Design, Synthesis, and Bioactivities of Novel Tryptophan Derivatives Containing 2,5-Diketopiperazine and Acyl Hydrazine Moieties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Biological Assay
2.2.1. Anti-TMV Activities
2.2.2. Fungicidal Activities
2.2.3. Larvicidal Activities
3. Materials and Methods
3.1. Materials
3.2. General Synthesis
3.2.1. Synthesis of (S)-Methyl 2-Amino-3-(1H-indol-3-yl)propanoate (1)
3.2.2. Synthesis of (S)-Methyl 2-(2-Chloroacetamido)-3-(1H-indol-3-yl)propanoate (2)
3.2.3. Synthesis of (S)-3-((1H-Indol-3-yl)methyl)-1-aminopiperazine-2,5-dione (3)
3.2.4. General Synthesis Route for Derivatives 4–32
3.3. Biological Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Wu, Z.L.; Ma, G.M.; Zhu, H.M.; Chen, M.Q.; Huang, M.; Xie, X.; Li, X.Y. Plant Viral Coat Proteins as Biochemical Targets for Antiviral Compounds. J. Agric. Food Chem. 2022, 70, 8892–8900. [Google Scholar] [CrossRef]
- Bos, L. 100 Years of Virology: From Vitalism via Molecular Biology to Genetic Engineering. Trends Microbiol. 2000, 8, 82–87. [Google Scholar] [CrossRef]
- Barna, B.; Fodor, J.; Pogány, M.; Király, Z. Role of Reactive Oxygen Species and Antioxidants in Plant Disease Resistance. Pest. Manag. Sci. 2003, 59, 459–464. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, Y.; Wu, K.; Yan, H.; Hao, X.; Wu, Y. Application of Fatty Acids as Antiviral Agents against Tobacco Mosaic Virus. Pestic. Biochem. Phys. 2017, 139, 87–91. [Google Scholar] [CrossRef]
- Kah, M.; Tufenkji, N.; White, J.C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 2017, 14, 532–540. [Google Scholar] [CrossRef]
- He, S.; Creasey Krainer, K.M. Pandemics of people and plants: Which is the greater threat to food security? Mol. Plant 2020, 13, 933–934. [Google Scholar] [CrossRef] [PubMed]
- Gan, X.; Wang, Z.; Hu, D. Synthesis of Novel Antiviral Ferulic Acid-Eugenol and Isoeugenol Hybrids Using Various Link Reactions. J. Agric. Food Chem. 2021, 69, 13724–13733. [Google Scholar] [CrossRef]
- Giraldo, J.P.; Wu, H.; Newkirk, G.M.; Kruss, S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 2019, 14, 541–553. [Google Scholar] [CrossRef]
- Eschenbrenner-Lux, V.; Küchler, P.; Ziegler, S.; Kumar, K.; Waldmann, H. An Enantioselective Inverse-Electron-Demand Imino Diels-Alder Reaction. Angew. Chem. Int. Ed. 2014, 53, 2134–2137. [Google Scholar] [CrossRef]
- Chen, J.X.; Luo, X.; Chen, Y.F.; Wang, Y.; Peng, J.; Xing, Z.F. Recent research progress: Discovery of anti-plant virus agents based on natural scaffold. Front. Chem. 2022, 10, 926202. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Legault, G.S.; Lerat, S.; Nicolas, P.; Beaulieu, C. Tryptophan regulates thaxtomin A and indole-3-acetic acid production in Streptomyces scabiei and modifies its interactions with radish seedlings. Phytopathology 2011, 101, 1045–1051. [Google Scholar] [CrossRef]
- Hoshino, T.; Kondo, T.; Uchiyama, T.; Ogasawara, N. Studies on the biosynthesis of violacein. Part I. Biosynthesis of violacein: A novel rearrangement in tryptophan metabolism with a 1,2-shift of the indole ring. Agric. Biol. Chem. 1987, 51, 965–968. [Google Scholar] [CrossRef]
- Boyer, N.; Movassaghi, M. Concise total synthesis of (+)-gliocladins B and C. Chem. Sci. 2012, 3, 1798–1803. [Google Scholar] [CrossRef] [PubMed]
- Coste, A.; Kim, J.; Adams, T.C.; Movassaghi, M. Concise total synthesis of (+)-bionectins A and C. Chem. Sci. 2013, 4, 3191–3197. [Google Scholar] [CrossRef]
- Huang, Y.Q.; Liu, Y.X.; Liu, Y.X.; Song, H.J.; Wang, Q.M. C ring may be dispensable for β-carboline: Design, synthesis, and bioactivities evaluation of tryptophan analog derivatives based on the biosynthesis of β-carboline alkaloids. Bioorg. Med. Chem. 2015, 24, 462–473. [Google Scholar] [CrossRef]
- Zhao, K.L.; Xing, R.R.; Yan, X.H. Cyclic dipeptides: Biological activities and self-assembled materials. Pept. Sci. 2021, 113, e24202. [Google Scholar] [CrossRef]
- Zhao, P.C.; Xue, Y.; Li, J.H.; Li, X.; Zu, X.Y.; Zhao, Z.Q.; Quan, C.S.; Gao, W.N.; Feng, S.X. Non-lipopeptide fungi-derived peptide antibiotics developed since 2000. Biotechnol. Lett. 2019, 41, 651–673. [Google Scholar] [CrossRef]
- Borthwick, A.D. 2,5-Diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev. 2012, 112, 3641–3716. [Google Scholar] [CrossRef]
- Huang, R.; Zhou, X.; Xu, T.; Yang, X.; Liu, Y. Diketopiperazines from marine organisms. Chem. Biodivers. 2010, 7, 2809–2829. [Google Scholar] [CrossRef]
- Liu, Y.X.; Song, H.J.; Huang, Y.Q.; Li, J.R.; Zhao, S.; Song, Y.C.; Yang, P.W.; Xiao, Z.X.; Liu, Y.X.; Li, Y.Q.; et al. Design, Synthesis, and Antiviral, Fungicidal, and Insecticidal Activities of Tetrahydro-β-carboline-3-carbohydrazide Derivatives. J. Agric. Food Chem. 2014, 62, 9987–9999. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.W.; Xie, J.L.; Song, H.J.; Liu, Y.X.; Gu, Y.C.; Wang, L.Z.; Wang, Q.M. Design, Synthesis, and Biological Activities of Spirooxindoles Containing Acylhydrazone Fragment Derivatives Based on the Biosynthesis of Alkaloids Derived from Tryptophan. J. Agric. Food Chem. 2016, 64, 6508–6516. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.L.; Xu, W.T.; Song, H.J.; Liu, Y.X.; Zhang, J.J.; Wang, Q.M. Synthesis and Antiviral/Fungicidal/Insecticidal Activities Study of Novel Chiral Indole Diketopiperazine Derivatives Containing Acylhydrazone Moiety. J. Agric. Food Chem. 2020, 68, 5555–5571. [Google Scholar] [CrossRef]
- Wang, K.L.; Su, B.; Wang, Z.W.; Wu, M.; Li, Z.; Hu, Y.N.; Fan, Z.J.; Mi, N.; Wang, Q.M. Synthesis and antiviral activities of phenanthroindolizidine alkaloids and their derivatives. J. Agric. Food Chem. 2010, 58, 2703–2709. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.P.; Liu, Y.X.; Cui, Z.P.; Beattie, D.; Gu, Y.C.; Wang, Q.M. Design, synthesis, and biological activities of arylmethylamine substituted chlorotriazine and methylthiotriazine compounds. J. Agric. Food Chem. 2011, 59, 11711–11717. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.J.; Li, C.J.; Liu, Y.X.; Song, H.J.; Wang, L.Z.; Song, H.B.; Wang, Q.M. Various Bioactivity and Relationship of Structure–Activity of Matrine Analogues. J. Agric. Food Chem. 2017, 65, 2039–2047. [Google Scholar] [CrossRef] [PubMed]
Entry | Conditions | Time | Yield |
---|---|---|---|
1 | 100 °C, 100 W | 15 min | 95% |
2 | 100 °C, reflux | 12 h | 72% |
Compd | Concn (mg/L) | Inhibition Rate (%) * | |||
---|---|---|---|---|---|
Inactivation Effect | Curative Effect | Protection Effect | |||
3 | 500 | 27 ± 4 | |||
4 | R = , R′ = H | 500 | 51 ± 1 | 46 ± 2 | 48 ± 3 |
100 | 18 ± 1 | 12 ± 1 | 11 ± 3 | ||
5 | R = , R′ = H | 500 | 36 ± 2 | ||
6 | R = , R′ = H | 500 | 41 ± 4 | 39 ± 1 | 36 ± 2 |
100 | 6 ± 2 | 0 | 0 | ||
7 | R = , R′ = H | 500 | 35 ± 3 | ||
8 | R = , R′ = H | 500 | 42 ± 1 | 48 ± 4 | 39 ± 3 |
100 | 14 ± 1 | 8 ± 1 | 4 ± 1 | ||
9 | R = , R′ = H | 500 | 50 ± 4 | 46 ± 3 | 43 ± 2 |
100 | 20 ± 1 | 13 ± 2 | 18 ± 1 | ||
10 | R = , R′ = H | 500 | 34 ± 3 | ||
11 | R = , R′ = H | 500 | 45 ± 1 | 37 ± 2 | 41 ± 3 |
100 | 15 ± 1 | 7 ± 1 | 8 ± 1 | ||
12 | R = , R′ = H | 500 | 26 ± 4 | ||
13 | R = , R′ = H | 500 | 47 ± 1 | 49 ± 4 | 42 ± 4 |
100 | 9 ± 1 | 14 ± 2 | 6 ± 1 | ||
14 | R = , R′ = H | 500 | 54 ± 3 | 50 ± 3 | 45 ± 2 |
100 | 18 ± 1 | 11 ± 1 | 19 ± 1 | ||
15 | R = , R′ = H | 500 | 42 ± 1 | 35 ± 4 | 32 ± 2 |
16 | R = , R′ = H | 500 | 24 ± 4 | ||
17 | R = , R′ = H | 500 | 28 ± 5 | ||
18 | R = , R′ = H | 500 | 31 ± 1 | ||
19 | R = , R′ = H | 500 | 53 ± 2 | 48 ± 4 | 45 ± 2 |
100 | 16 ± 1 | 13 ± 1 | 19 ± 2 | ||
20 | R = , R′ = H | 500 | 37 ± 3 | ||
21 | R = , R′ = H | 500 | 42 ± 3 | 44 ± 3 | 39 ± 2 |
100 | 12 ± 1 | 7 ± 2 | 14 ± 1 | ||
22 | R = , R′ = H | 500 | 49 ± 4 | 46 ± 2 | 50 ± 3 |
100 | 5 ± 3 | 15 ± 1 | 18 ± 1 | ||
23 | R = , R′ = H | 500 | 47 ± 2 | 42 ± 3 | 49 ± 4 |
100 | 16 ± 1 | 12 ± 1 | 10 ± 1 | ||
24 | R = , R′ = H | 500 | 52 ± 2 | 43 ± 4 | 48 ± 2 |
100 | 20 ± 1 | 8 ± 1 | 15 ± 3 | ||
25 | R = , R′ = Me | 500 | 43 ± 3 | 38 ± 2 | 40 ± 4 |
100 | 6 ± 1 | 11 ± 1 | 9 ± 1 | ||
26 | R = , R′ = H | 500 | 39 ± 3 | 35 ± 3 | 46 ± 1 |
27 | R = , R′ = H | 500 | 33 ± 4 | ||
28 | R = , R′ = H | 500 | 37 ± 2 | ||
29 | R = , R′ = H | 500 | 43 ± 2 | 41 ± 3 | 46 ± 2 |
100 | 10 ± 2 | 12 ± 1 | 6 ± 1 | ||
30 | R = , R′ = H | 500 | 31 ± 1 | ||
31 | R = , R′ = H | 500 | 32 ± 5 | ||
32 | R = , R′ = H | 500 | 35 ± 2 | ||
ningnanmycin | 500 | 58 ± 1 | 55 ± 1 | 57 ± 1 | |
100 | 28 ± 3 | 26 ± 1 | 30 ± 1 | ||
ribavirin | 500 | 39 ± 1 | 37 ± 1 | 39 ± 1 | |
100 | 10 ± 1 | 13 ± 1 | 15 ± 2 |
Compd | Inhibition Rate (% at 50 mg/L) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A.S.* | F.G. | P.I. | P.C. | S.S. | B.C. | R.S. | F.C. | C.H. | P.P. | B.M. | W.A. | F.M. | |
3 | 66 ± 4 | 39 ± 4 | 25 ± 1 | 37 ± 1 | 85 ± 3 | 34 ± 3 | 31 ± 6 | 0 | 39 ± 5 | 45 ± 2 | 36 ± 1 | 0 | 0 |
4 | 56 ± 3 | 41 ± 1 | 30 ± 1 | 35 ± 2 | 65 ± 1 | 56 ± 1 | 37 ± 1 | 0 | 43 ± 5 | 35 ± 1 | 30 ± 1 | 59 ± 1 | 27 ± 3 |
5 | 56 ± 1 | 65 ± 1 | 65 ± 1 | 53 ± 1 | 46 ± 2 | 60 ± 3 | 33 ± 1 | 42 ± 2 | 31 ± 1 | 36 ± 1 | 39 ± 2 | 61 ± 5 | 31 ± 1 |
6 | 32 ± 1 | 77 ± 3 | 30 ± 5 | 35 ± 2 | 55 ± 1 | 28 ± 1 | 33 ± 1 | 54 ± 1 | 43 ± 5 | 43 ± 3 | 35 ± 2 | 46 ± 2 | 51 ± 1 |
7 | 63 ± 2 | 46 ± 3 | 57 ± 1 | 32 ± 1 | 45 ± 1 | 36 ± 1 | 35 ± 4 | 39 ± 3 | 40 ± 2 | 35 ± 1 | 33 ± 1 | 39 ± 5 | 31 ± 1 |
8 | 78 ± 3 | 46 ± 3 | 30 ± 5 | 66 ± 1 | 37 ± 4 | 28 ± 1 | 43 ± 1 | 32 ± 4 | 43 ± 1 | 41 ± 4 | 33 ± 1 | 37 ± 1 | 27 ± 2 |
9 | 64 ± 1 | 46 ± 3 | 45 ± 3 | 66 ± 1 | 51 ± 2 | 32 ± 1 | 37 ± 1 | 44 ± 1 | 52 ± 2 | 63 ± 3 | 30 ± 1 | 42 ± 1 | 31 ± 1 |
10 | 46 ± 3 | 30 ± 5 | 45 ± 3 | 59 ± 1 | 31 ± 6 | 44 ± 1 | 35 ± 4 | 32 ± 4 | 43 ± 5 | 30 ± 1 | 36 ± 5 | 39 ± 5 | 27 ± 1 |
11 | 46 ± 3 | 45 ± 3 | 55 ± 1 | 35 ± 2 | 45 ± 1 | 47 ± 2 | 31 ± 5 | 44 ± 1 | 43 ± 5 | 36 ± 3 | 37 ± 4 | 51 ± 1 | 51 ± 1 |
12 | 46 ± 3 | 35 ± 3 | 75 ± 2 | 32 ± 1 | 45 ± 1 | 48 ± 1 | 33 ± 4 | 37 ± 3 | 37 ± 1 | 43 ± 3 | 38 ± 7 | 37 ± 1 | 43 ± 7 |
13 | 55 ± 1 | 57 ± 7 | 36 ± 1 | 52 ± 4 | 56 ± 2 | 36 ± 1 | 42 ± 2 | 49 ± 2 | 40 ± 1 | 43 ± 3 | 44 ± 3 | 39 ± 5 | 61 ± 1 |
14 | 30 ± 1 | 47 ± 2 | 45 ± 1 | 67 ± 1 | 57 ± 1 | 47 ± 3 | 47 ± 1 | 34 ± 1 | 40 ± 1 | 41 ± 2 | 33 ± 1 | 42 ± 1 | 38 ± 5 |
15 | 40 ± 1 | 43 ± 1 | 65 ± 2 | 90 ± 1 | 83 ± 1 | 74 ± 5 | 72 ± 1 | 54 ± 1 | 49 ± 4 | 55 ± 1 | 52 ± 1 | 61 ± 5 | 45 ± 1 |
16 | 30 ± 1 | 47 ± 1 | 32 ± 1 | 37 ± 1 | 28 ± 1 | 26 ± 1 | 39 ± 4 | 64 ± 1 | 40 ± 1 | 40 ± 1 | 53 ± 1 | 46 ± 1 | 37 ± 4 |
17 | 35 ± 1 | 35 ± 4 | 40 ± 1 | 37 ± 1 | 32 ± 3 | 57 ± 1 | 39 ± 4 | 39 ± 1 | 40 ± 1 | 36 ± 1 | 47 ± 4 | 44 ± 4 | 44 ± 1 |
18 | 35 ± 1 | 45 ± 1 | 32 ± 1 | 43 ± 2 | 50 ± 1 | 57 ± 1 | 57 ± 3 | 37 ± 3 | 46 ± 2 | 35 ± 1 | 30 ± 1 | 46 ± 1 | 44 ± 1 |
19 | 53 ± 1 | 30 ± 3 | 36 ± 2 | 40 ± 1 | 50 ± 1 | 66 ± 1 | 45 ± 1 | 44 ± 1 | 43 ± 1 | 50 ± 1 | 47 ± 4 | 54 ± 1 | 0 |
20 | 35 ± 1 | 65 ± 1 | 32 ± 1 | 55 ± 3 | 63 ± 2 | 41 ± 2 | 47 ± 1 | 59 ± 1 | 43 ± 2 | 41 ± 1 | 40 ± 1 | 44 ± 4 | 53 ± 1 |
21 | 47 ± 2 | 0 | 40 ± 1 | 49 ± 4 | 26 ± 2 | 32 ± 1 | 61 ± 1 | 37 ± 3 | 37 ± 1 | 35 ± 1 | 33 ± 1 | 51 ± 1 | 33 ± 1 |
22 | 55 ± 1 | 0 | 32 ± 5 | 43 ± 2 | 44 ± 1 | 37 ± 6 | 56 ± 1 | 39 ± 1 | 43 ± 5 | 45 ± 1 | 33 ± 2 | 42 ± 2 | 0 |
23 | 45 ± 1 | 40 ± 1 | 32 ± 1 | 55 ± 3 | 55 ± 2 | 47 ± 3 | 33 ± 2 | 37 ± 3 | 49 ± 4 | 46 ± 2 | 35 ± 2 | 44 ± 4 | 61 ± 1 |
24 | 50 ± 1 | 35 ± 4 | 53 ± 3 | 92 ± 1 | 91 ± 1 | 94 ± 1 | 90 ± 1 | 66 ± 1 | 81 ± 2 | 51 ± 1 | 54 ± 1 | 61 ± 1 | 53 ± 3 |
25 | 40 ± 1 | 57 ± 1 | 32 ± 1 | 46 ± 1 | 56 ± 2 | 33 ± 1 | 47 ± 1 | 29 ± 2 | 43 ± 1 | 45 ± 2 | 37 ± 4 | 44 ± 4 | 34 ± 1 |
26 | 43 ± 1 | 37 ± 1 | 44 ± 2 | 46 ± 1 | 68 ± 1 | 47 ± 2 | 39 ± 4 | 37 ± 3 | 40 ± 1 | 45 ± 2 | 39 ± 1 | 27 ± 3 | 34 ± 1 |
27 | 55 ± 1 | 67 ± 1 | 32 ± 2 | 28 ± 2 | 36 ± 2 | 47 ± 2 | 42 ± 2 | 0 | 40 ± 1 | 26 ± 1 | 30 ± 1 | 34 ± 1 | 51 ± 1 |
28 | 65 ± 1 | 45 ± 1 | 28 ± 3 | 34 ± 3 | 38 ± 5 | 53 ± 1 | 33 ± 1 | 52 ± 4 | 40 ± 1 | 40 ± 1 | 30 ± 1 | 46 ± 1 | 52 ± 1 |
29 | 65 ± 1 | 57 ± 1 | 28 ± 3 | 37 ± 1 | 44 ± 1 | 47 ± 1 | 36 ± 1 | 49 ± 1 | 40 ± 1 | 38 ± 3 | 33 ± 1 | 34 ± 2 | 61 ± 1 |
30 | 71 ± 1 | 55 ± 1 | 28 ± 3 | 34 ± 1 | 46 ± 2 | 46 ± 1 | 47 ± 1 | 54 ± 9 | 37 ± 1 | 43 ± 3 | 37 ± 4 | 42 ± 1 | 34 ± 1 |
31 | 35 ± 1 | 37 ± 1 | 28 ± 3 | 55 ± 3 | 43 ± 2 | 67 ± 1 | 50 ± 1 | 62 ± 4 | 43 ± 5 | 50 ± 0 | 30 ± 1 | 49 ± 3 | 34 ± 1 |
32 | 43 ± 1 | 48 ± 2 | 24 ± 2 | 43 ± 1 | 46 ± 2 | 46 ± 1 | 47 ± 1 | 64 ± 1 | 40 ± 1 | 46 ± 2 | 30 ± 1 | 42 ± 2 | 31 ± 1 |
chlorothalonil | 35 ± 1 | 66 ± 1 | 75 ± 1 | 76 ± 2 | 96 ± 3 | 51 ± 1 | 100 | 78 ± 1 | 50 ± 1 | 73 ± 3 | 67 ± 4 | 68 ± 3 | 85 ± 2 |
Compd | Larvicidal Activity at Various Concentrations (mg/L) | ||||||||
---|---|---|---|---|---|---|---|---|---|
T. cinnabarinus | P. xylostella | C. pipiens pallens | |||||||
600 | 200 | 100 | 600 | 200 | 100 | 10 | 5 | 2 | |
3 | 0 | 0 | 100 | 76 ± 6 | 50 ± 0 | ||||
4 | 0 | 100 | 83 ± 6 | 50 ± 0 | 40 ± 0 | ||||
5 | 0 | 76 ± 6 | 50 ± 0 | 60 ± 0 | |||||
6 | 0 | 50 ± 0 | 10 ± 0 | ||||||
7 | 0 | 90 ± 0 | 46 ± 6 | 60 ± 0 | |||||
8 | 0 | 0 | 40 ± 10 | ||||||
9 | 0 | 40 ± 0 | 100 | 100 | 50 ± 0 | ||||
10 | 0 | 80 ± 0 | 30 ± 0 | 63 ± 6 | |||||
11 | 0 | 40 ± 0 | 70 ± 0 | ||||||
12 | 0 | 70 ± 0 | 40 ± 0 | 20 ± 0 | |||||
13 | 0 | 60 ± 0 | 20 ± 0 | 20 ± 0 | |||||
14 | 0 | 0 | 46 ± 6 | ||||||
15 | 20 ± 10 | 0 | 30 ± 0 | ||||||
16 | 0 | 0 | 0 | ||||||
17 | 30 ± 0 | 0 | 20 ± 0 | ||||||
18 | 100 | 70 ± 0 | 40 ± 0 | 50 ± 0 | 25 ± 0 | ||||
19 | 0 | 0 | 30 ± 0 | ||||||
20 | 0 | 60 ± 10 | 40 ± 0 | 40 ± 0 | |||||
21 | 100 | 80 ± 0 | 50 ± 0 | 40 ± 0 | 100 | 60 ± 0 | 33 ± 6 | ||
22 | 10 ± 0 | 0 | 20 ± | ||||||
23 | 0 | 90 ± 0 | 50 ± 0 | 10 ± 0 | 100 | 80 ± 0 | 30 ± 0 | ||
24 | 0 | 0 | 30 ± 0 | ||||||
25 | 30 ± 0 | 0 | 50 ± 0 | ||||||
26 | 0 | 60 ± 0 | 20 ± 10 | 20 ± 10 | |||||
27 | 70 ± 0 | 40 ± 10 | 0 | 50 ± 0 | |||||
28 | 43 ± 6 | 0 | 100 | 66 ± 6 | 30 ± 0 | ||||
29 | 0 | 90 ± 0 | 70 ± 0 | 30 ± 0 | 40 ± 0 | ||||
30 | 80 ± 0 | 30 ± 0 | 0 | 70 ± 0 | 20 ± 0 | ||||
31 | 0 | 0 | 43 ± 6 | ||||||
32 | 20 ± 0 | 0 | 20 ± 0 | ||||||
pymetrozine | 100 | 100 | 100 | -* | -* | ||||
rotenone | -* | 100 | 100 | 80 ± 0 | 100 | 50 ± 0 |
Compd | Larvicidal Activity at Various Concentrations (mg/L) | ||||||
---|---|---|---|---|---|---|---|
M. separata | H. armigera | P. nubilalis | |||||
600 | 200 | 100 | 600 | 200 | 600 | 200 | |
3 | 50 ± 0 | 40 ± 0 | 30 ± 0 | ||||
4 | 20 ± 0 | 20 ± 0 | 30 ± 0 | ||||
5 | 40 ± 0 | 40 ± 0 | 50 ± 0 | ||||
6 | 0 | 0 | 0 | ||||
7 | 0 | 20 ± 10 | 10 ± | ||||
8 | 0 | 0 | 10 ± 0 | ||||
9 | 20 ± 10 | 10 ± 0 | 50 ± 0 | ||||
10 | 50 ± 0 | 30 ± 0 | 30 ± 0 | ||||
11 | 20 ± 0 | 30 ± 0 | 50 ± 0 | ||||
12 | 100 | 60 ± 0 | 30 ± 0 | 60 ± 0 | 20 ± 0 | 76 ± 6 | 50 ± 0 |
13 | 0 | 0 | 0 | ||||
14 | 63 ± 6 | 20 ± 0 | 50 ± 0 | 50 ± 0 | |||
15 | 0 | 0 | 0 | ||||
16 | 30 ± 0 | 10 ± 0 | 20 ± 0 | ||||
17 | 0 | 0 | 0 | ||||
18 | 20 ± 0 | 20 ± 0 | 10 ± 0 | ||||
19 | 20 ± 0 | 10 ± 0 | 20 ± 0 | ||||
20 | 0 | 0 | 0 | ||||
21 | 70 ± 0 | 50 ± 10 | 20 ± 0 | 60 ± 0 | 20 ± 0 | 60 ± 0 | 40 ± 0 |
22 | 43 ± 6 | 33 ± 6 | 30 ± 10 | ||||
23 | 0 | 0 | 10 ± 0 | ||||
24 | 0 | 0 | 0 | ||||
25 | 80 ± 0 | 40 ± 0 | 40 ± 0 | 50 ± 0 | |||
26 | 50 ± 0 | 20 ± 0 | 30 ± 0 | ||||
27 | 20 ± 10 | 20 ± 0 | 30 ± 0 | ||||
28 | 90 ± 0 | 60 ± 0 | 40 ± 0 | 60 ± 0 | 30 ± 0 | 70 ± 0 | 46 ± 6 |
29 | 43 ± 6 | 20 ± 0 | 30 ± 0 | ||||
30 | 30 ± 0 | 20 ± 0 | 30 ± 0 | ||||
31 | 100 | 80 ± 0 | 30 ± 0 | 100 | 20 ± 0 | 100 | 30 ± 0 |
32 | 100 | 60 ± 0 | 20 ± 0 | 100 | 50 ± 0 | 100 | 20 ± 0 |
rotenone | 70 ± 0 | 40 ± 0 | 50 ± 0 | 30 ± 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Yang, R.; Liu, J.; Zhang, J.; Song, H.; Liu, Y.; Wang, Q. Design, Synthesis, and Bioactivities of Novel Tryptophan Derivatives Containing 2,5-Diketopiperazine and Acyl Hydrazine Moieties. Molecules 2022, 27, 5758. https://doi.org/10.3390/molecules27185758
Li L, Yang R, Liu J, Zhang J, Song H, Liu Y, Wang Q. Design, Synthesis, and Bioactivities of Novel Tryptophan Derivatives Containing 2,5-Diketopiperazine and Acyl Hydrazine Moieties. Molecules. 2022; 27(18):5758. https://doi.org/10.3390/molecules27185758
Chicago/Turabian StyleLi, Lili, Rongxin Yang, Jianhua Liu, Jingjing Zhang, Hongjian Song, Yuxiu Liu, and Qingmin Wang. 2022. "Design, Synthesis, and Bioactivities of Novel Tryptophan Derivatives Containing 2,5-Diketopiperazine and Acyl Hydrazine Moieties" Molecules 27, no. 18: 5758. https://doi.org/10.3390/molecules27185758
APA StyleLi, L., Yang, R., Liu, J., Zhang, J., Song, H., Liu, Y., & Wang, Q. (2022). Design, Synthesis, and Bioactivities of Novel Tryptophan Derivatives Containing 2,5-Diketopiperazine and Acyl Hydrazine Moieties. Molecules, 27(18), 5758. https://doi.org/10.3390/molecules27185758