |
nROTB | 3 | 4 | 2 | 3 | |
TPSA (Å2) | 77.76 | 94.83 | 55.76 | 77.76 | |
Pharmacokinetic Parameters | GI absorption | High | High | Low | High |
CYP1A2 inhibitor | No | No | No | No | |
CYP2C19 inhibitor | No | No | No | No | |
CYP2C9 inhibitor | Yes | No | No | Yes | |
CYP2D6 inhibitor | No | No | No | No | |
CYP3A4 inhibitor | No | No | No | No |
PDB Entry | Search Volume | |||||
---|---|---|---|---|---|---|
Minimum (Å) | Maximun (Å) | |||||
x | y | z | x | y | z | |
6GU2 | 318.71370 | 205.75305 | 181.98100 | 336.44230 | 228.73095 | 201.80300 |
3CS9 | 14.46000 | −5.72656 | 44.42565 | 45.40620 | 21.22764 | 63.53435 |
FLT3 | −50.71070 | −3.84690 | −29.64010 | −22.42360 | 24.18290 | 3.17570 |
4ASE | −42.91900 | −19.71083 | −23.08805 | −8.47920 | 9.87587 | 1.26045 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Chan, L.S.; Moreno-Lorenzana, D.; Ceballos-Cruz, J.J.; Peraza-Sánchez, S.R.; Chávez-González, A.; Moo-Puc, R.E. Apoptotic and Cell Cycle Effects of Triterpenes Isolated from Phoradendron wattii on Leukemia Cell Lines. Molecules 2022, 27, 5616. https://doi.org/10.3390/molecules27175616
Valencia-Chan LS, Moreno-Lorenzana D, Ceballos-Cruz JJ, Peraza-Sánchez SR, Chávez-González A, Moo-Puc RE. Apoptotic and Cell Cycle Effects of Triterpenes Isolated from Phoradendron wattii on Leukemia Cell Lines. Molecules. 2022; 27(17):5616. https://doi.org/10.3390/molecules27175616
Chicago/Turabian StyleValencia-Chan, Lía S., Dafné Moreno-Lorenzana, Jimmy Josué Ceballos-Cruz, Sergio R. Peraza-Sánchez, Antonieta Chávez-González, and Rosa E. Moo-Puc. 2022. "Apoptotic and Cell Cycle Effects of Triterpenes Isolated from Phoradendron wattii on Leukemia Cell Lines" Molecules 27, no. 17: 5616. https://doi.org/10.3390/molecules27175616
APA StyleValencia-Chan, L. S., Moreno-Lorenzana, D., Ceballos-Cruz, J. J., Peraza-Sánchez, S. R., Chávez-González, A., & Moo-Puc, R. E. (2022). Apoptotic and Cell Cycle Effects of Triterpenes Isolated from Phoradendron wattii on Leukemia Cell Lines. Molecules, 27(17), 5616. https://doi.org/10.3390/molecules27175616