Chemical Characterization and Nutritional Markers of South African Moringa oleifera Seed Oils
Abstract
:1. Introduction
2. Results and Discussion
2.1. One-Dimension Gas Chromatography Chemical Profile of MOS Oils
2.2. Two-Dimension Gas Chromatography Chemical Profile of MOS
2.2.1. Identification of Marker Compounds in the Non-Polar Hexane and Dichloromethane Extracts of MOS by Chemometrics
2.2.2. Identification of Marker Compounds in the Polar Acetone and Methanol Extracts of MOS
3. Materials and Methods
3.1. Sample Preparation
3.2. One-Dimension GC-MS
3.3. Two-Dimension Gas Chromatography Instrument and Methodology
3.4. Chemometrics Analysis
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. Int. J. Mol. Sci. 2015, 16, 12791–12835. [Google Scholar] [CrossRef]
- Hassan Bichi, M. A Review of the Applications of Moringa oleifera Seeds Extract in Water Treatment. Civ. Environ. Res. 2013, 3, 1–10. [Google Scholar]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef]
- Williams, L.L. Moringa olefiera: Could this be an Answer to our Need for an Alternative to Fighting Drug-Resistance and Chronic Infections? Med. Aromat. Plants 2013, 2, 743. [Google Scholar] [CrossRef]
- Pandey, A. Moringa Oleifera Lam. (Sahijan)—A Plant with a Plethora of Diverse Therapeutic Benefits: An Updated Retrospection. Med. Aromat. Plants 2012, 1. [Google Scholar] [CrossRef]
- Caceres, A.; Cabrera, O.; Morales, O.; Mollinedo, P.; Mendia, P. Pharmacological properties of Moringa oleifera. 1: Preliminary screening for antimicrobial activity. J. Ethnopharmacol. 1991, 33, 213–216. [Google Scholar] [CrossRef]
- Sahay, S.; Yadav, U.; Srinivasamurthy, S. Potential of Moringa oleifera as a functional food ingredient: A review. Int. J. Food Sci. Nutr. 2017, 2, 31–37. [Google Scholar]
- Ram, M.; Rao, K.; Kumar, S.; Manoharan, S.K.; Vijayalakshmi, N.; Prabhu, K.; Kumar, M.S. The gas chromatography-mass spectrometry study of Moringa oleifera seeds. Drug Invent. Today 2019, 12, 2172–2175. [Google Scholar]
- Joardar, J.C.; Islam, M.N.; Hossen, M.K.; Bokshi, B.; Das, A.K.; Sadhu, S.K.; Biswas, N.N. Diuretic and Laxative Activities of Moringa Oleifera Seeds and Pods in Mice. Khulna Univ. Stud. 2020, 17, 31–39. [Google Scholar]
- Lawal, F.; Garba, K.; Shuai’bu, A.B.; Chedi, B.A.Z. Evaluation of the antiulcer activity of aqueous seed extract of moringa oleifera lamarck (Moringaceae). Trop. J. Nat. Prod. Res. 2018, 2, 140–144. [Google Scholar] [CrossRef]
- Anwar, F.; Rashid, U. Physico-chemical characteristics of Moringa oleifera seeds and seed oil from a wild provenance of Pakistan. Pak. J. Bot. 2007, 39, 1443–1453. [Google Scholar]
- Aly, A.A.; Maraei, R.W.; Ali, H.G.M. Fatty Acids Profile and Chemical Composition of Egyptian Moringa oleifera Seed Oils. J. Am. Oil Chem. Soc. 2016, 93, 397–404. [Google Scholar] [CrossRef]
- Ayerza, R. Seed characteristics, oil content and fatty acid composition of moringa (Moringa oleifera Lam.) seeds from three arid land locations in Ecuador. Ind. Crops Prod. 2019, 140, 111575. [Google Scholar] [CrossRef]
- Athikomkulchai, S.; Tunit, P.; Tadtong, S.; Jantrawut, P.; Sommano, S.R.; Chittasupho, C. Moringa oleifera seed oil formulation physical stability and chemical constituents for enhancing skin hydration and antioxidant activity. Cosmetics 2021, 8, 2. [Google Scholar] [CrossRef]
- Hirotani, H. Inactivation of T5 phage by cis-vaccenic acid, an antivirus substance from Rhodopseudomonas capsulata, and by unsaturated fatty acids and related alcohols. FEMS Microbiol. Lett. 1991, 77, 13–17. [Google Scholar] [CrossRef]
- Adebayo, I.A.; Arsad, H.; Kamal, N.N.S.B.N.M.; Samian, M.R. The hexane fraction of the Moringa oleifera Lam seed extract induces apoptosis, causes cell cycle arrest, and modulates expression of HSP60, NPM, PGK1, RCN1, and PDIA1 in MCF7 cells. S. Afr. J. Bot. 2020, 129, 379–387. [Google Scholar] [CrossRef]
- Mashamaite, C.V.; Pieterse, P.J.; Mothapo, P.N.; Phiri, E.E. Moringa oleifera in South Africa: A review on its production, growing conditions and consumption as a food source. S. Afr. J. Sci. 2021, 117, 1–7. [Google Scholar] [CrossRef]
- Brilhante, R.S.N.; Sales, J.A.; Pereira, V.S.; Castelo-Branco, D.d.S.C.M.; Cordeiro, R.d.A.; de Souza Sampaio, C.M.; de Araújo Neto Paiva, M.; dos Santos, J.B.F.; Sidrim, J.J.C.; Rocha, M.F.G. Research advances on the multiple uses of Moringa oleifera: A sustainable alternative for socially neglected population. Asian Pac. J. Trop. Med. 2017, 10, 621–630. [Google Scholar] [CrossRef]
- Dumitraş, D.-A.; Bunea, A.; Vodnar, D.C.; Hanganu, D.; Pall, E.; Cenariu, M.; Gal, A.F.; Andrei, S. Phytochemical Characterization of Taxus baccata L. Aril with Emphasis on Evaluation of the Antiproliferative and Pro-Apoptotic Activity of Rhodoxanthin. Antioxidants 2022, 11, 1039. [Google Scholar] [CrossRef]
- Ghante, M.H.; Jamkhande, P.G. Role of pentacyclic triterpenoids in chemoprevention and anticancer treatment: An overview on targets and underling mechanisms. J. Pharmacopunct. 2019, 22, 55–67. [Google Scholar] [CrossRef]
- Al-Rubaye, A.F.; Kadhim, M.J.; Hameed, I.H. Determination of Bioactive Chemical Composition of Methanolic Leaves Extract of Sinapis arvensis Using GC-MS Technique. Int. J. Toxicol. Pharmacol. Res. 2017, 9, 163–178. [Google Scholar] [CrossRef]
- Gargallo-Viola, D.; Ferrer, S.; Tudela, E.; Robert, M.; Coll, R.; Roser, R.; Guinea, J. Antibacterial activities and pharmacokinetics of E-4767 and E-5065, two new 8-chlorofluoroquinolones with a 7-azetidin ring substituent. Antimicrob. Agents Chemother. 2001, 45, 3113–3121. [Google Scholar] [CrossRef]
- Ruttarattanamongkol, K.; Siebenhandl-Ehn, S.; Schreiner, M.; Petrasch, A.M. Pilot-scale supercritical carbon dioxide extraction, physico-chemical properties and profile characterization of Moringa oleifera seed oil in comparison with conventional extraction methods. Ind. Crops Prod. 2014, 58, 68–77. [Google Scholar] [CrossRef]
- Brereton, R.G. Principal components analysis with several objects and variables. J. Chemom. 2022, e3408. [Google Scholar] [CrossRef]
- Bassey, K.; Mamabolo, P.; Cosa, S. An andrographolide from helichrysum caespitium (Dc.) sond. ex harv., (asteraceae) and its antimicrobial, antiquorum sensing, and antibiofilm potentials. Biology 2021, 10, 1224. [Google Scholar] [CrossRef]
- Erdemoglu, N.; Kusmenoglu, S.; Yenice, N. Effect of irrigation on the oil content and fatty acid composition of some sunflower seeds. Chem. Nat. Compd. 2003, 39, 1–4. [Google Scholar] [CrossRef]
- Boskou, D.; Blekas, G.; Tsimidou, M. Phenolic compounds in olive oil and olives. Curr. Top. Nutraceutical Res. 2005, 3, 125–136. [Google Scholar]
Peak No. | Concentration % | Identified Compounds | |||
---|---|---|---|---|---|
Hexane Extract | DCM Extract | Acetone Extract | Methanol Extract | ||
6 | 1.18 | Hexadecanoic acid methyl ester | |||
8 | 4.50 | n-Hexadecanoic acid | |||
9 | 7.91 | 9-Octadecanoic acid(Z)-methyl ester | |||
23 | 78.62 | Cis-13-octadecanoic acid | |||
15 | 1.05 | 11-Eicosenoic acid, methyl ester | |||
6 | 2.99 | Hexadecane | |||
14 | 24.71 | n-hexadecanoic acid | |||
16 | 14.70 | 9-Octadecanoic acid (Z) methyl ester | |||
18 | 2.60 | Methyl stearate | |||
23 | 62.71 | Cis-13-Octadecanoic acid | |||
3 | 2.11 | Hexadecane | |||
5 | 4.71 | Octadecane | |||
8 | 4.43 | Eicosane | |||
10 | 2.51 | n-Hexadecanoic acid | |||
12 | 11.01 | 9-octadecanoic acid (Z) methyl ester | |||
14 | 3.50 | Docosane | |||
17 | 51.60 | Cis-vaccenic acid | |||
20 | 2.16 | Tetracosane | |||
2 | 1.24 | Hexadecane | |||
4 | 15.06 | 4-Ethoxyphenylacetonitrile | |||
5 | 1.55 | Eicosane | |||
7 | 3.28 | Cis-13-octadecanoic acid, methyl ester | |||
9 | 2.75 | Oxazole, 2-(8)heptadecen-1-yl-4,5-dihydro |
Peak No. | Concentration % | Identified Compounds | |||
---|---|---|---|---|---|
Hexane Extract | DCM Extract | Acetone Extract | Methanol Extract | ||
249 | 0.62181 | 9-Octadecenoic acid (Z)-methyl ester | |||
252 | 5.8854 | cis-Vaccenic acid | |||
246 | 0.95752 | n-Hexadecanoic acid | |||
121 | 0.61448 | Octadecanoic acid, 13-hydroxy-, methyl ester | |||
99 | 0.714775 | Benzeneacetic acid 1-methylethyl ester | |||
215 | 0.14938 | Nonanoic acid, 2-phenylethyl ester | |||
90 | 0.011397 | Nonanedioic acid, dibutyl ester | |||
63 | 6.9588 | Hexadecanoic acid | |||
79 | 8.1871 | Oleic acid | |||
74 | 7.7338 | 9-Octadecenoic acid (Z)-, methyl ester | |||
66 | 0.14911 | Hexadecenoic acid, Z-11 | |||
96 | 0.066397 | 3-Decenoic acid, (E)- | |||
58 | 0.056777 | Cholan-24-oic acid, 3,7-dioxo- | |||
83 | 0.009092 | Tetradecanoic acid, 10,13-dimethyl-, methyl ester | |||
2 | 2.8415 | 2,2′-Dipyridylamine | |||
5 | 6.3428 | Griseofulvin | |||
7 | 9.0996 | Rhodoxanthin | |||
8 | 3.0684 | 17-(1,5-Dimethylhexyl)-10,13-dimethyl-3-styrylhexadecahydrocyclopenta[α]phenanthren-2-one | |||
12 | 5.8482 | 1.24 | 4H-Thiopyran-4-one, tetrahydro-, 1-oxide | ||
3 | 6.1133 | 15.06 | 3-[18-(3-Hydroxy-propyl)-3,3,7,12,17-pentamethyl-2,3,22,24-tetrahydro-porphin-2-yl]propan-1-ol | ||
4 | 3.639 | 1.55 | Ursane-3,16-diol, (3á,16à,18à,19à,20á)- | ||
5 | 6.709 | 3.28 | 2,4,6,8,10-Tetradecapentaenoic acid, 9a-(acetyloxy)-1a,1b,4,4a,5,7a,7b,8,9,9a-decahydro-4a,7b-dihydroxy-3-(hydroxymethyl)-1,1,6,8-tetramethyl-5-oxo-1H-cyclopropa [3, 4]benz [1, 2-e]azulen-9-yl ester, [1aR-(1aà,1bá,4aá,7aà,7bà,8à,9á,9aà)]- | ||
12 | 2.9016 | 2.75 | 9-desoxo-9x-hydroxy-7-ketoingol 3,8,9,12-tetraacetate | ||
14 | 4.8203 | L-valine, N-[N,O-bis(2,4-dinitrophenyl)-L-tyrosyl]-, methyl ester |
Possible Marker Compounds in Dichloromethane Oil of MOS | ||
---|---|---|
Fatty Acid | Contribution Weight (t1) | Probability |
Hexadecanoic (palmitic) acid | 2.42918 | 0.96 |
Oleic Acid | 2.06641 | 0.88 |
9-Octadecenoic (stearic) acid (Z)-, methyl ester | 1.88866 | 0.80 |
Sulfurous acid, 2-ethylhexyl isohexyl ester | 1.548 | 0.70 |
Possible Marker Compounds in Hexane Oil of MOS | ||
---|---|---|
Fatty Acid | Contribution Weight (t1) | Probability |
cis-Vaccenic acid | 7.45233 | 0.787 |
n-Hexadecanoic acid | 1.4196 | 0.286 |
N,N′-Pentamethylenebis[s-3-aminopropyl thiosulfuric acid] | 0.155692 | 0.214 |
9-Octadecenoic acid (Z)-, methyl ester | 1.08897 | 0.407 |
Octadecanoic acid, 13-hydroxy-, methyl ester | 0.0779159 | 0.184 |
Possible Marker Compounds in Acetone-Methanol Oil of MOS | ||
---|---|---|
Non-Fatty Acid Compounds | Contribution Weight (t1) | Probability |
2,2′-Dipyridylamine | 1.58442 | 0.738937 |
29, 30-Dinorgammacerane-3,22-diol, 21, 21-dimethyl-, (3α, 8α, 9α, 13α, 14α, 17α, 18α, 22α | 1.58551 | 0.738937 |
29, 30-Dinorgammacerane-3,22-diol, 21, 21-dimethyl-, (3α, 8α, 9α, 13α, 14α, 17α, 18α, 22α - | 1.28101 | 0.738937 |
17-(1,5-dimethylhexyl)-10,13-dimethyl-3-styrylhexadecahydrocyclopenta[α]phenanthren-2-one | 1.00519 | 0.738937 |
Operation Conditions | |
---|---|
Injector Temperature | 250 °C |
Start Temperature | 40 °C (hold 4 min) |
End Temperature | 280 °C |
Ramp Rate | 5 °C/min |
Final hold time | 8 min |
Total Time | 60 min |
Carrier Gas | Helium |
Carrier Gas Flow | 0.9 mL/min |
Column Parameters | 5% phenyl, 95% methyl siloxane, 30 m × 0.25 mm × 0.25 µm |
Solvent Delay | 3.50 min |
MS Source Temperature | 230 °C |
MS Quad Temperature | 150 °C |
Electron Energy | 70 eV |
Scan Range | 40–550 amu |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bassey, K.; Mabowe, M.; Mothibe, M.; Witika, B.A. Chemical Characterization and Nutritional Markers of South African Moringa oleifera Seed Oils. Molecules 2022, 27, 5749. https://doi.org/10.3390/molecules27185749
Bassey K, Mabowe M, Mothibe M, Witika BA. Chemical Characterization and Nutritional Markers of South African Moringa oleifera Seed Oils. Molecules. 2022; 27(18):5749. https://doi.org/10.3390/molecules27185749
Chicago/Turabian StyleBassey, Kokoette, Malebelo Mabowe, Mmamosheledi Mothibe, and Bwalya A. Witika. 2022. "Chemical Characterization and Nutritional Markers of South African Moringa oleifera Seed Oils" Molecules 27, no. 18: 5749. https://doi.org/10.3390/molecules27185749
APA StyleBassey, K., Mabowe, M., Mothibe, M., & Witika, B. A. (2022). Chemical Characterization and Nutritional Markers of South African Moringa oleifera Seed Oils. Molecules, 27(18), 5749. https://doi.org/10.3390/molecules27185749