Developing an Efficient Processing System Treatment for the High Concentration of Eucalyptus Chemical Mechanical Pulp Wastewater
Abstract
:1. Introduction
2. Methods and Materials
2.1. Material
2.2. Reactor
2.3. Preparation of Chlorine Dioxide
2.4. Investigation of the Concentration of Chlorine Dioxide Disinfectant
2.5. Processing Process
2.5.1. Chlorine Dioxide Pretreatment
2.5.2. Ozone Pretreatment
2.5.3. Anaerobic Biological Treatment
2.6. Analysis of Processing Results
2.7. Mechanism Analysis
2.7.1. GC–MS Detection
2.7.2. Microbiological Analysis
2.7.3. Investigation of the Reaction Mechanisms of COD Removal by DPAT Treatment
3. Results and Discussion
3.1. Result of Generation of the Chlorine Dioxide Disinfectant
3.2. Results of Chlorine Dioxide Pretreatment
3.2.1. The Change in COD and BOD5 Values with Chlorine Dioxide Treatment
3.2.2. The Change in the Organic Contaminants by Chlorine Dioxide Treatment
3.2.3. The Ratio between the Masses of COD and Chlorine Dioxide Applied
3.3. The Result of Anaerobic Treatment
3.3.1. The COD Removal Rate
3.3.2. The Change in Organic Compositions by Anaerobic Treatment
3.4. Result of Microbiological Analysis
3.4.1. Microbial Abundance
3.4.2. Microbial Diversities
3.4.3. The Compositions of Microorganisms in Their Community
3.5. The Reaction Mechanisms of a DPAT Treatment
- In the DPAT treatment, ClO2 decomposes to generate peroxide and oxygen and chlorine oxidant free radicals [23].
- Then, the generated peroxide further decomposes to generate hydroxyl free radicals [24].
- The generation of non-toxic substances led to the reproduction and growth of the microorganisms. This adjustment is supported by the abundance and microbial diversity mentioned in the following.
- The growing microorganisms further degraded the non-toxic substances, resulting in a higher COD removal rate. At the same time, the reactions generated CO2, H2, and water [28]. This adjustment was supported by the final COD removal rate, the abundance, the microbial diversity, and the improvement in the efficiency during the anaerobic reaction stage.
3.6. The Advance and Shortage of This Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Uğurlu, M.; Karaoğlu, M.H. Removal of AOX, total nitrogen and chlorinated lignin from bleached Kraft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as photocatalyst. Environ. Sci. Pollut. Res. 2009, 16, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Uğurlu, M.; Gürses, A.; Doğar, Ç.; Yalçın, M. The removal of lignin and phenol from paper mill effluents by electrocoagulation. J. Environ. Manag. 2008, 87, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Hansen, E.; Zadura, L.; Frankowski, S.; Wachowicz, M. Upgrading of an activated sludge plant with floating biofilm carriers at Frantschach Swiecie S.A. to meet the new demands of year 2000. Water Sci. Technol. 1999, 40, 207–214. [Google Scholar] [CrossRef]
- Junna, J.; Ruonala, S. Trends in water pollution control in the finnish pulp and paper industry. Water Sci. Technol. 1991, 24, 1–10. [Google Scholar] [CrossRef]
- Poggi-Varaldo, H.; Estrada-Vazquez, C.; Villagómez, G.; Esparza-Garcia, F. Pretreatment of black liquor spills effluent. In Proceedings of the 51st Purdue University Industrial Waste Conference Proceedings, West Lafayette, IN, USA, 6–8 May 1996; Volume 51, pp. 651–661. [Google Scholar]
- Tian, Q.; Fang, G.; Ding, L.; Ran, M.; Zhang, H.; Pan, A.; Shen, K.; Deng, Y. ZnAl2O4/Bi2MoO6 heterostructures with enhanced photocatalytic activity for the treatment of organic pollutants and eucalyptus chemimechanical pulp wastewater. Mater. Chem. Phys. 2020, 241, 122299. [Google Scholar] [CrossRef]
- Priyadarshinee, R.; Kumar, A.; Mandal, T.; Dasguptamandal, D. Improving the perspective of raw eucalyptus kraft pulp for industrial applications through autochthonous bacterial mediated delignification. Ind. Crops Prod. 2015, 74, 293–303. [Google Scholar] [CrossRef]
- Nong, G.-Z.; Xing, D.-Y.; Li, Y.-J.; Zhu, T.; Wu, J.-L.; Gan, W.-X.; Wang, S.-F.; Li, X.-R. Recycle cooking wood chips with the residue liquid removed out of lignin by calcification for increasing pulp yield and reducing waste water discharge. J. Clean. Prod. 2020, 277, 124028. [Google Scholar] [CrossRef]
- Pawar, A.; Karthic, A.; Lee, S.; Pandit, S.; Jung, S. Microbial electrolysis cells for electromethanogenesis: Materials, configurations and operations. Environ. Eng. Res. 2022, 27, 200484. [Google Scholar] [CrossRef]
- Jung, S.; Yoon, M.-H.; Lee, S.-M.; Oh, S.-E.; Kang, H.; Yang, J.-K. Power Generation and Anode Bacterial Community Compositions of Sediment Fuel Cells Differing in Anode Materials and Carbon Sources. Int. J. Electrochem. Sci. 2014, 9, 315–326. [Google Scholar]
- Tran, H.V.H.; Kim, E.; Jung, S.P. Anode biofilm maturation time, stable cell performance time, and time-course electrochemistry in a single-chamber microbial fuel cell with a brush-anode. J. Ind. Eng. Chem. 2022, 106, 269–278. [Google Scholar] [CrossRef]
- Jin, X.Y.; Chen, J.L.; Li, A.M. Study on the catalytic oxidation of wastewater containing phenol with chlorine dioxide as oxidant. Ion Exch. Adsorpt. 2003, 19, 61–66. [Google Scholar]
- Wang, H.-L.; Dong, J.; Jiang, W.-F. Study on the treatment of 2-sec-butyl-4,6-dinitrophenol (DNBP) wastewater by ClO2 in the presence of aluminum oxide as catalyst. J. Hazard. Mater. 2010, 183, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Sales Monteiro, M.K.; Sales Monteiro, M.M.; de Melo Henrique, A.M.; Llanos, J.; Saez, C.; Dos Santos, E.V.; Rodrigo, M.A. A review on the electrochemical production of chlorine dioxide from chlorates and hydrogen peroxide. Curr. Opin. Electrochem. 2021, 27, 100685. [Google Scholar] [CrossRef]
- Fang, C.G.; Wang, A.; Huang, X.Y.; Zhang, G.Y.; Yang, M.Y.; Jiang, N. Improvement of a five-step iodometric method for measuring chlorine dioxide in disinfectants. Chin. J. Disinfect. 2007, 6, 507–509. [Google Scholar]
- Zhu, Y.F.; Liu, C.W.; Jiang, M.; Sun, J.C. Assessment of the uncertainty of measuring chlorine dioxide by five-step iodometry. Chin. J. Disinfect. 2013, 30, 416–419. [Google Scholar]
- Ledakowicz, S.; Żyłła, R.; Paździor, K.; Wrębiak, J.; Sójka-Ledakowicz, J. Integration of ozonation and biological treatment of industrial wastewater from dyehouse. Ozone Sci. Eng. 2017, 39, 357–365. [Google Scholar] [CrossRef]
- Sun, H.; Yu, N.; Liu, Y. Importance of low-abundance microbial species in response to disturbances in wastewater bioreactors. Process Safe. Environ. Prot. 2022, 162, 663–671. [Google Scholar] [CrossRef]
- Lee, W.L.; Imakaev, M.; Armas, F.; McElroy, K.A.; Gu, X.; Duvallet, C.; Chandra, F.; Chen, H.; Leifels, M.; Mendola, S.; et al. Quantitative SARS-CoV-2 Alpha Variant B.1.1.7 Tracking in Wastewater by Allele-Specific RT-qPCR. Sci. Technol. Lett. 2021, 8, 675–682. [Google Scholar] [CrossRef]
- Radu, E.; Masseron, A.; Amman, F.; Schedl, A.; Agerer, B.; Endler, L.; Penz, T.; Bock, C.; Bergthaler, A.; Vierheilig, J.; et al. Emergence of SARS-CoV-2 Alpha lineage and its correlation with quantitative wastewater-based epidemiology data. Water Res. 2022, 215, 118257. [Google Scholar] [CrossRef]
- Niestępski, S.; Harnisz, M.; Ciesielski, S.; Korzeniewska, E.; Osińska, A. Environmental fate of Bacteroidetes, with particular emphasis on Bacteroides fragilis group bacteria and their specific antibiotic resistance genes, in activated sludge wastewater treatment plants. J. Hazard. Mater. 2020, 394, 122544. [Google Scholar] [CrossRef]
- Pilarska, A.A.; Pilarski, K.; Wolna-Maruwka, A.; Boniecki, P.; Zaborowicz, M. Use of confectionery waste inbiogas production by the anaerobic digestion process. Molecules 2019, 24, 37. [Google Scholar] [CrossRef] [PubMed]
- Glaze, W.H.; Kang, J.-W.; Chapin, D.H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 1987, 9, 335–352. [Google Scholar] [CrossRef]
- Aparicio, J.D.; Benimeli, C.S.; Almeida, C.A.; Polti, M.A.; Colin, V.L. Integral use of sugarcane vinasse for biomass production of actinobacteria: Potential application in soil remediation. Chemosphere 2017, 181, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-González, V.; Obregón, S.; Patrón-Soberano, O.A.; Terashima, C.; Fujishima, A. An approach to the photocatalytic mechanism in the TiO2-nanomaterials microorganism interface for the control of infectious processes. Appl. Catal. 2020, 270, 118853. [Google Scholar] [CrossRef]
- Lotito, A.M.; Fratino, U.; Bergna, G.; Di Iaconi, C. Integrated biological and ozone treatment of printing textile wastewater. Chem. Eng. J. 2012, 195–196, 261–269. [Google Scholar] [CrossRef]
- Sgherza, D.; Pentassuglia, S.; Altieri, V.G.; Mascolo, G.; De Sanctis, M.; Di Iaconi, C. Integrating biodegradation and ozone-catalysed oxidation for treatment and reuse of biomass gasification wastewater. J. Water Process Eng. 2021, 43, 102297. [Google Scholar] [CrossRef]
- Kennedy, K.; Graham, B.; Droste, R.; Fernandes, L.; Narbaitz, R. Microtox(TM) and Ceriodaphnia dubia toxicity of BKME with powdered activated carbon treatment(TM). Water SA 2000, 26, 205–216. [Google Scholar]
- Chen, Y.; Jiang, X.; Xiao, K.; Shen, N.; Zeng, R.J.; Zhou, Y. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase—Investigation on dissolved organic matter transformation and microbial community shift. Water Res. 2017, 112, 261–268. [Google Scholar] [CrossRef]
- Mirtsou-Xanthopoulou, C.; Skiadas, I.V.; Gavala, H.N. On the Effect of aqueous ammonia soaking pre-treatment on continuous anaerobic digestion of digested swine manure fibers. Molecules 2019, 24, 2469. [Google Scholar] [CrossRef]
- Logan, M.; Ravishankar, H.; Tan, L.C.; Lawrence, J.; Fitzgerald, D.; Lens, P.N.L. Anaerobic digestion of dissolved air floatation slurries: Effect of substrate concentration and pH. Environ. Sci. Technol. 2021, 21, 101352. [Google Scholar] [CrossRef]
- Zhang, H.; Nie, S.; Qin, C.; Wang, S. Removal of hexenuronic acid to reduce AOX formation in hot chlorine dioxide bleaching of bagasse pulp. Ind. Crops Prod. 2019, 128, 338–345. [Google Scholar] [CrossRef]
Substance | Physical Properties | Chemical Properties |
---|---|---|
CMP wastewater | brown–black liquid | slightly alkaline |
ozone-treated CMP wastewater | brown liquid | alkaline |
anaerobic granular sludge | black granular | strong stability |
Organic Compound Name | Relative Level | Relative Level |
---|---|---|
Before treatment: | ||
Isobutyric acid | 9.14% | _ |
Butyric acid | 8.15% | _ |
2-Methyl-4-heptanone | 0.35% | _ |
5-Methyl-5-propyl-nonane | 0.44% | _ |
1-Iododecane | 0.45% | _ |
2,6-di-tert-butyl-p-cresol | 1.23% | _ |
3,5-Dimethyl-tert-butylbenzene | 1.08% | _ |
2,2-Dichloro-1,1-difluoroethyl methyl ether | 0.07% | _ |
1-iodooctadecane | 0.69% | _ |
3,5-Dimethyl-4-octane | 0.24% | _ |
o-Methyl-m-hydroxydiphenylamine | 0.41% | _ |
Cyclohexanol | 0.39% | _ |
4-Nitro-3-trifluoromethylphenol | 0.19% | _ |
3-(2-Aminoethyl)indole | 0.21% | _ |
Hexamide | 0.82% | _ |
After treatment: | ||
3-octanone | _ | 0.23% |
DL-Lipoamide | _ | 0.47% |
L-lactide | _ | 2.39% |
CCD (mg/L) | VCD (mL) | MCD (mg) | VWW (mL) | CCOD (mg/L) | MCOD (mg) | MCOD/MCD |
---|---|---|---|---|---|---|
465.41 | 20 | 9.31 | 300 | 4420 | 1326 | 142.46 |
30 | 13.96 | 3983 | 1194.9 | 85.58 | ||
40 | 18.62 | 3776 | 1132.8 | 60.85 | ||
50 | 23.27 | 3966 | 1189.8 | 51.13 | ||
60 | 27.92 | 4020 | 1206 | 43.19 |
Organic Compounds | Relative Content before Reaction | Relative Content after Reaction |
---|---|---|
3-octanone | 0.23% | 0.03% |
DL-Lipoamide | 0.47% | —— |
2-Methyl-2-butanol | —— | 0.61% |
L-lactide | 2.39% | 0.09% |
1,2-Propanediamine | —— | 0.15% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Qin, X.; Zhu, T.; Yu, X.; Liu, M.; Nong, G.; Yang, Q.; Wang, S. Developing an Efficient Processing System Treatment for the High Concentration of Eucalyptus Chemical Mechanical Pulp Wastewater. Molecules 2022, 27, 5774. https://doi.org/10.3390/molecules27185774
Huang Z, Qin X, Zhu T, Yu X, Liu M, Nong G, Yang Q, Wang S. Developing an Efficient Processing System Treatment for the High Concentration of Eucalyptus Chemical Mechanical Pulp Wastewater. Molecules. 2022; 27(18):5774. https://doi.org/10.3390/molecules27185774
Chicago/Turabian StyleHuang, Zaiheng, Xiang Qin, Tian Zhu, Xiang Yu, Mengyu Liu, Guangzai Nong, Qifeng Yang, and Shuangfei Wang. 2022. "Developing an Efficient Processing System Treatment for the High Concentration of Eucalyptus Chemical Mechanical Pulp Wastewater" Molecules 27, no. 18: 5774. https://doi.org/10.3390/molecules27185774
APA StyleHuang, Z., Qin, X., Zhu, T., Yu, X., Liu, M., Nong, G., Yang, Q., & Wang, S. (2022). Developing an Efficient Processing System Treatment for the High Concentration of Eucalyptus Chemical Mechanical Pulp Wastewater. Molecules, 27(18), 5774. https://doi.org/10.3390/molecules27185774