Comparison of Glyphosate Detection by Surface-Enhanced Raman Spectroscopy Using Gold and Silver Nanoparticles at Different Laser Excitations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Nanoparticles
2.2. Raman and SERS Measurements
Raman [43] | SERS [43] | Raman 532 nm | SERS 532 nm | Raman 632 nm | SERS 632 nm | Raman 785 nm (Portable) | SERS 785 nm (Portable) | Raman 785 nm | SERS 785 nm | Tentative Assignment from [39,45] |
---|---|---|---|---|---|---|---|---|---|---|
345 | 339 | 339 | ||||||||
455 | 458 | 454 | 450 | 452 | δ(PO3) + δ(NCCO) or ρ(CH2) + δ(OH) | |||||
485 | 487 | 484 | 490 | δ(HOPO) + ρ(PCN)+δ(NCC) + δ(HOCO)+ρ(CH2) or δ(OH) + ρ(CH2) + (PO2) | ||||||
509 | 512 | 508 | δ(HOPO) + δ(CNC)+δ(HOCO) + ρ(CH2) or δ(OH) + δ(CH) | |||||||
576 | 565 (broad) | 578 | 576 | 573 | 560 | 574 | δρ(PO3) + skel(NCCOO) or δ(OH) + δ(HO-C=O) | |||
605 | 606 | |||||||||
646 | 650 | ν(PC) + δ(NCC) + δ(COO) | ||||||||
720 | ν(PC) or δ(NH) + ρ(CH2) + ν(P-OH) | |||||||||
773 | 770 | 775 | 770 | 771 | 771 | 767 | ν(PC) or δ(NH) + ρ(CH2) + ν(P-OH) | |||
798 | 799 | 801 | ν(PC) + ρ(CH2) + ρ(NH2) + ν(CCOO) | |||||||
832 | ν(P-OH) | |||||||||
889 | ρ(CH2) | |||||||||
864 | 866 | 863 | 861 | 861 | 860 | ν(C-C) or ρ(CH2) + δ(NH) + ν(C-C) | ||||
917 | 920 | 917 | 915 | 914 | CNCC skel. | |||||
933 | 936 | 935 | 933 | 930 | νs(PO3) + ν(PC) | |||||
979 [46] | 973 | ρ(C2H2) | ||||||||
992 | 974 | 995 | 996 | 1010 | 988 | 1010 | νs(PO3) + τ(CH2) + ρ(NH2) + CNCC skel. or ρ(CH2) + δ(OH) | |||
1036 | 1023 | 1039 | 1032 | 1036 | 1025 | 1035 | 1036 | 1032 | 1036 | ν(C-N)/CNCC skel. + νa (HOPO2)/νa(POO) or νs(PO2) + δ(OH) |
1081 | 1051 | 1085 | 1081 | 1063 | 1079 | νa(PO3) + ν(C-N) or ν(C-N) + ν(C-OH) | ||||
1136 | 1140 | 1136 | νa(POH) | |||||||
1160 | 1161 | 1158 | δ(CH2+NH2 + CH2) + ν(COH) | |||||||
1196 | 1189 | 1200 | 1198 | 1185 | 1193 | δ(CH2+NH2 + CH2) + ν(COH) + ν(CN) or τ(CH2) + δ(OH) | ||||
1238 | 1242 | 1241 | ν(POH) + τ(CH2) + ν(COH) + δ(CNC) or τ(CH2) | |||||||
1255 | 1255 | 1259 | 1255 | ν(PC) + ν(POH) + ω(CH2) or ω(CH2) | ||||||
1281 | 1285 | 1281 | ω(CH2) + ωτ(CH2) + δ(COH) + ν(PC) | |||||||
1340 | 1313 | 1343 | 1342 | ωτ(CH2) + δ(COH) + δ (CNC)/ν(POH) + … or ω(CH2) + ν(C-C) | ||||||
1400 | 1407 (shoulder) | 1425 | 1409 | δ(CH2) + ν(CCOH) | ||||||
1427 | 1435 | 1431 | 1430 | 1425 | 1421 | δ[C(2)H2] + δ(POH) or δ(CH2) | ||||
1431 (shoulder) | 1397 | 1436 (shoulder) | δ[C(4)H2] + δ(POH) or δ(CH2) | |||||||
1466 | 1469 | 1464 | 1479 | 1464 | ν(CC) + δ(CNH)/τ(NH2) | |||||
1483 | 1487 | ω(NH2) + δ(POH) | ||||||||
1566 | 1569 | 1568 | 1575 | δ(NH2) | ||||||
1610 | 1613 | |||||||||
1714 | 1717 | 1710 | ν(C=O) | |||||||
1728 | 1732 | 1727 | 1735 | ν(C=O) |
2.3. Colorimetric Assay
SERS Detection of Glyphosate in Colorimetric Assay
3. Materials and Methods
3.1. Materials
3.2. Synthesis of Nanoparticles
3.2.1. Synthesis of Silver Nanoparticles (Ag NPs)
3.2.2. Synthesis of Gold Nanoparticles (Au NPs)
3.2.3. Modification of NPs with Cysteamine
3.3. SERS Sample Preparation
3.4. Nanoparticles Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef] [PubMed]
- Philippe, V.; Neveen, A.; Marwa, A.; Ahmad Basel, A.Y. Occurrence of pesticide residues in fruits and vegetables for the Eastern Mediterranean Region and potential impact on public health. Food Control 2021, 119, 107457. [Google Scholar] [CrossRef]
- Bajwa, U.; Sandhu, K.S. Effect of handling and processing on pesticide residues in food—A review. J. Food Sci. Technol. 2014, 51, 201–220. [Google Scholar] [CrossRef] [PubMed]
- Wilkowska, A.; Biziuk, M. Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chem. 2011, 125, 803–812. [Google Scholar] [CrossRef]
- Payá, P.; Anastassiades, M.; MacK, D.; Sigalova, I.; Tasdelen, B.; Oliva, J.; Barba, A. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal. Bioanal. Chem. 2007, 389, 1697–1714. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, M.; Xu, B. Application of ultrasonic technology in postharvested fruits and vegetables storage: A review. Ultrason. Sonochem. 2020, 69, 105261. [Google Scholar] [CrossRef]
- Beneito-Cambra, M.; Gilbert-López, B.; Moreno-González, D.; Bouza, M.; Franzke, J.; García-Reyes, J.F.; Molina-Díaz, A. Ambient (desorption/ionization) mass spectrometry methods for pesticide testing in food: A review. Anal. Methods 2020, 12, 4831–4852. [Google Scholar] [CrossRef]
- Moskovits, M.; Piorek, B.D. A brief history of surface-enhanced Raman spectroscopy and the localized surface plasmon Dedicated to the memory of Richard Van Duyne (1945–2019). J. Raman Spectrosc. 2021, 52, 279–284. [Google Scholar] [CrossRef]
- Ji, W.; Li, L.; Zhang, Y.; Wang, X.; Ozaki, Y. Recent advances in surface-enhanced Raman scattering-based sensors for the detection of inorganic ions: Sensing mechanism and beyond. J. Raman Spectrosc. 2021, 52, 468–481. [Google Scholar] [CrossRef]
- Pál, P.; Bonyár, A.; Veres, M.; Juhász, L.; Szalóki, M.; Csarnovics, I. An Investigation of Surface-Enhanced Raman Scattering of Different Analytes Adsorbed on Gold Nanoislands. Appl. Sci. 2021, 11, 9838. [Google Scholar] [CrossRef]
- Jensen, T.R.; Malinsky, M.D.; Haynes, C.L.; Van Duyne, R.P. Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. J. Phys. Chem. B 2000, 104, 10549–10556. [Google Scholar] [CrossRef]
- Álvarez-Puebla, R.A. Effects of the Excitation Wavelength on the SERS Spectrum. J. Phys. Chem. Lett. 2012, 3, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Premasiri, W.R.; Moir, D.T.; Klempner, M.S.; Krieger, N.; Jones, G.; Ziegler, L.D. Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria. J. Phys. Chem. B 2005, 109, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, N.; Goel, S.; Jaiswal, S. On-site sensing of pesticides using point-of-care biosensors: A review. Environ. Chem. Lett. 2021, 19, 345–354. [Google Scholar] [CrossRef]
- Perumal, J.; Wang, Y.; Attia, A.B.E.; Dinish, U.S.; Olivo, M. Towards a point-of-care SERS sensor for biomedical and agri-food analysis applications: A review of recent advancements. Nanoscale 2021, 13, 553–580. [Google Scholar] [CrossRef]
- Karthick Kannan, P.; Shankar, P.; Blackman, C.; Chung, C.-H. Recent Advances in 2D Inorganic Nanomaterials for SERS Sensing. Adv. Mater. 2019, 31, 1803432. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, D.W.; Pu, H.; Wei, Q. Surface enhanced Raman spectroscopy (SERS): A novel reliable technique for rapid detection of common harmful chemical residues. Trends Food Sci. Technol. 2018, 75, 10–22. [Google Scholar] [CrossRef]
- Constantino, C.J.L.; Lemma, T.; Antunes, P.A.; Aroca, R. Single-molecule detection using surface-enhanced resonance raman scattering and Langmuir-Blodgett monolayers. Anal. Methods 2001, 73, 3674–3678. [Google Scholar] [CrossRef]
- Xie, L.; Lu, J.; Liu, T.; Chen, G.; Liu, G.; Ren, B.; Tian, Z. Key Role of Direct Adsorption on SERS Sensitivity: Synergistic Effect among Target, Aggregating Agent, and Surface with Au or Ag Colloid as Surface-Enhanced Raman Spectroscopy Substrate. J. Phys. Chem. Lett. 2020, 11, 1022–1029. [Google Scholar] [CrossRef]
- Starowicz, Z.; Wojnarowska-Nowak, R.; Ozga, P.; Sheregii, E.M. The tuning of the plasmon resonance of the metal nanoparticles in terms of the SERS effect. Colloid Polym. Sci. 2018, 296, 1029–1037. [Google Scholar] [CrossRef] [Green Version]
- Pang, S.; Yang, T.; He, L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends Anal. Chem. 2016, 85, 73–82. [Google Scholar] [CrossRef]
- Li, D.W.; Zhai, W.L.; Li, Y.T.; Long, Y.T. Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim. Acta 2014, 181, 23–43. [Google Scholar] [CrossRef]
- Nair, L.S.; Laurencin, C.T. Silver nanoparticles: Synthesis and therapeutic applications. J. Biomed. Nanotech. 2007, 3, 301–316. [Google Scholar] [CrossRef]
- Liu, X.; Huang, D.; Lai, C.; Zeng, G.; Qin, L.; Zhang, C.; Yi, H.; Li, B.; Deng, R.; Liu, S.; et al. Recent advances in sensors for tetracycline antibiotics and their applications. TrAC Trends Anal. Chem. 2018, 109, 260–274. [Google Scholar] [CrossRef]
- Galvan, D.D.; Yu, Q. Surface-Enhanced Raman Scattering for Rapid Detection and Characterization of Antibiotic-Resistant Bacteria. Adv. Healthc. Mater. 2018, 7, 1701335. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2007, 2, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Nsibande, S.A.; Montaseri, H.; Forbes, P.B.C. Advances in the application of nanomaterial-based sensors for detection of polycyclic aromatic hydrocarbons in aquatic systems. TrAC Trends Anal. Chem. 2019, 115, 52–69. [Google Scholar] [CrossRef]
- Baylis, A.D. Why glyphosate is a global herbicide: Strengths, weaknesses and prospects. Pest Manag. Sci. 2000, 56, 299–308. [Google Scholar] [CrossRef]
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health Glob. Access Sci. Source 2016, 15, 19. [Google Scholar] [CrossRef]
- Van Bruggen, A.H.C.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris, J.G., Jr. Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 2018, 616-617, 255–268. [Google Scholar] [CrossRef]
- Muñoz, J.P.; Bleak, T.C.; Calaf, G.M. Glyphosate and the key characteristics of an endocrine disruptor: A review. Chemosphere 2021, 270, 128619. [Google Scholar] [CrossRef] [PubMed]
- Ingaramo, P.; Alarcón, R.; Muñoz-de-Toro, M.; Luque, E.H. Are glyphosate and glyphosate-based herbicides endocrine disruptors that alter female fertility? Mol. Cell. Endocrinol. 2020, 518, 110934. [Google Scholar] [CrossRef] [PubMed]
- Thongprakaisang, S.; Thiantanawat, A.; Rangkadilok, N.; Suriyo, T.; Satayavivad, J. Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem. Toxicol. 2013, 59, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Kudzin, Z.H.; Gralak, D.K.; Andrijewski, G.; Drabowicz, J.; Luczak, J. Simultaneous analysis of biologically active aminoalkanephosphonic acids. J. Chromatogr. A 2003, 998, 183–199. [Google Scholar] [CrossRef]
- Kudzin, Z.H.; Gralak, D.K.; Drabowicz, J.; Luczak, J. Novel approach for the simultaneous analysis of glyphosate and its metabolites. J. Chromatogr. A 2002, 947, 129–141. [Google Scholar] [CrossRef]
- Durán Merás, I.; Galeano Díaz, T.; Alexandre Franco, M. Alexandre Franco, Simultaneous fluorimetric determination of glyphosate and its metabolite, aminomethylphosphonic acid, in water, previous derivatization with NBD-Cl and by partial least squares calibration (PLS). Talanta 2005, 65, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.X.; Cai, Q.; Yang, Z. Determination of glyphosate and phosphate in water by ion chromatography—Inductively coupled plasma mass spectrometry detection. J. Chromatogr. A 2005, 1100, 160–167. [Google Scholar] [CrossRef]
- Corbera, M.; Hidalgo, M.; Salvadó, V.; Wieczorek, P.P. Determination of glyphosate and aminomethylphosphonic acid in natural water using the capillary electrophoresis combined with enrichment step. Anal. Chim. Acta 2005, 540, 3–7. [Google Scholar] [CrossRef]
- Costa, J.C.S.; Ando, R.A.; Sant’Ana, A.C.; Corio, P. Surface-enhanced Raman spectroscopy studies of organophosphorous model molecules and pesticides. Phys. Chem. Chem. Phys. 2012, 14, 15645–15651. [Google Scholar] [CrossRef]
- Xu, M.L.; Gao, Y.; Li, Y.; Li, X.; Zhang, H.; Han, X.X.; Zhao, B.; Su, L. Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 197, 78–82. [Google Scholar] [CrossRef]
- Tu, Q.; Yang, T.; Qu, Y.; Gao, S.; Zhang, Z.; Zhang, Q.; Wang, Y.; Wang, J.; He, L. In situ colorimetric detection of glyphosate on plant tissues using cysteamine-modified gold nanoparticles. Analyst 2019, 144, 2017–2025. [Google Scholar] [CrossRef] [PubMed]
- De Goes, R.E.; Possetti, G.R.C.; Muller, M.; Fabris, J.L. Tuning of Citrate-Stabilized Laser Ablated Silver Nanoparticles for Glyphosate Detection. IEEE Sens. J. 2020, 20, 1843–1850. [Google Scholar] [CrossRef]
- Feis, A.; Gellini, C.; Ricci, M.; Tognaccini, L.; Becucci, M.; Smulevich, G. Surface-enhanced Raman scattering of glyphosate on dispersed silver nanoparticles: A reinterpretation based on model molecules. Vib. Spectrosc. 2020, 108, 103061. [Google Scholar] [CrossRef]
- Ma, J.; Feng, G.; Ying, Y.; Shao, Y.; She, Y.; Zheng, L.; Abd Ei-Aty, A.M.; Wang, J. Sensitive SERS assay for glyphosate based on the prevention of l-cysteine inhibition of a Au-Pt nanozyme. Analyst 2021, 146, 956–963. [Google Scholar] [CrossRef]
- Ascolani Yael, J.; Fuhr, J.D.; Bocan, G.A.; Daza Millone, A.; Tognalli, N.; Dos Santos Afonso, M.; Martiarena, M.L. Abiotic degradation of glyphosate into aminomethylphosphonic acid in the presence of metals. J. Agric. Food Chem. 2014, 62, 9651–9656. [Google Scholar] [CrossRef]
- Xu, M.-L.; Gao, Y.; Jin, J.; Xiong, J.-F.; Han, X.X.; Zhao, B. Role of 2–13C Isotopic Glyphosate Adsorption on Silver Nanoparticles Based on Ninhydrin Reaction: A Study Based on Surface–Enhanced Raman Spectroscopy. Nanomaterials 2020, 10, 2539. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, H.; Qu, J.; Zhu, Q.; Chen, X. Visual detection of glyphosate in environmental water samples using cysteamine-stabilized gold nanoparticles as colorimetric probe. Anal. Methods 2013, 5, 917–924. [Google Scholar] [CrossRef]
- Sahu, A.K.; Das, A.; Ghosh, A.; Raj, S. Understanding blue shift of the longitudinal surface plasmon resonance during growth of gold nanorods. Nano Express 2021, 2, 010009. [Google Scholar] [CrossRef]
- Jenkins, J.A.; Zhou, Y.; Thota, S.; Tian, X.; Zhao, X.; Zou, S.; Zhao, J. Blue-Shifted Narrow Localized Surface Plasmon Resonance from Dipole Coupling in Gold Nanoparticle Random Arrays. J. Phys. Chem. C 2014, 118, 26276–26283. [Google Scholar] [CrossRef]
- Leopold, N.; Lendl, B. A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride. J. Phys. Chem. B 2003, 107, 5723–5727. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Liu, G.; Wang, S.; Yang, X.; Li, T.; She, Y.; Wang, J.; Zou, P.; Jin, F.; Jin, M.; Shao, H. Colorimetric sensing of atrazine in rice samples using cysteamine functionalized gold nanoparticles after solid phase extraction. Anal. Methods 2016, 8, 52–56. [Google Scholar] [CrossRef]
Molecular Structure | ||||
---|---|---|---|---|
Excitation Wavelength (nm) | 532 | 632 | 785 | 785 (portable) |
Laser Intensity | 0.05%, 32 µW | 1%, 90 µW | 10%, 3.5 mW | 50 mW |
Measurement Time | 30 s | 60 s | 10 s | 10 s |
Sample | LSPR λmax (nm) | Zeta Potential (ζ) (mV) | Hydrodynamic Diameter 1 (nm) | pH | DTEM (nm) |
---|---|---|---|---|---|
Ag NPs | 413 | −33.7 | 17.4 (98%), 120.8 (2%) | 6.5 | 32.1 ± 6.7; 71.9 ± 13.8; |
Au NPs | 533 | −12.9 | 27.6 (93%), 131.5 (6%) | 4.7 | 27.3 ± 4.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikac, L.; Rigó, I.; Škrabić, M.; Ivanda, M.; Veres, M. Comparison of Glyphosate Detection by Surface-Enhanced Raman Spectroscopy Using Gold and Silver Nanoparticles at Different Laser Excitations. Molecules 2022, 27, 5767. https://doi.org/10.3390/molecules27185767
Mikac L, Rigó I, Škrabić M, Ivanda M, Veres M. Comparison of Glyphosate Detection by Surface-Enhanced Raman Spectroscopy Using Gold and Silver Nanoparticles at Different Laser Excitations. Molecules. 2022; 27(18):5767. https://doi.org/10.3390/molecules27185767
Chicago/Turabian StyleMikac, Lara, István Rigó, Marko Škrabić, Mile Ivanda, and Miklós Veres. 2022. "Comparison of Glyphosate Detection by Surface-Enhanced Raman Spectroscopy Using Gold and Silver Nanoparticles at Different Laser Excitations" Molecules 27, no. 18: 5767. https://doi.org/10.3390/molecules27185767
APA StyleMikac, L., Rigó, I., Škrabić, M., Ivanda, M., & Veres, M. (2022). Comparison of Glyphosate Detection by Surface-Enhanced Raman Spectroscopy Using Gold and Silver Nanoparticles at Different Laser Excitations. Molecules, 27(18), 5767. https://doi.org/10.3390/molecules27185767