Simultaneous Determination of Seven Pesticides and Metabolite Residues in Litchi and Longan through High-Performance Liquid Chromatography-Tandem Mass Spectrometry with Modified QuEChERS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Pretreatment
2.3. Instrumental Parameters
2.4. Method Validation
3. Results and Discussion
3.1. Optimization of Chromatographic Separating Column
3.2. Optimization of Mobile Phase
3.3. Comparison of Constant and Gradient Elution
3.4. Optimization of MS/MS
3.5. Optimization of Extraction Solvents
3.6. Optimization of Purification Adsorbents
3.7. Optimization of Adsorbent Dosage
3.8. Matrix Effect
3.9. Method Validation
3.10. Application in Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, H.Y.; Hu, X.C.; Zhang, H.J. Analysis of distribution of litchi-related literature based on SCI-E. Chin. J. Trop. Agric. 2018, 38, 123–130. [Google Scholar]
- Bai, H.Q.; Wu, J.G.; Pan, X.B. Key climatic factors affecting the distribution of litchi in China. J. Fruit Sci. 2016, 33, 436–443. [Google Scholar]
- Qi, W.E.; Chen, H.B.; Li, W.W.; Zhang, H.J. Development situation, trend and suggestions of Chinese litchi industry. Guangdong Agric. Sci. 2016, 43, 173–179. [Google Scholar]
- Hao, J.; Dong, L.H.; Chi, J.W.; Ma, Y.X.; Zhou, Q.Y.; Zhang, R.F.; Bai, Y.J. Health Effect of Longan and Its Present Situation and Prospect of Healthy. Mod. Food Sci. Technol. 2021, 37, 340–349. [Google Scholar]
- Zhao, F.; Liao, M.J.; Zhang, J.E.; Huang, M.; Zhang, Z.H. Characteristics, value, and conservation of litchi heritage systems in China: A case study of the Lingnan Litchi Cultivation System (Zengcheng). Chin. J. Eco-Agric. 2020, 28, 1435–1442. [Google Scholar]
- Ma, R.H.; Xie, X.M.; Xiao, R.Y.; Lei, S.M.; Han, G.; Lin, J.; Yang, Z.Y.; Song, M.H.; Jiang, M.; Zeng, W.Y.; et al. Study of fruit quality of main longan cultivars in Chognqing. J. Southwest Univ. 2021, 43, 52–60. [Google Scholar]
- Li, P.; Huo, L.; Su, W.; Lu, R.M.; Deng, C.C.; Liu, L.Q.; Deng, Y.K.; Guo, N.N.; Lu, C.S.; He, C.L. Free radical-scavenging capacity, antioxidant activity and phenolic content of Pouzolziazeylanica. J. Serb. Chem. Soc. 2011, 76, 709–717. [Google Scholar] [CrossRef]
- Du, Q.; Xu, Y.; Li, L.; Zhao, Y.; Gerold, J.; Peter, W. Antioxidant constituents in the fruits of Luffa cylindrica (L.) Roem. J. Agric. Food Chem. 2006, 54, 4186–4190. [Google Scholar] [CrossRef]
- China Pesticide Information Network. Available online: http://www.chinapesticide.org.cn/hysj/index.jhtml. (accessed on 18 August 2021).
- Liu, Y.P.; Wang, S.W.; Sun, H.B. Present situation of pesticide residues in litchi and analysis of formulation of maximum residue limit in China. China Trop. Agric. 2016, 47, 31–34. [Google Scholar]
- Whitehorn, P.R.; O’connor, S.; Wackers, F.L.; Wackers, F.L.; Goulson, D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 2012, 336, 351–352. [Google Scholar] [CrossRef]
- Rundlof, M.; Andersson, G.S.; Bommarco, R.; Fries, I.; Hederstrom, V.; Herbertsson, L.; Jonsson, O.; Klatt, B.K.; Pedersen, T.R.; Yourstone, J.; et al. Seed coating with aneonicotinoid insecticide negatively affects wild bees. Nature 2015, 521, 77–80. [Google Scholar] [CrossRef]
- Suchail, S.; Guezd, L.; Belzunces, L.P. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apismellifera. Environ. Toxicol. Chem. 2001, 20, 2482–2486. [Google Scholar] [CrossRef]
- Park, M.G.; Blitzer, E.J.; Gibbs, J.; Losey, J.; Danforth, B.N. Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proc. R. Soc. B 2015, 282, 20150299. [Google Scholar] [CrossRef]
- Yoder, J.A.; Jajack, A.J.; Rosselot, A.E.; Smith, T.J.; Yerke, M.C.; Sammataro, D. Fungicide contamination reduces beneficial fungi in bee bread based on an area-wide field study in honey bee, Apis mellifera, colonies. J. Toxicol. Environ. Health A 2013, 76, 587–600. [Google Scholar] [CrossRef]
- Bernauer, O.M.; Gaines-day, H.R.; Steffan, S.A. Colonies of bumble bees (bombus impatiens) produce fewer workers, less bee biomass, and have smaller mother queens following fungicide exposure. Insects 2015, 6, 478–488. [Google Scholar] [CrossRef]
- Crowell, S.R.; Henderson, W.M.; Kenneke, J.F.; Fisher, J.W. Development and application of a physiologically based pharmacokinetic model for triadimefon and its metabolite triadimenol in rats and humans. Toxicol. Lett. 2011, 205, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Goetz, A.K.; Dix, D.J. Mode of action for reproductive and hepatic toxicity inferred from a genomic study of triazole antifungals. Toxicol. Sci. 2009, 110, 449–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.P.; Wang, S.W.; Wang, X.N.; Chang, H.; Sun, H.B. Residue of pyraclostrobin and its metabolite BF-500-3 in Dimocarpus longan Lour. Chin. J. Pestic. Sci. 2020, 22, 864–868. [Google Scholar]
- Sun, C.X.; Ouyang, Z.Z.; Liu, Y.H.; Yu, G.G. Residue dynamic and risk assessment of three fungicides in.broccoli. Acta Agric. Zhejiangensis 2021, 33, 1292–1299. [Google Scholar]
- Xu, X.M.; Long, Z.Y.; Huang, W.X.; Yue, Y.J.; Lv, F.; Huang, X.D.; Liu, R. Simultaneous determination for 35 kinds of strobilurin fungicides and triazole fungicide in fruit and vegetable by QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry. J. Food Saf. Qual. 2019, 10, 1039–1047. [Google Scholar]
- Mao, J.S.; Chen, z.l.; Li, H.D.; Zhang, W.J.; Ding, R.Y.; Fang, L.P.; Guo, C.Y. Residues and dissipation dynamics of chlorpyrifos, imidacloprid, spirotetramat and its motablites, difenoconazole in pear. Chin. J. Pestic. Sci. 2019, 21, 395–400. [Google Scholar]
- Liang, X.M.; Zhang, W.Y.; Zhang, W.; Xie, S.B.; He, R.Y.; Xu, J.; Su, L.J.; Sun, B.L.; Zhang, J. Simultaneous determination of residues of 38 pesticides in fruits by QuEChERS combined with high performance liquid chromatography-tandem mass spectrometry. Food Sci. 2020, 41, 288–296. [Google Scholar]
- Wu, C.X.; Zhang, Q.P.; Xu, H.R.; Wang, C.M. Rapid determination of 4 pesticide residues in vegetables by QuEChERS and ultra performance liquid chromatography tandem mass spectrometry. J. Food Saf. Qual. 2020, 11, 909–914. [Google Scholar]
- Yang, S.; Wang, Y.; He, L.F.; Huang, X.P.; Mu, W. Residue and dissipation dynamics of six insecticides in fresh tea by QuEChERS-gas chromatography tandem mass spectrometry. Chin. J. Anal. Lab. 2019, 38, 1459–1464. [Google Scholar]
- Dong, H.; Xian, Y.P.; Li, H.X.; Wu, Y.L.; Bai, W.D.; Zeng, X.F. Analysis of heterocyclic aromatic amine profiles in Chinese traditional bacon and sausage based on ultrahigh-performance liquid chromatograph-quadrupole-orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS). Food Chem. 2020, 310, 125937. [Google Scholar] [CrossRef] [PubMed]
- Gago-Ferrero, P.; Bletsou, A.A.; Damalas, D.E.; Aalizadeh, R.; Alygizakis, N.A.; Singer, H.P.; Hollender, J.; Thomaidis, N.S. Wide-scope target screening of & 2000 emerging contaminants in wastewater samples with UPLC-Q-ToF-HRMS/MS and smart evaluation of its performance through the validation of 195 selected representative analytes. J. Hazard. Mater. 2020, 387, 121712. [Google Scholar] [PubMed]
- Lu, Z.; Zhang, Z.B.; Fang, N.; Hou, Z.G.; Li, Y.R.; Lu, Z.B. Simultaneous determination of five diamide insecticides in food matrices using carbon nanotube multiplug filtration cleanup and ultra-high-performance liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2019, 67, 10977–10983. [Google Scholar] [CrossRef]
- Dong, M.F.; Ma, L.; Zhan, X.P.; Chen, J.B.; Huang, L.Q.; Wang, W.M.; Zhao, L. Dissipation rates and residue levels of diflubenzuron and difenoconazole on peaches and dietary risk assessment. Regul. Toxicol. Pharmacol. 2019, 18, 104447–104450. [Google Scholar] [CrossRef]
- Abdallah, O.; Arasheed, A.; Almundarij, A.A.; Omar, A.F.; Alhewairini, S.S.; Aljamhanm, K.A. Levels of residues and dietary risk assessment of the fungicides myclobutanil, penconazole, tebuconazole and triadimenol in squash. Biomed. Chromatogr. 2021, 35, e5126. [Google Scholar] [CrossRef]
- Ma, S.P.; Yuan, X.C.; Zhao, P.F.; Sun, H.; Ye, X.; Liang, N.; Zhao, L.S. Trace determination of five triazole fungicide residues in traditional Chinese medicine samples by dispersive solid-phase extraction combined with ultrasound-assisted dispersive liquid–liquid microextraction and UHPLC–MS/MS. J. Sep. Sci. 2017, 40, 3257–3266. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhang, Y.; Nie, J.Y.; Jiao, B.N.; Zhao, Q.Y. Determination of Triazole Fungicide Residues in fruits by QuEChERS combined with ionic liquid-Based dispersive liquid-liquid microextraction: Optimization using response surface methodology. Food Anal. Methods 2016, 9, 3509–3519. [Google Scholar] [CrossRef]
- Luo, J.; Bian, C.F.; Rao, L.; Zhou, W.W.; Li, Y.Q.; Li, B.T. Determination of the residue behavior of.isocycloseram in Brassica and soil using the QuEChERS method coupled with HPLC. Food Chem. 2022, 367, 130734. [Google Scholar] [CrossRef] [PubMed]
- Li, L.C.; Yin, Y.; Zheng, G.M.; Liu, S.G.; Zhao, C.; Xie, W.P.; Ma, L.S.; Shan, Q.; Dai, X.X.; Wei, L.T. Determination of multiclass herbicides in sediments and aquatic products using QuECHERS combined with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and its application to risk assessment of rice-fish co-culture system in China. Microchem. J. 2021, 170, 106628. [Google Scholar]
- Ji, B.C.; Zhao, W.H.; Xu, X.; Han, Y.; Jie, M.S.; Xu, G.G.; Bai, Y.H. Development of a modified quick, easy,.cheap, effective, rugged, and safe method based on melamine sponge for multi-residue analysis of veterinary drugs in milks by ultra-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2021, 1651, 462333. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Ferreira, J.M.S.; Talamini, V.; Facco, J.F.; Rizzetti, T.M.M.; Prestes, O.D.; Adaime, M.B.; Zanella, R.; Bottoli, C.B.G. Determination of pesticides in coconut (Cocos nucifera Linn.) water and pulp using modified QuEChERS and LC-MS/MS. Food Chem. 2016, 213, 616–624. [Google Scholar] [CrossRef]
- Sapozhnikova, Y.; Lehotay, S.J. Multi-class, multi-residue analysis of pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers and novel flame retardants in fish using fast, low-pressure gas chromatography–tandem mass spectrometry. Anal. Chim. Acta. 2013, 758, 80–92. [Google Scholar] [CrossRef]
- Erney, D.R.; Gillespie, A.M.; Gilvydis, D.M.; Poole, C.F. Explanation of the matrix-induced chromatographic response enhancement of organophosphorus pesticides during open tubular column gas chromatography with splitless or hot on-column injection and flame photometric detection. J. Chromatogr. A 1993, 638, 57–63. [Google Scholar] [CrossRef]
- Tan, J.L.; Peng, Z.H.; Zhao, X.L.; Ma, X.T.; Zhang, X.Y.; Liu, X.L.; Hu, Z.B.; Feng, L. Determination of 19 carbamate pesticide and metabolites residues in eggs by QuEChERS-UP-C-MS/MS. Sci. Technol. Food Ind. 2022, 43, 320–325. [Google Scholar]
- Kmellar, B.; Fodor, P.; Pareja, L.; Ferrer, C.; Martinez-Uroz, M.A.; Valverde, A.; Fernandez-Alba, A.R. Validation and uncertainty study of a comprehensive list of 160 pesticide residues in multi-class vegetables by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2008, 1215, 37–50. [Google Scholar] [CrossRef]
- Bin, J.; Wang, Y.X.; Hu, J.L.; Feng, L.; Tan, J.L. Rapid determination of 33 pesticide residues in Xiangmao grass by QuEChERS UPLC MS/MS. Chin. J. Pharm. Anal. 2021, 41, 471–479. [Google Scholar]
- GB 2763―2021; National Food Safety Standard-Maximum Residue Limits for Pesticides in Food. China Standard Press: Beijing, China, 2021.
Compound | Precursor Ion (m/z) | Daughter Ion (m/z) | CE/eV | Q1Pre (V) | Q3Pre (V) | Retention Time RT/min |
---|---|---|---|---|---|---|
Azoxystrobin | 404.20 | 344.10 *, 329.10 | −25, −30 | −15, −19 | −13, −22 | 3.25 |
Pyraclostrobin | 388.15 | 163.10 *, 133.05 | −24, −36 | −29, −14 | −17, −24 | 3.62 |
Picoxystrobin | 368.00 | 145.10 *, 117.25 | −23, −38 | −28, −29 | −27, −22 | 3.51 |
Difenoconazole | 406.10 | 251.00 *, 337.00 | −26, −18 | −12, −19 | −30, −24 | 3.59 |
Chlorantraniliprole | 484.00 | 285.90 *, 453.35 | −12, −14 | −23, −18 | −29, −23 | 2.97 |
Cyantraniliprole | 475.31 | 285.95 *, 444.10 | −10, −19 | −30, −24 | −15, −18 | 3.33 |
IN-J9Z38 | 457.10 | 299.00 *, 188.00 | −27, −35 | −20, −17 | −26, −14 | 3.42 |
Imidacloprid | 256.10 | 209.05 *, 175.10 | −14, −18 | −18, −19 | −22, −18 | 2.40 |
Different Adsorbent Combination | Recovery/% | |||||||
---|---|---|---|---|---|---|---|---|
Azoxystrobin | Pyraclostrobin | Picoxystrobin | Difenoconazole | Chlorantraniliprole | Cyantraniliprole | IN-J9Z38 | Imidacloprid | |
25 mg PSA + 25 mg C18 | 100 ± 2.5 | 100 ± 2.0 | 100 ± 3.5 | 98 ± 4.0 | 100 ± 2.0 | 99 ± 2.7 | 98 ± 5.1 | 100 ± 2.1 |
25 mg PSA + 10 mg nano-ZrO2 | 96 ± 3.2 | 96 ± 4.0 | 99 ± 2.5 | 102 ± 1.5 | 97 ± 3.5 | 98 ± 4.0 | 97 ± 4.0 | 99 ± 3.8 |
25 mg C18 + 10 mg nano-ZrO2 | 99 ± 3.8 | 102 ± 2.0 | 100 ± 2.1 | 99 ± 3.5 | 96 ± 4.9 | 97 ± 3.2 | 91 ± 1.5 | 100 ± 2.7 |
50 mg PSA + 50 mg C18 | 97 ± 4.2 | 99 ± 1.0 | 102 ± 2.7 | 103 ± 3.1 | 102 ± 1.5 | 100 ± 1.5 | 100 ± 2.5 | 103 ± 2.5 |
50 mg PSA + 20 mg nano-ZrO2 | 88 ± 2.0 | 97 ± 2.5 | 93 ± 2.5 | 96 ± 3.5 | 94 ± 3.1 | 95 ± 3.1 | 90 ± 1.5 | 97 ± 3.6 |
50 mg C18 + 20 mg nano-ZrO2 | 89 ± 1.0 | 95 ± 5.0 | 92 ± 4.4 | 93 ± 3.8 | 94 ± 3.0 | 91 ± 6.8 | 90 ± 4.0 | 99 ± 3.0 |
25 mg PSA + 25 mg C18 + 10 mg nano-ZrO2 | 90 ± 2.1 | 91 ± 2.5 | 90 ± 3.5 | 90 ± 3.5 | 92 ± 2.5 | 90 ± 1.5 | 88 ± 2.0 | 94 ± 5.0 |
50 mg PSA + 50 mg C18 + 20 mg nano-ZrO2 | 87 ± 7.6 | 94 ± 3.6 | 88 ± 3.6 | 89 ± 2.3 | 90 ± 1.5 | 88 ± 5.1 | 86 ± 3.1 | 93 ± 4.5 |
Compound | Sample | Linear Range /μg/L | Linear Equation | Correlation Coefficient /R2 | ME a (%) |
---|---|---|---|---|---|
Azoxystrobin | solvent | 1–100 | Y = 1.3988 × 108X + 114,089 | 0.9988 | |
Litchi | 1–100 | Y = 5.73765 × 107X – 11,998.3 | 0.9989 | −59.03 | |
Longan | 1–100 | Y = 7.0 × 107X + 900,000 | 0.998 | −50.01 | |
Pyraclostrobin | solvent | 1–100 | Y = 2.21447 × 108C + 340,737 | 0.9906 | |
Litchi | 1–100 | Y = 5.56824 × 107X + 853,513 | 0.9996 | −74.92 | |
Longan | 1–100 | Y = 2.22603 × 108X – 499,085 | 0.9902 | 0.52 | |
Picoxystrobin | solvent | 1–100 | Y = 1.40371 × 108X – 129,785 | 0.9998 | |
Litchi | 1–100 | Y = 2.59173 × 107X − 7809.87 | 0.9998 | −81.52 | |
Longan | 1–100 | Y = 7.20201 × 107X – 97,424.8 | 0.997 | −48.67 | |
Difenoconazole | solvent | 1–100 | Y = 3.14863 × 108X – 664,206 | 0.9978 | |
Litchi | 1–100 | Y = 1.39059 × 108X + 132,133 | 0.9992 | −55.82 | |
longan | 1–100 | Y = 1.0 × 108X + 2 × 107 | 0.9901 | −48.19 | |
Chlorantraniliprole | solvent | 1–100 | Y = 3.48823 × 107X + 43,168.4 | 0.9958 | |
litchi | 1–100 | Y = 1.45219 × 107X + 190,031 | 0.999 | −58.41 | |
longan | 1–100 | Y = 2.00116 × 107X + 14,557.3 | 0.9954 | −42.6 | |
Cyantraniliprole | solvent | 1–100 | Y = 7.59264 × 106X − 4650.42 | 0.9998 | |
litchi | 1–100 | Y = 2.38347 × 106X + 685.684 | 0.9989 | −65.42 | |
longan | 1–100 | Y = 3.98107 × 106X − 3974.61 | 0.9962 | −43.01 | |
IN-J9Z38 | solvent | 1–100 | Y = 2.41814 × 106X − 3692.34 | 0.9972 | |
litchi | 1–100 | Y = 3.61443 × 105X + 908.734 | 0.992 | −79.12 | |
longan | 1–100 | Y = 1.62265 × 106X + 3504.66 | 0.9917 | −33.51 | |
Imidacloprid | solvent | 1–100 | Y = 2.19412 × 107X + 11,740.08 | 0.9962 | |
litchi | 1–100 | Y = 6.56189 × 106X − 1297.32 | 0.9989 | −70.14 | |
longan | 1–100 | Y = 5.0 × 106X + 68,417 | 0.999 | −77.19 |
Compound | Sample | Spiked Level /(μg/kg) | Average Recoveries a /% | Relative Deviation b /% | LOD /(μg/kg) | LOQ /(μg/kg) |
---|---|---|---|---|---|---|
Azoxystrobin | litchi | 1, 10, 100 | 83, 94, 94 | 3.9, 7.5, 6.9 | 0.3 | 1 |
longan | 1, 10, 100 | 81, 89, 94 | 3.5, 6.8, 8.2 | 0.3 | 1 | |
Pyraclostrobin | litchi | 1, 10, 100 | 86, 94, 95 | 7.1, 8.2, 8.1 | 0.3 | 1 |
longan | 1, 10, 100 | 85, 96, 94 | 6.0, 7.5, 4.0 | 0.3 | 1 | |
Picoxystrobin | litchi | 1, 10, 100 | 84, 94, 95 | 4.4, 6.6, 7.4 | 0.3 | 1 |
longan | 1, 10, 100 | 86, 92, 96 | 7.1, 8.4, 4.7 | 0.3 | 1 | |
Difenoconazole | litchi | 1, 10, 100 | 84, 91, 94 | 4.1, 6.1, 5.0 | 0.3 | 1 |
longan | 1, 10, 100 | 90, 97, 96 | 5.0, 4.1 5.4 | 0.3 | 1 | |
Chlorantraniliprole | litchi | 1, 10, 100 | 85, 93, 93 | 5.8, 6.3, 4.7 | 0.3 | 1 |
longan | 1, 10, 100 | 82, 95, 94 | 4.3, 6.1, 7.0 | 0.3 | 1 | |
Cyantraniliprole | litchi | 1, 10, 100 | 85, 96, 99 | 4.7, 6.1, 4.7 | 0.3 | 1 |
longan | 1, 10, 100 | 84, 91, 99 | 5.2, 6.7, 5.6 | 0.3 | 1 | |
IN-J9Z38 | litchi | 1, 10, 100 | 85, 89, 95 | 4.3, 5.6, 7.7 | 3 | 10 |
longan | 1, 10, 100 | 86, 96, 98 | 5.2, 7.5, 4.7 | 3 | 10 | |
Imidacloprid | litchi | 1, 10, 100 | 83, 97, 97 | 4.5, 7.0, 5.1 | 0.3 | 1 |
longan | 1, 10, 100 | 84, 95, 98 | 5.3, 6.3, 5.4 | 0.3 | 1 |
Matrix MRLs | Azoxystrobin | Pyraclostrobin | Picoxystrobin | Difenoconazole | Chlorantraniliprole | Cyantraniliprole | IN-J9Z38 | Imidacloprid |
---|---|---|---|---|---|---|---|---|
mg/kg | ||||||||
Litchi | ND-0.159 | ND-0.091 | ND | ND-0.458 | ND-0.019 | ND | ND | ND |
Longan | ND-0.17 | ND-0.08 | ND | 0.02–0.16 | 0.02–0.03 | ND | ND | ND |
MRLs in litchi | 0.5 | 0.1 | - | 0.5 | - | - | - | - |
MRLs in longan | - | - | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, X.; He, Q.; Lin, H.; Chang, H.; Sun, H.; Liu, Y. Simultaneous Determination of Seven Pesticides and Metabolite Residues in Litchi and Longan through High-Performance Liquid Chromatography-Tandem Mass Spectrometry with Modified QuEChERS. Molecules 2022, 27, 5737. https://doi.org/10.3390/molecules27175737
Wang S, Wang X, He Q, Lin H, Chang H, Sun H, Liu Y. Simultaneous Determination of Seven Pesticides and Metabolite Residues in Litchi and Longan through High-Performance Liquid Chromatography-Tandem Mass Spectrometry with Modified QuEChERS. Molecules. 2022; 27(17):5737. https://doi.org/10.3390/molecules27175737
Chicago/Turabian StyleWang, Siwei, Xiaonan Wang, Qiang He, Haidan Lin, Hong Chang, Haibin Sun, and Yanping Liu. 2022. "Simultaneous Determination of Seven Pesticides and Metabolite Residues in Litchi and Longan through High-Performance Liquid Chromatography-Tandem Mass Spectrometry with Modified QuEChERS" Molecules 27, no. 17: 5737. https://doi.org/10.3390/molecules27175737
APA StyleWang, S., Wang, X., He, Q., Lin, H., Chang, H., Sun, H., & Liu, Y. (2022). Simultaneous Determination of Seven Pesticides and Metabolite Residues in Litchi and Longan through High-Performance Liquid Chromatography-Tandem Mass Spectrometry with Modified QuEChERS. Molecules, 27(17), 5737. https://doi.org/10.3390/molecules27175737