Prediction of Elastic Properties Using Micromechanics of Polypropylene Composites Mixed with Ultrahigh-Molecular-Weight Polyethylene Fibers
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Rule of Mixture (ROM)
- : Volume fraction of fiber
- : Volume fraction of matrix
- : Poisson’s Ratio of fiber
- : Poisson’s Ratio of matrix
3.2. Modified ROM
- : Correction factor of fiber
- : Correction factor of matrix
3.3. Chamis Model
3.4. Halpin–Tsai Model
- : Elastic modulus correction factor
- : Shear modulus correction factor
- : Correction factor
- : Reinforcing factors
3.5. Finite Element Analysis Theory
4. Conclusions
- (1)
- The maximum volume fraction of the UHMWPE fibers that could be mixed was 78%, and it was possible to perform FEA using ANSYS Material Designer up to a volume fraction of 78%.
- (2)
- According to the micromechanics model and FEA results, owing to the high elastic properties of UHMWPE, the transverse elastic modulus of the composite increased linearly with the volume fraction of UHMWPE. In terms of longitudinal elastic modulus, the ROM model exhibited the largest error, while the Halpin–Tsai model showed the smallest.
- (3)
- According to a comparative analysis of shear modulus, the errors between the FEA and micromechanics models were small: up to 70% volume fraction of UHMWPE fiber.
- (4)
- The error that appeared as the volume fraction increased, and the difference in E2 and E3 longitudinal elastic modulus values from the FEA occurred because the fiber arrangement did not form a lattice in the forward direction with the RVE. If the fibers were not arranged in a rhombus shape but symmetrically in the forward direction, the difference in longitudinal elastic modulus and difference in shear modulus would not have been large.
- (5)
- According to calculations of Poisson’s ratio, the FEA results highly converged with the micromechanics models at UHMWPE volume fractions below 40%, whereas a large error occurred at volume fractions above 50%. Moreover, as the volume fraction of the UHMWPE fibers increased, Poisson’s ratio decreased, thus forming a composite with minimal deformation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karimzadeh, A.; Koloor, S.S.R.; Ayatollahi, M.R.; Bushroa, A.R.; Yahya, M.Y. Assessment of Nano-Indentation Method in Mechanical Characterization of Heterogeneous Nanocomposite Materials Using Experimental and Computational Approaches. Sci. Rep. 2019, 9, 15763. [Google Scholar] [CrossRef]
- Noël, M. Probabilistic Fatigue Life Modelling of FRP Composites for Construction. Constr. Build. Mater. 2019, 206, 279–286. [Google Scholar] [CrossRef]
- Koloor, S.S.R.; Tamin, M. Mode-II Interlaminar Fracture and Crack-Jump Phenomenon in CFRP Composite Laminate Materials. Compos. Struct. 2018, 204, 594–606. [Google Scholar] [CrossRef]
- Fajardo, J.I.; Costa, J.; Cruz, L.J.; Paltán, C.A.; Santos, J.D. Micromechanical Model for Predicting the Tensile Properties of Guadua angustifolia Fibers Polypropylene-Based Composites. Polymers 2022, 14, 2627. [Google Scholar] [CrossRef] [PubMed]
- Han, S.O.; Lee, S.M.; Park, W.H.; Cho, D. Mechanical and thermal properties of waste silk fiber-reinforced poly (butylene succinate) biocomposites. J. Appl. Polym. Sci. 2006, 100, 4972–4980. [Google Scholar] [CrossRef]
- Mohanty, S.; Verma, S.K.; Nayak, S.K.; Tripathy, S.S. Influence of fiber treatment on the performance of sisal-polypropylene composites. J. Appl. Polym. Sci. 2004, 94, 1336–1345. [Google Scholar] [CrossRef]
- Ramos, J.A.; Retegi, A.; Mondragon, I.; Arbelaiz, A.; Ferna, B. Science and Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos. Sci. Technol. 2005, 65, 1582–1592. [Google Scholar]
- Adams, D.F.; Doner, D.R. Longitudinal Shear Loading of a Unidirectional Composite. J. Compos.Mater. 1967, 1, 4–17. [Google Scholar] [CrossRef]
- Bhaskar, P.; Mohamed, R.H. Analytical estimation of elastic properties of polypropylene fiber matrix composite by finite element analysis. Adv. Mater. Phys. Chem. 2012, 2, 17895. [Google Scholar]
- Zheng, Z.; Tang, X.; Shi, M.; Zhou, G. Surface modification of ultrahigh-molecular-weight polyethylene fibers. J. Polym. Sci. B Polym. Phys. 2004, 42, 463–472. [Google Scholar] [CrossRef]
- Ward, I.M.; Ladizesky, N.H. Ultra high modulus polyethylene composites. Pure Appl. Chem. 1985, 57, 1641–1649. [Google Scholar] [CrossRef]
- Sun, C.; Vaidya, R. Prediction of Composite Properties from a Representative Volume Element. Compos. Sci. Technol. 1996, 56, 171–179. [Google Scholar] [CrossRef]
- Li, S. General Unit Cell for Micromechanical Analyses of Unidirectional Composites. Compos. A Appl. Sci. Manuf. 2000, 32, 815–816. [Google Scholar] [CrossRef]
- Kim, B.; Lee, H. An RVE-Based Micromechanical Analysis of Fiber-Reinforced Composites Considering Fiber Size Dependency. Compos. Struct. 2009, 90, 418–427. [Google Scholar] [CrossRef]
- De Buhan, P.; Taliercio, A. A Homogenisation Approach to the Yield Strength of Compositematerials. Eur. J. Mech. 1991, 10, 129–154. [Google Scholar]
- Pan, Y.; Iorga, L.; Pelegri, A.A. Numerical Generation of a Random Chopped Fiber Composite RVE and Its Elastic Pproperties. Compos. Sci. Technol. 2008, 68, 2792–2798. [Google Scholar] [CrossRef]
- Porfiri, M.; Gupta, N. Effect of Volume Fraction and Wall Thickness on the Elastic Properties of Hollow Particle Filled Composites. Compos. B Eng. 2009, 40, 166–173. [Google Scholar] [CrossRef]
- Günay, E. Micromechanical Investigation of Elastic Properties for Polypropylene Fiber-Matrix Composite. Acta Phys. Pol. A 2017, 131, 143–146. [Google Scholar] [CrossRef]
- Yerbolat, G.; Amangeldi, S.; Ali, M.H.; Badanova, N.; Ashirbeok, A.; Islam, G. Composite materials property determination by rule of mixture and monte carlo simulation. In Proceedings of the 2018 IEEE International Conference on Advanced Manufacturing (ICAM), Yunlin, Taiwan, 16–18 November 2018; IEEE: Washington, DC, USA, 2018; pp. 384–387. [Google Scholar]
- Liu, G.R. A step-by-step method of rule-of-mixture of fiber-and particle-reinforced composite materials. Compos. Struct. 1997, 40, 313–322. [Google Scholar] [CrossRef]
- Lee, S.; Park, H.C.; Kim, K.J. Equivalent modeling for ionic polymer–metal composite actuators based on beam theories. Smart Mater. Struct. 2005, 14, 1363. [Google Scholar] [CrossRef]
- Song, M.; Kitipornchai, S.; Yang, J. Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 2017, 159, 579–588. [Google Scholar] [CrossRef]
- Wongpajan, R.; Mathurosemontri, S.; Takematsu, R.; Xu, H.Y.; Uawongsuwan, P.; Thumsorn, S.; Hamada, H. Interfacial shear strength of glass fiber reinforced polymer composites by the modified rule of mixture and Kelly-Tyson model. Energy Procedia 2016, 89, 328–334. [Google Scholar] [CrossRef]
- Ghafaar, M.A.; Mazen, A.A.; El-Mahallawy, N.A. Application of the rule of mixtures and Halpin-Tsai equations to woven fabric reinforced epoxy composites. JES—J. Eng. Sci. 2006, 34, 227–236. [Google Scholar] [CrossRef]
- Rangaraj, S.S.; Bhaduri, S.B. A modified rule-of-mixtures for prediction of tensile strengths of unidirectional fibre-reinforced composite materials. J. Mater. Sci. 1994, 29, 2795–2800. [Google Scholar] [CrossRef]
- Park, D.M.; Kim, J.H.; Lee, S.J.; Yoon, G.H. Analysis of geometrical characteristics of CNT-Al composite using molecular dynamics and the modified rule of mixture (MROM). J. Mech. Sci. Technol. 2018, 32, 5845–5853. [Google Scholar] [CrossRef]
- Jiang, H.; Ren, Y.; Jin, Q. A novel synergistic multi-scale modeling framework to predict micro-and meso-scale damage behaviors of 2D triaxially braided composite. Int. J. Damage Mech. 2022, 31, 108–141. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.W. Estimation of Effective Mechanical Properties of Plain Woven Composites Using Direction-Selective Micromechanical Models. Int. J. Aeronaut. Space Sci. 2022, 23, 521–532. [Google Scholar] [CrossRef]
- Shan, M.; Zhao, L.; Ye, J. A Novel Micromechanics-Model-Based Probabilistic Analysis Method for the Elastic Properties of Unidirectional CFRP Composites. Materials 2022, 15, 5090. [Google Scholar] [CrossRef]
- Agwu, N.; Ozoegwu, C.G. Critical investigation on the effect of fiber geometry and orientation on the effective mechanical properties of fiber-reinforced polymer composites. Mech. Adv. Mater. Struct. 2022, 1–10. [Google Scholar] [CrossRef]
- Shokrieh, M.M.; Moshrefzadeh-Sani, H. On the constant parameters of Halpin-Tsai equation. Polymer 2016, 106, 14–20. [Google Scholar] [CrossRef]
- Osoka, E.C.; Onukwuli, O.D. A modified Halpin-Tsai model for estimating the modulus of natural fiber reinforced composites. Int. J. Eng. Sci. Invent. 2018, 7, 63–70. [Google Scholar]
- Luo, Z.; Li, X.; Shang, J.; Zhu, H.; Fang, D. Modified rule of mixtures and Halpin–Tsai model for prediction of tensile strength of micron-sized reinforced composites and Young’s modulus of multiscale reinforced composites for direct extrusion fabrication. Adv. Mech. Eng. 2018, 10, 1687814018785286. [Google Scholar] [CrossRef]
- Fuchs, C.; Bhattacharyya, D.; Friedrich, K.; Fakirov, S. Application of Halpin–Tsai equation to microfibril reinforced polypropylene/poly (ethylene terephthalate) composites. Compos. Interfaces 2006, 13, 331–344. [Google Scholar] [CrossRef]
- Yung, K.C.; Wang, J.; Yue, T.M. Modeling Young’s modulus of polymer-layered silicate nanocomposites using a modified Halpin—Tsai micromechanical model. J. Reinf. Plast. Compos. 2006, 25, 847–861. [Google Scholar] [CrossRef]
- Kalamkarov, A.L.; Andrianov, I.V.; Danishevs’kyy, V.V. Asymptotic homogenization of composite materials and structures. Appl. Mech. Rev. 2009, 62, 030802. [Google Scholar] [CrossRef]
- Ferrari, M. Composite homogenization via the equivalent poly-inclusion approach. Compos. Eng. 1994, 4, 37–45. [Google Scholar] [CrossRef]
- Takano, N.; Ohnishi, Y.; Zako, M.; Nishiyabu, K. The formulation of homogenization method applied to large deformation problem for composite materials. Int. J. Solids Struct. 2000, 37, 6517–6535. [Google Scholar] [CrossRef]
- Andreassen, E.; Andreasen, C.S. How to determine composite material properties using numerical homogenization. Comput. Mater. Sci. 2014, 83, 488–495. [Google Scholar] [CrossRef] [Green Version]
Polypropylene (PP) | UHMWPE | |
---|---|---|
Elastic modulus (MPa) | 1325 | 25,000 |
Shear modulus (MPa) | 432.29 | 10,417 |
Poisson’s ratio | 0.43 | 0.20 |
Bulk modulus (MPa) | 3154.8 | 13,889.0 |
Density (kg/m3) | 904 | 950 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, J.-H.; Jeon, Y.-J.; Kang, M.-S. Prediction of Elastic Properties Using Micromechanics of Polypropylene Composites Mixed with Ultrahigh-Molecular-Weight Polyethylene Fibers. Molecules 2022, 27, 5752. https://doi.org/10.3390/molecules27185752
Yun J-H, Jeon Y-J, Kang M-S. Prediction of Elastic Properties Using Micromechanics of Polypropylene Composites Mixed with Ultrahigh-Molecular-Weight Polyethylene Fibers. Molecules. 2022; 27(18):5752. https://doi.org/10.3390/molecules27185752
Chicago/Turabian StyleYun, Jong-Hwan, Yu-Jae Jeon, and Min-Soo Kang. 2022. "Prediction of Elastic Properties Using Micromechanics of Polypropylene Composites Mixed with Ultrahigh-Molecular-Weight Polyethylene Fibers" Molecules 27, no. 18: 5752. https://doi.org/10.3390/molecules27185752
APA StyleYun, J. -H., Jeon, Y. -J., & Kang, M. -S. (2022). Prediction of Elastic Properties Using Micromechanics of Polypropylene Composites Mixed with Ultrahigh-Molecular-Weight Polyethylene Fibers. Molecules, 27(18), 5752. https://doi.org/10.3390/molecules27185752