Determination and Removal of Selected Pharmaceuticals and Total Organic Carbon from Surface Water by Aluminum Chlorohydrate Coagulant
Abstract
:1. Introduction
2. Results
2.1. Occurrence of Diclofenac (DIC), Fluoxetine (FLX), Ethynylestradiol (EE), Erythromycin (ERY), Amoxicillin(AMO), and Colistin (COL) in Surface Water
2.2. Removal of TOC, Diclofenac (DIC), Fluoxetine (FLX), Ethynylestradiol (EE), Erythromycin (ERY), Amoxicillin(AMO), and Colistin (COL) in Surface Water
3. Discussion
3.1. Occurrence of Diclofenac (DIC), Fluoxetine (FLX), Ethynylestradiol (EE), Erythromycin (ERY), Amoxicillin(AMO), and Colistin (COL) in Surface Water
3.2. Removal of TOC and Diclofenac (DIC), Fluoxetine (FLX), Ethynylestradiol (EE), Erythromycin (ERY), Amoxicillin(AMO), and Colistin (COL) from Spiked Surface Water
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Sampling Methodology and Spiked River Water
4.3. Analytical Methods
4.4. Design of Experiments (Central Composite Design, CCD and Response Surface Methodology, RSM)
4.5. Experimental Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- European Commission Population Structure and Ageing. Eurostat 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Population_structure_and_ageing (accessed on 30 July 2022).
- Bley, S.J. Sustainable Development in the European Union. Monitoring Report on Progress Towards the SDGs in an EU Context; Eurostat Statistical Books 2020 Edition; Publications Office of the European Union: Luxembourg, 2020. Available online: https://data.europa.eu/doi/10.2785/634624 (accessed on 30 July 2022).
- Klamar, A.; Kitzmann, F.; Kirch, W. Pharmaco-economic impact of demographic change on pharmaceutical expenses in Germany and France. BMC Public Health 2012, 12, 894. [Google Scholar] [CrossRef]
- World Health Organization Drinking Water Parameter Cooperation Project. 2017, pp. 1–228. Available online: https://ec.europa.eu/environment/water/water-drink/pdf/WHO_parameter_report.pdf (accessed on 30 July 2022).
- Lee, J.; Ji, K.; Lim Kho, Y.; Kim, P.; Choi, K. Chronic exposure to diclofenac on two freshwater cladocerans and Japanese medaka. Ecotoxicol. Environ. Saf. 2011, 74, 1216–1225. [Google Scholar] [CrossRef] [PubMed]
- Mehinto, A.C.; Hill, E.M.; Tyler, C.R. Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (Oncorhynchus mykiss). Environ. Sci. Technol. 2010, 44, 2176–2182. [Google Scholar] [CrossRef] [PubMed]
- Nambirajan, K.; Muralidharan, S.; Ashimkumar, A.R.; Jedhav, S. Nimesulide Poisoning in White-Rumped Vulture Gyps Bengalensis in Gujarat. Environ. Sci. Pollut. Res. 2021, 1, 4–9. [Google Scholar] [CrossRef]
- Prakash, V.; Galligan, T.H.; Chakraborty, S.S.; Dave, R.; Kulkarni, M.D.; Prakash, N.; Shringarpure, R.N.; Ranade, S.P.; Green, R.E. Recent changes in populations of Critically Endangered Gyps vultures in India. Bird Conserv. Int. 2019, 29, 55–70. [Google Scholar] [CrossRef]
- García Hernández, M.P.; Cabas, I.; Rodenas, M.C.; Arizcun, M.; Chaves-Pozo, E.; Power, D.M.; García Ayala, A. 17α-ethynylestradiol prevents the natural male-to-female sex change in gilthead seabream (Sparus aurata L.). Sci. Rep. 2020, 10, 20067. [Google Scholar] [CrossRef]
- Weinberger, J.; Klaper, R. Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow). Aquat. Toxicol. 2014, 151, 77–83. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee, European Union Strategic Approach to Pharmaceuticals in the Environment. Brussels, 11 March 2019 COM(2019) 128 Final. Available online: https://ec.europa.eu/transparency/documents-register/api/files/COM(2019)128_0/de00000000082030?rendition=false (accessed on 30 July 2022).
- Chopra, S.; Kumar, D. Pharmaceuticals and personal care products (PPCPs) as emerging environmental pollutants: Toxicity and risk assessment. In Advances in Animal Biotechnology and Its Applications; Springer: Singapore, 2018; pp. 337–353. [Google Scholar] [CrossRef]
- Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy Text with EEA Relevance. Official Journal of the European Union. Brussels. 2013, pp. 1–17. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2013:226:0001:0017:EN:PDF (accessed on 30 July 2022).
- Esbele, A.J.; Abou-Elwafa Abdallah, M.; Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 2017, 3, 1–16. [Google Scholar] [CrossRef]
- Liu, J.L.; Wong, M.H. Pharmaceuticals and personal care products (PPCPs): A re-view on environmental contamination in China. Environ. Int. 2013, 59, 208–224. [Google Scholar] [CrossRef]
- Arias, J. Pharmaceutical and Personal Hygiene Products (PPcPs): A Threat Little Studied in Colombian Waters. Agric. Res. Technol. 2019, 22, 1–8. [Google Scholar] [CrossRef]
- Arman, N.Z.; Salmiati, S.; Aris, A.; Salim, M.R.; Nazifa, T.H.; Muhamad, M.S.; Marpongahtun, M. A Review on Emerging Pollutants in the Water Environment: Existences, Health Effects and Treatment Processes. Water 2021, 13, 3258. [Google Scholar] [CrossRef]
- Stefanakis, A.I.; Becker, J.A. A review of emerging contaminants in water: Classification, sources, and potential risks. In Impact of Water Pollution on Human Health and Environmental Sustainability. IGI Glob. 2016, 55–80. [Google Scholar] [CrossRef]
- Grela, A.; Kuc, J.; Bajda, T. A Review on the Application of Zeolites and Mesoporous Silica Materials in the Removal of Non-Steroidal Anti-Inflammatory Drugs and Antibiotics from Water. Materials 2021, 14, 4994. [Google Scholar] [CrossRef] [PubMed]
- Peña-Guzmán, C.; Ulloa-Sánchez, S.; Mora, K.; Helena-Bustos, R.; Lopez-Barrera, E.; Alvarez, J.; Rodriguez-Pinzón, M. Emerging Pollutants in the Urban Water Cycle in Latin America: A Review of the Current Literature. J. Environ. Manag. 2019, 237, 408–423. [Google Scholar] [CrossRef]
- Khan, N.A.; Ahmed, S.; Vambol, V.; Vambol, S. Pharmaceutical Wastewater Treatment Technologies: Concepts and Implementation Strategies; IWA Publishing: London, UK, 2021. [Google Scholar] [CrossRef]
- Vieno, N.; Tuhkanen, T.; Kronberg, L. Removal of Pharmaceuticals in Drinking Water Treatment: Effect of Chemical Coagulation. Environ. Technol. 2006, 27, 183–192. [Google Scholar] [CrossRef]
- Yang, W.; Wu, Y.; Zhang, L.; Jiang, J.; Feng, L. Removal of five selected pharmaceuticals by coagulation in the presence of dissolved humic acids and kaolin. Desalin. Water Treat. 2014, 54, 1134–1140. [Google Scholar] [CrossRef]
- Bundy, M.M.; Doucette, W.J.; McNeill, L.; Ericson, J.F. Removal of pharmaceuticals and related compounds by a bench-scale drinking water treatment system. J. Water Supply Res. Technol. Aqua 2007, 56, 105–115. [Google Scholar] [CrossRef]
- Suarez, S.; Lema, J.M.; Omil, F. Pre-treatment of hospital wastewater by coagulation–flocculation and flotation. Bioresour. Technol. 2009, 100, 2138–2146. [Google Scholar] [CrossRef]
- Vieno, N.M.; Härkki, H. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environ. Sci. Technol. 2007, 41, 5077–5084. [Google Scholar] [CrossRef]
- Bodzek, M.; Dudziak, M. Elimination of steroidal sex hormones by conventional water treatment and membrane processes. Desalination 2006, 198, 24–32. [Google Scholar] [CrossRef]
- Westerhoff, P.; Yoon, Y.; Snyder, S.; Wert, E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 2005, 39, 6649–6663. [Google Scholar] [CrossRef] [PubMed]
- Jonathan, T.A.; Hai, F.I.; Al-aboud, T.M. Chemical coagulation-based processes for trace organic contaminant removal: Current state and future potential. J. Environ. Manag. 2012, 111, 195–207. [Google Scholar] [CrossRef]
- Drzewicz, P.; Drobniewska, A.; Sikorska, K.; Nałęcz-Jawecki, G. Analytical and ecotoxicological studies on degradation of fluoxetine and fluvoxamine by potassium ferrate. Environ. Technol. 2019, 40, 3265–3275. [Google Scholar] [CrossRef] [PubMed]
- Omar, I.A.; Aziz, S.Q. Optimization of ACH coagulant, settling time and powdered activated carbon as coagulant aid with economic analysis. Glob. NEST J. 2021, 23, 340–350. [Google Scholar] [CrossRef]
- Verma, A.K.; Bhunia, P.; Dash, R.R. Effectiveness of Aluminum Chlorohydrate (ACH) for Decolorization of Silk Dyebath Effluents. Ind. Eng. Chem. Res. 2012, 51, 8646–8651. [Google Scholar] [CrossRef]
- Sewage Flows into the Dunajec. “Very Harmful Pollution”. In Oryginal: Ścieki Wpadają do Dunajca. “Bardzo Szkodliwe Zanieczyszczenie”. In Press, Autors: Wini/ks/, 2019. Available online: https://tvn24.pl/krakow/malopolska-zanieczyeniem-dunajca-oczyszczalnie-nie-wyrabia-ra958876-2313115 (accessed on 30 July 2022).
- Baranowska, I.; Kowalski, B. A rapid UHPLC methodfor the simultaneous determination of drugs from different therapeutic groups in surface water and wastewater. Bull. Environ. Contam. Toxicol. 2012, 89, 8–14. [Google Scholar] [CrossRef]
- Giebułtowicz, J.; Nałęcz-Jawecki, G. Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw (Poland). Ecotoxicol. Environ. Saf. 2014, 104, 103–109. [Google Scholar] [CrossRef]
- Savcı, S. A review of occurrence of pharmaceuticals in sediments. Afr. J. Biotechnol. 2013, 12, 4539–4541. [Google Scholar] [CrossRef] [Green Version]
- Kondor, A.C.; Molnár, É.; Jakab, G.; Vancsik, A.; Filep, T.; Szeberényi, J.; Szabó, L.; Maász, G.; Pirger, Z.; Weiperth, A.; et al. Pharmaceuticals in water and sediment of small streams under the pressure of urbanization: Concentrations, interactions, and risks. Sci. Total Environ. 2022, 808, 152160. [Google Scholar] [CrossRef] [PubMed]
- Kucharski, D.; Nałęcz-Jawecki, G.; Drzewicz, P.; Skowronek, A.; Mianowicz, K.; Strzelecka, A.; Giebułtowicz, J. The assessment of environmental risk related to the occurrence of pharmaceuticals in bottom sediments of the Odra River estuary (SW Baltic Sea). Sci. Total Environ. 2022, 828, 154446. [Google Scholar] [CrossRef]
- Trinh, T.K.; Kang, L.S. Application of Response Surface Method as an Experimental Design to Optimize Coagulation Tests. Environ. Eng. Res. 2010, 2, 63–70. [Google Scholar] [CrossRef]
- Thomas, M.; Zdebik, D.; Białecka, B. Use of sodium trithiocarbonate for remove of chelated copper ions from industrial wastewater originating from the electroless copper plating process. Arch. Environ. Prot. 2018, 44, 32–42. [Google Scholar] [CrossRef]
- Thomas, M.; Zdebik, D. Treatment of Real Textile Wastewater by Using Potassium Ferrate(VI) and Fe(III)/H2O2. Application of Aliivibrio fischeri and Brachionus plicatilis Tests for Toxicity Assessment. Fibres Text. East. Eur. 2019, 27, 78–84. [Google Scholar] [CrossRef]
- Kucharski, P.; Białecka, B.; Thomas, M. Removal of cadmium ions from polluted waters using low-cost adsorbents: Process optimization study. Desalin. Water Treat. 2022, 256, 114–124. [Google Scholar] [CrossRef]
- Thomas, M.; Zdebik, D.; Białecka, B. Using Sodium Trithiocarbonate to Precipitate Heavy Metals from Industrial Wastewater—from the Laboratory to Industrial Scale. Pol. J. Environ. Stud. 2018, 27, 1753–1763. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 5th ed.; John Wiley & Sons: New York, NY, USA, 2001; pp. 427–510. [Google Scholar]
- Khettaf, S.; Khouni, I.; Louhichi, G.; Ghrabi, A.; Bousselmi, L.; Bouhidel, K.-E.; Bouhelassa, M. Optimization of coagulation–flocculation process in the treatment of surface water for a maximum dissolved organic matter removal using RSM approach. Water Supply 2021, 21, 3042–3056. [Google Scholar] [CrossRef]
- Shojaei, S.; Shojaei, S.; Band, S.S.; Farizhandi, A.; Abbas, K.; Ghoroqi, M.; Mosavi, A. Application of Taguchi method and response surface methodology into the removal of malachite green and auramine-O by NaX nanozeolites. Sci. Rep. 2021, 11, 16054. [Google Scholar] [CrossRef]
- Javanbakht, V.; Ghoreishi, S.M. Application of response surface methodology for optimization of lead removal from an aqueous solution by a novel superparamagnetic nanocomposite. Adsorpt. Sci. Technol 2017, 35, 241–260. [Google Scholar] [CrossRef] [Green Version]
- Moradi, M.; Fazlzadehdavil, M.; Pirsaheb, M.; Mansouri, Y.; Khosravi, T.; Sharafi, K. Response surface methodology (RSM) and its application for optimization of ammonium ions removal from aqueous solutions by pumice as a natural and low cost adsorbent. Arch. Environ. Prot. 2016, 42, 33–34. [Google Scholar] [CrossRef]
- Som, A.M.; Ramlee, A.A.; Puasa, S.W.; Hamid, H.A.A. Optimisation of operating conditions during coagulation-flocculation process in industrial wastewater treatment using Hylocereus undatus foliage through response surface methodology. Environ. Sci. Pollut. Res. Int. 2021. [Google Scholar] [CrossRef]
- Naceradska, J.; Pivokonska, L.; Pivokonsky, M. On the importance of pH Value in Coagulation, Journal of Water Supply: Research and Technology. J. Water Supply Res. Technol. 2019, 68, 222–230. [Google Scholar] [CrossRef]
- Pernitsky, D.J.; Edzwald, J.K. Selection of alum and polyaluminum coagulants: Principles and applications. J. Water Suppl. 2006, 55, 121–141. [Google Scholar] [CrossRef]
- Kvech, S.; Edwards, M. Solubility controls on aluminum in drinking water at relatively low and high pH. Water Res. 2002, 36, 4356–4368. [Google Scholar] [CrossRef]
- Vinitha, E.V.; Mansoor Ahammed, M.; Gadekar, M.R. Chemical coagulation of greywater: Modelling using artificial neural networks. Water Sci. Technol. 2018, 2017, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Pidou, M.; Avery, L.; Stephenson, T.; Jeffrey, P.; Simon, A.P. Chemical solutions for greywater recycling. Chemosphere 2008, 71, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Ghaitidak, D.M.; Yadav, K.D. Reuse of greywater: Effect of coagulant. Desalin. Water Treat. 2015, 54, 2410–2421. [Google Scholar] [CrossRef]
- Edzwald, J.; Haarhoff, J. Dissolved Air Flotation for Water Clarification; McGraw Hill Professional: New York, NY, USA, 2011. [Google Scholar]
- Pophristic, V.; Balagurusamy, V.S.K.; Klein, M.L. Structure and dynamics of the aluminum chlorohydrate polymer Al13O4(OH)24(H2O)12Cl7. Phys. Chem. Chem. Phys. 2004, 6, 919–923. [Google Scholar] [CrossRef]
- Pophristic, V.; Klein, M.L.; Holerca, M.N. Modeling Small Aluminum Chlorohydrate Polymers. J. Phys. Chem. A 2004, 108, 113–120. [Google Scholar] [CrossRef]
- Ghernaout, D.; Ghernaout, B. Sweep flocculation as a second form of charge neutralization—A review. Desalin. Water Treat. 2012, 44, 15–28. [Google Scholar] [CrossRef]
- Bratby, J. Coagulation and Flocculation in Water and Wastewater Treatment, 3rd ed.; IWA Publishing: London, UK, 2016. [Google Scholar]
- Pourrezaei, P.; Drzewicz, P.; Wang, Y.; Gamal El-Din, M.; Perez-Estrada, L.A.; Martin, J.W.; Anderson, J.; Wiseman, S.; Liber, K.; Giesy, J.P. The Impact of Metallic Coagulants on the Removal of Organic Compounds from Oil Sands Process-Affected Water. Environ. Sci. Technol. 2011, 45, 8452–8459. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Abdullah, S.R.S.; Imron, M.F.; Said, N.S.M.; Ismail, N.; Hasan, H.A.; Othman, A.R.; Purwanti, I.F. Challenges and Opportunities of Biocoagulant/Bioflocculant Application for Drinking Water and Wastewater Treatment and Its Potential for Sludge Recovery. Int. J. Environ. Res. Public Health 2020, 17, 9312. [Google Scholar] [CrossRef] [PubMed]
- DrugBank Online. Database for Drug and Drug Target Info. Available online: https://go.drugbank.com/ (accessed on 30 July 2022).
- PN-EN ISO 5667-6:2016-12; Water Quality—Sampling—Part 6: Guidelines for Sampling Rivers and Streams. ISO: Lethbridge, AL, Canada, 5 December 2016.
- PN-EN ISO 10523:2008; Water Quality—Determination of pH. ISO: Lethbridge, AL, Canada, 2008.
- PN EN 27888:1999; Water Quality—Determination of Electrical Conductivity. ISO: Lethbridge, AL, Canada, 1999.
- PN-EN ISO 7027-1:2016-09; Water Quality. Determination of Turbidity. ISO: Lethbridge, AL, Canada, 2016.
- PN-EN ISO 7887:2012; Water Quality—Examination and Determination of Colour. ISO: Lethbridge, AL, Canada, 2012.
- PN-EN 872:2007; Water Quality. Determination of Suspended Solids. Method by Filtration through Glass Fibre Filters. ISO: Lethbridge, AL, Canada, 2007.
- PN-ISO 9280:2002; Water Quality—Determination of sulfate—Gravimetric Method using Barium Chloride. ISO: Lethbridge, AL, Canada, 2002.
- PN-ISO 9297:1994; Water Quality—Determination of Chloride—Silver Nitrate Titration with Chromate Indicator (Mohr’s Method). ISO: Lethbridge, AL, Canada, 1994.
No. | Watercourse Name | Concentration ± SD, ng/L | |||||
---|---|---|---|---|---|---|---|
DIC | FLX | EE | ERY | AMO | COL | ||
1 | Prądnik | 75.07 ± 3.75 | 5.25 ± 0.20 | 13.90 ± 0.46 | 132.50 ± 4.69 | 23.62 ± 0.84 | 4.25 ± 0.15 |
2 | Wilga | 106.33 ± 3.72 | <LOQ * | 10.77 ± 0.41 | 55.32 ± 2.10 | 16.42 ± 0.48 | 6.24 ± 0.21 |
3 | Rudawa | 105.70 ± 4.02 | 13.06 ± 0.43 | 14.90 ± 0.43 | 412.32 ± 11.96 | 32.31 ± 1.14 | 12.54 ± 0.63 |
4 | Sanka | 97.67 ± 2.83 | <LOQ | 12.54 ± 0.48 | 23.40 ± 0.77 | 3.56 ± 0.19 | 19.01 ± 0.67 |
5 | Pychowicki | 118.00 ± 4.18 | 1.58 ± 0.08 | 14.63 ± 0.42 | <LOQ | 4.65 ± 0.18 | 10.21 ± 0.34 |
6 | Dłubnia | 75.55 ± 2.12 | 12.55 ± 0.41 | <LOQ | <LOQ | 10.40 ± 0.30 | 1.35 ± 0.05 |
7 | Wisła (Vistula) | 27.05 ± 0.89 | 12.26 ± 0.64 | 17.56 ± 0.51 | 12.50 ± 0.41 | 15.65 ± 0.59 | <LOQ |
8 | Wisła (Vistula) | 45.50 ± 1.91 | 6.22 ± 0.18 | 8.26 ± 0.43 | 42.60 ± 1.41 | 32.11 ± 1.61 | 1.28 ± 0.04 |
9 | Skawinka | 122.67 ± 3.07 | 22.00 ± 0.78 | 19.27 ± 1.00 | 56.42 ± 1.41 | 23.67 ± 0.83 | 7.56 ± 0.27 |
10 | Łączany-Skawina | 138.10 ± 4.56 | 45.24 ± 2.35 | 27.55 ± 0.69 | 7.88 ± 0.26 | 8.50 ± 0.43 | 25.55 ± 1.33 |
11 | Rudno | 38.00 ± 1.19 | <LOQ | 32.75 ± 1.08 | <LOQ | <LOQ | 2.14 ± 0.08 |
12 | Regulanka | 125.27 ± 3.51 | 2.59 ± 0.09 | 17.77 ± 0.89 | 13.40 ± 0.38 | 35.70 ± 1.26 | 8.21 ± 0.27 |
13 | Regulanka | 100.33 ± 2.51 | <LOQ | 10.87 ± 0.54 | <LOQ | <LOQ | 3.01 ± 0.11 |
14 | Dunajec | 175.36 ± 5.79 | 12.45 ± 0.31 | 12.47 ± 0.44 | 68.03 ± 2.86 | 45.55 ± 1.28 | 26.50 ± 1.11 |
15 | Dunajec | 182.22 ± 5.10 | 16.48 ± 0.54 | 32.04 ± 1.35 | 184.22 ± 9.58 | 29.50 ± 0.97 | 4.02 ± 0.20 |
16 | Kamienica | 12.60 ± 0.42 | 4.25 ± 0.21 | 12.54 ± 0.53 | 92.15 ± 4.61 | 12.54 ± 0.53 | 7.12 ± 0.27 |
17 | Poprad | 116.21 ± 4.88 | 22.02 ± 0.92 | 45.56 ± 1.14 | 245.51 ± 6.87 | 16.08 ± 0.80 | 16.55 ± 0.41 |
18 | Olza | 12.56 ± 0.53 | 4.65 ± 0.23 | 12.59 ± 0.42 | 9.63 ± 0.24 | 35.66 ± 1.78 | 12.51 ± 0.44 |
19 | Bobrówka | 7.26 ± 0.24 | 2.36 ± 0.06 | 11.89 ± 0.39 | <LOQ | 68.55 ± 1.92 | 32.01 ± 1.60 |
20 | Dobka | 2.56 ± 0.13 | <LOQ | 5.68 ± 0.20 | <LOQ | 1.22 ± 0.03 | 7.76 ± 0.40 |
21 | Wisła (Vistula) | 2.20 ± 0.06 | 1.21 ± 0.05 | 5.36 ± 0.28 | 7.58 ± 0.27 | 4.25 ± 0.22 | 15.61 ± 0.76 |
22 | Olza | 12.58 ± 0.42 | 5.65 ± 0.24 | <LOQ | 8.88 ± 0.31 | 12.45 ± 0.62 | 4.65 ± 0.16 |
23 | Olza | 7.96 ± 0.33 | 72.52 ± 3.77 | 18.50 ± 0.93 | 100.05 ± 5.20 | 7.02 ± 0.23 | <LOQ |
24 | Wisła (Vistula) | 2.59 ± 0.11 | 5.22 ± 0.22 | <LOQ | <LOQ | 6.25 ± 0.31 | <LOQ |
Parameter | Unit | Result * |
---|---|---|
pH | - | 7.7 ± 0.1 |
Specific Electrical Conductivity (SEC) | µS/cm | 5060 ± 506 |
Salinity | mg NaCl/L | 2660 ± 266 |
Turbidity | NTU | 26 ± 2 |
Color | mg Pt/L | 29 ± 3 |
Total Suspended Solids (TSS) | mg/L | 90 ± 9 |
Chemical Oxygen Demand (COD) | mg O2/L | 676 ± 101 |
Total Organic Carbon (TOC) | mg/L | 151 ± 23 |
Chloride | mg/L | 1420 ± 213 |
Sulphate | mg/L | 172 ± 26 |
Total Phosphorus (Total P) | mg/L | <0.3 |
Total Nitrogen (Total N) | mg/L | 3.7 ± 0.4 |
Ammonium-Nitrogen (N-NH4) | mg/L | 0.08 ± 0.01 |
Diclofenac (DIC) | µg/L | 9.90 ± 0.61 |
Fluoxetine (FLX) | µg/L | 10.06 ± 0.63 |
Ethynylestradiol (EE) | µg/L | 9.99 ± 0.61 |
Erythromycin (ERY) | µg/L | 10.81 ± 0.67 |
Amoxicillin (AMO) | µg/L | 10.22 ± 0.60 |
Colistin (COL) | µg/L | 9.87 ± 0.64 |
Run | Experimental Conditions | Experimental Results * | |||
---|---|---|---|---|---|
pH | ACH (mL/L) | Time (min) | TOC (mg/L) | Efficiency (%) | |
1 | 5.0 | 0.10 | 10 | 87.1 ± 8.7 | 42.3 |
2 | 5.0 | 0.10 | 30 | 69.4 ± 6.9 | 54.0 |
3 | 5.0 | 0.30 | 10 | 42.2 ± 4.2 | 72.2 |
4 | 5.0 | 0.30 | 30 | 26.9 ± 3.0 | 82.2 |
5 | 9.0 | 0.10 | 10 | 125.6 ± 12.6 | 16.8 |
6 | 9.0 | 0.10 | 30 | 85.0 ± 8.5 | 43.7 |
7 | 9.0 | 0.30 | 10 | 91.1 ± 9.1 | 39.7 |
8 | 9.0 | 0.30 | 30 | 71.0 ± 7.1 | 53.0 |
9 | 3.6 | 0.20 | 20 | 140.2 ± 14.0 | 7.2 |
10 | 10.4 | 0.20 | 20 | 142.3 ± 14.2 | 5.8 |
11 | 7.0 | 0.03 | 20 | 103.1 ± 10.3 | 31.7 |
12 | 7.0 | 0.37 | 20 | 23.6 ± 2.4 | 84.4 |
13 | 7.0 | 0.20 | 3 | 89.2 ± 8.9 | 40.9 |
14 | 7.0 | 0.20 | 37 | 38.1 ± 3.81 | 74.8 |
15 (C) ** | 7.0 | 0.20 | 20 | 75.9 ± 7.6 | 49.7 |
16 (C) | 7.0 | 0.20 | 20 | 77.1 ± 7.1 | 48.9 |
Parameter | Evaluation of Effects, Efficiency, %, R2 = 0.8977, R2adj = 0.7442, 3 Parameter, 1 Block, 16 Experiments, MS = 148.1306 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Effect | Standard Error | p-Value * | −95% Confidence Interval | +95% Confidence Interval | Factor | Standard Error of Factor | Lower Confidence Interval | Upper Confidence Nterval | |
Constant value | 48.317 | 8.581 | 0.0013 | 27.320 | 69.313 | 48.317 | 8.581 | 27.320 | 69.313 |
pH (L) * | −14.609 | 6.587 | 0.0684 | −30.726 | 1.509 | −7.304 | 3.293 | −15.363 | 0.754 |
pH (Q) ** | −25.517 | 7.997 | 0.0188 | −45.085 | −5.948 | −12.758 | 3.999 | −22.543 | −2.974 |
ACH dose (L) | 26.189 | 6.587 | 0.0073 | 10.072 | 42.307 | 13.095 | 3.293 | 5.036 | 21.153 |
ACH dose (Q) | 10.935 | 7.997 | 0.2205 | −8.634 | 30.504 | 5.467 | 3.999 | −4.317 | 15.252 |
Time (L) | 17.429 | 6.587 | 0.0382 | 1.312 | 33.546 | 8.715 | 3.293 | 0.656 | 16.773 |
Time (Q) | 10.793 | 7.997 | 0.2258 | −8.776 | 30.362 | 5.397 | 3.999 | −4.388 | 15.181 |
*** pH (L) relative to ACH dose (L) | −6.450 | 8.606 | 0.4819 | −27.508 | 14.608 | −3.225 | 4.303 | −13.754 | 7.304 |
*** pH (L) relative to Time (L) | 4.600 | 8.606 | 0.6122 | −16.458 | 25.658 | 2.300 | 4.303 | −8.229 | 12.829 |
*** ACH dose (L) relative to Time (L) | −3.800 | 8.606 | 0.6742 | −24.858 | 17.258 | −1.900 | 4.303 | −12.429 | 8.629 |
Parameter | Evaluation of Effects, Efficiency, %, R2 = 0.8799, R2adj = 0.7998, 3 Parameter, 1 Block, 16 Experiments, MS = 115.9099 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Effect | Standard Error | p-Value * | −95% Confidence Interval | +95% Confidence Interval | Factor | Standard Error of Factor | Lower Confidence Interval | Upper Confidence Interval | |
Constant value | 48.317 | 7.591 | 0.0001 | 31.146 | 65.488 | 48.317 | 7.591 | 31.146 | 65.488 |
pH (L) * | −14.609 | 5.827 | 0.0335 | −27.789 | −1.428 | −7.304 | 2.913 | −13.895 | −0.714 |
pH (Q) ** | −25.517 | 7.074 | 0.0057 | −41.520 | −9.513 | −12.758 | 3.537 | −20.760 | −4.757 |
ACH dose (L) | 26.189 | 5.827 | 0.0015 | 13.008 | 39.370 | 13.095 | 2.913 | 6.504 | 19.685 |
ACH dose (Q) | 10.935 | 7.074 | 0.1566 | −5.068 | 26.938 | 5.467 | 3.537 | −2.534 | 13.469 |
Time (L) | 17.429 | 5.827 | 0.0152 | 4.248 | 30.610 | 8.715 | 2.913 | 2.124 | 15.305 |
Time (Q) | 10.793 | 7.074 | 0.1614 | −5.210 | 26.797 | 5.397 | 3.537 | −2.605 | 13.398 |
Parameter | Evaluation of Effects, Efficiency, %, R2 = 0.8799, R2adj = 0.7998, 3 Parameter, 1 Block, 16 Experiments, MS = 115.9099 | |||
---|---|---|---|---|
SS *** | **** MS | ***** F | p-Value * | |
pH (L) * | 728.642 | 728.642 | 6.286 | 0.0330 |
pH (Q) ** | 1507.951 | 1507.951 | 13.010 | 0.0057 |
ACH dose (L) | 2341.706 | 2341.706 | 20.203 | 0.0015 |
ACH dose (Q) | 276.930 | 276.930 | 2.389 | 0.1566 |
Time (L) | 1037.138 | 1037.138 | 8.948 | 0.0152 |
Time (Q) | 269.814 | 269.814 | 2.328 | 0.1614 |
Error | 1043.189 | 115.910 | - | - |
Parameter | Regression Coefficients, R2 = 0.8799, R2adj = 0.7998, 3 Parameter, 1 Block, 16 Experiments, MS = 115.9099 | |||||
---|---|---|---|---|---|---|
Regression Coefficient | *** SE | t-Value **** df = 9 | 95% Confidence Interval Lower Limit | 95% Confidence Interval Upper Limit | ***** p-Value * | |
Intercept | −82.5682 | 53.9597 | −1.5302 | −204.634 | 39.497 | 0.1603 |
pH (L) * | 41.0017 | 12.4655 | 3.2892 | 12.803 | 69.201 | 0.0094 |
pH (Q) ** | −3.1896 | 0.8843 | −3.6069 | -5.190 | −1.189 | 0.0057 |
ACH dose (L) | −87.7514 | 144.4556 | −0.6075 | −414.533 | 239.030 | 0.5586 |
ACH dose (Q) | 546.7425 | 353.7185 | 1.5457 | −253.424 | 1346.909 | 0.1566 |
Time (L) | −1.2872 | 1.4446 | −0.8911 | −4.555 | 1.981 | 0.3961 |
Time (Q) | 0.0540 | 0..354 | 1.5257 | −0.026 | 0.134 | 0.1614 |
Parameter | Effect, % After 15 min | Effect, % After 20 min | Effect, % After 25 min | Effect, % After 30 min |
---|---|---|---|---|
Total Organic Carbon, predicted | 81.2 | 82.5 | 86.5 | 93.5 |
Total Organic Carbon, experimental | 77.5 | 78.5 | 81.0 | 88.7 |
Parameter | Unit | Result * | Effect (%) ** |
---|---|---|---|
pH | - | 6.5 ± 0.1 | ↓ 25.3 |
Specific Electrical Conductivity (SEC) | µS/cm | 5350 ± 535 | ↑ 5.7 |
Salinity | mg NaCl/L | 2820 ± 282 | ↑ 6.0 |
Turbidity | NTU | 1.0 ± 0.1 | ↓ 96.2 |
Color | mg Pt/L | <2 | ↓ >98.0 |
Total Suspended Solids (TSS) | mg/L | 2.0 ± 0.1 | ↓ 97.8 |
Chemical Oxygen Demand | mg O2/L | 203 ± 30 | ↓ 70.0 |
Total Organic Carbon | mg/L | 17.0 ± 2.6 | ↓ 88.7 |
Chloride | mg/L | 1525 ± 229 | ↑ 10.6 |
Sulphate | mg/L | 160 ± 24 | ↓ 7.0 |
Total Phosphorus (Total P) | mg/L | <0.3 | Not significant |
Total Nitrogen (Total N) | mg/L | 1.7 ± 0.2 | ↓ 88.7 |
Ammonium-Nitrogen (N-NH4) | mg/L | 0.05 ± 0.01 | ↓ 37.5 |
Diclofenac | µg/L | 6.89 ± 0.43 | ↓ 30.4 |
Fluoxetine | µg/L | 7.58 ± 0.49 | ↓ 24.7 |
Ethynylestradiol | µg/L | 6.45 ± 0.42 | ↓ 35.4 |
Erythromycin | µg/L | 6.88 ± 0.41 | ↓ 36.4 |
Amoxicillin | µg/L | 7.26 ± 0.44 | ↓ 29.0 |
Colistin | µg/L | 7.35 ± 0.43 | ↓ 25.5 |
Name (Shortcut) | Formula, Molar Mass, g/mol | CAS No. | Type | Action |
---|---|---|---|---|
Diclofenac (DIC) | C14H11Cl2NO2, 296.15 | 15307-86-5 15307-79-6 (sodium salt) 15307-81-0 (potassium salt) | non-steroidal anti-inflammatory drug | anti-inflammatory, analgesic. antipyretic |
Fluoxetine (FLX) | C17H18F3NO, 309.30 | 54910-89-3 | antidepressant drug | treatment of depressive and obsessive -compulsive disorders |
Ethinylestradiol (EE) | C20H24O2, 296.40 | 57-63-6 | synthetic estrogen | component of two-component contraceptives |
Erythromycin (ERY) | C37H67NO13, 733.93 | 114-07-8 | an antibiotic from the group of macrolides | infections of the upper and lower respiratory tract |
Amoxicillin (AMO) | C16H19N3O5S, 365.40 | 26787-78-0 34642-77-8 (sodium salt) 34642-78-9 (potassium salt) | a semi-synthetic β-lactam antibiotic | gastrointestinal and urinary infections, upper and lower respiratory tract infections |
Colistin (COL) | C52H98N16O13 1155.45 | 1264-72-8 | an antibiotic belonging to polymyxins | urinary tract infections, mainly used in veterinary medicine |
Parameter | Unit | Result |
---|---|---|
pH | - | 3.5 ± 0.1 |
Appearance | - | clear |
Aluminum | % | 12.4 |
Aluminum (as Al2O3) | % | 23.5 |
Basicity | % | 82.5 |
Total Iron (as Fe) | mg/L | 24 |
No. | Watercourse Name | Location | Marker | |
---|---|---|---|---|
1 | Prądnik | Krakow | in the Dąbie district | |
2 | Wilga | Krakow | in the Ludwinów district | |
3 | Rudawa | Krakow | in the Salwator district | |
4 | Sanka | Krakow | in the Bielany district | |
5 | Pychowicki | Krakow | in the Podgórze district | |
6 | Dłubnia | Krakow | in the Mogiła district | |
7 | Wisła (Vistula) | Krakow | in the city center | |
8 | Wisła (Vistula) | Krakow | in the city center | |
9 | Skawinka | Skawinka | in the city center | |
10 | Łączany-Skawina | Kopanka | in a village located near the Krakow | |
11 | Rudno | Czernichów | in a village located near the Krakow | |
12 | Regulanka | Alwernia | in the city center | |
13 | Regulanka | Okleśna | in a village located near the Alwernia | |
14 | Dunajec | Nowy Sącz | in the city center | |
15 | Dunajec | Łącko | in a village located near the Nowy Sącz | |
16 | Kamienica | Nowy Sącz | in the suburbs | |
17 | Poprad | Nowy Sącz | in the city center | |
18 | Olza | Cieszyn | border crossing between Poland and the Czech Republic | |
19 | Bobrówka | Cieszyn | tributary to the Olza river | |
20 | Dobka | Ustroń | the source of a mountain stream | |
21 | Wisła (Vistula) | Ustroń | for municipal consumption | |
22 | Olza | Pogwizdów | a small village with a small population | |
23 | Olza | Marklowice | at the sewage treatment plant | |
24 | Wisła (Vistula) | Hermanice | after the sewage treatment plant |
Analyte | Precursor Ions, m/z | Fragmentation Ions, m/z | Collision Energy, eV |
---|---|---|---|
DIC | 294.000 | 250.000 214.000 | 36 |
FLX | 309.700 | 148.000 44.200 | 15 |
EE | 295.000 | 159.000 145.000 | 15 |
ERY | 734.600 | 158.400 576.500 | 39 |
AMO | 366.200 | 348.800 114.000 | 16 |
COL | 585.500 | 341.000 100.800 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuc, J.; Thomas, M.; Grochowalska, I.; Kulczyk, R.; Mikosz, G.; Mrózek, F.; Janik, D.; Korta, J.; Cwynar, K. Determination and Removal of Selected Pharmaceuticals and Total Organic Carbon from Surface Water by Aluminum Chlorohydrate Coagulant. Molecules 2022, 27, 5740. https://doi.org/10.3390/molecules27175740
Kuc J, Thomas M, Grochowalska I, Kulczyk R, Mikosz G, Mrózek F, Janik D, Korta J, Cwynar K. Determination and Removal of Selected Pharmaceuticals and Total Organic Carbon from Surface Water by Aluminum Chlorohydrate Coagulant. Molecules. 2022; 27(17):5740. https://doi.org/10.3390/molecules27175740
Chicago/Turabian StyleKuc, Joanna, Maciej Thomas, Iwona Grochowalska, Rafał Kulczyk, Gabriela Mikosz, Fabian Mrózek, Dagmara Janik, Justyna Korta, and Karolina Cwynar. 2022. "Determination and Removal of Selected Pharmaceuticals and Total Organic Carbon from Surface Water by Aluminum Chlorohydrate Coagulant" Molecules 27, no. 17: 5740. https://doi.org/10.3390/molecules27175740
APA StyleKuc, J., Thomas, M., Grochowalska, I., Kulczyk, R., Mikosz, G., Mrózek, F., Janik, D., Korta, J., & Cwynar, K. (2022). Determination and Removal of Selected Pharmaceuticals and Total Organic Carbon from Surface Water by Aluminum Chlorohydrate Coagulant. Molecules, 27(17), 5740. https://doi.org/10.3390/molecules27175740