Identification of Small Molecule Inhibitors against Mycobacteria in Activated Macrophages
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gopalaswamy, R.; Shanmugam, S.; Mondal, R.; Subbian, S. Of tuberculosis and non-tuberculous mycobacterial infections—A comparative analysis of epidemiology, diagnosis and treatment. J. Biomed. Sci. 2020, 27, 74. [Google Scholar] [CrossRef]
- Johansen, M.D.; Herrmann, J.L.; Kremer, L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat. Rev. Microbiol. 2020, 18, 392–407. [Google Scholar] [CrossRef]
- Ratnatunga, C.N.; Lutzky, V.P.; Kupz, A.; Doolan, D.L.; Reid, D.W.; Field, M.; Bell, S.C.; Thomson, R.M.; Miles, J.J. The Rise of Non-Tuberculosis Mycobacterial Lung Disease. Front. Immunol. 2020, 11, 303. [Google Scholar] [CrossRef]
- Maiz Carro, L.; Barbero Herranz, E.; Nieto Royo, R. Respiratory infections due to nontuberculous mycobacterias. Med. Clin. 2018, 150, 191–197. [Google Scholar] [CrossRef]
- van Ingen, J.; Obradovic, M.; Hassan, M.; Lesher, B.; Hart, E.; Chatterjee, A.; Daley, C.L. Nontuberculous mycobacterial lung disease caused by Mycobacterium avium complex-disease burden, unmet needs, and advances in treatment developments. Expert Rev. Respir. Med. 2021, 15, 1387–1401. [Google Scholar] [CrossRef]
- Gorzynski, M.; Week, T.; Jaramillo, T.; Dzalamidze, E.; Danelishvili, L. Mycobacterium abscessus Genetic Determinants Associated with the Intrinsic Resistance to Antibiotics. Microorganisms 2021, 9, 2527. [Google Scholar] [CrossRef]
- Luthra, S.; Rominski, A.; Sander, P. The Role of Antibiotic-Target-Modifying and Antibiotic-Modifying Enzymes in Mycobacterium abscessus Drug Resistance. Front. Microbiol. 2018, 9, 2179. [Google Scholar] [CrossRef]
- Vianna, J.S.; Machado, D.; Ramis, I.B.; Silva, F.P.; Bierhals, D.V.; Abril, M.A.; von Groll, A.; Ramos, D.F.; Lourenco, M.C.S.; Viveiros, M.; et al. The Contribution of Efflux Pumps in Mycobacterium abscessus Complex Resistance to Clarithromycin. Antibiotics 2019, 8, 153. [Google Scholar] [CrossRef]
- Batt, S.M.; Burke, C.E.; Moorey, A.R.; Besra, G.S. Antibiotics and resistance: The two-sided coin of the mycobacterial cell wall. Cell Surf. 2020, 6, 100044. [Google Scholar] [CrossRef]
- Rojony, R.; Danelishvili, L.; Campeau, A.; Wozniak, J.M.; Gonzalez, D.J.; Bermudez, L.E. Exposure of Mycobacterium abscessus to Environmental Stress and Clinically Used Antibiotics Reveals Common Proteome Response among Pathogenic Mycobacteria. Microorganisms 2020, 8, 698. [Google Scholar] [CrossRef]
- Silva, C.; Rojony, R.; Bermudez, L.E.; Danelishvili, L. Short-Chain Fatty Acids Promote Mycobacterium avium subsp. hominissuis Growth in Nutrient-Limited Environments and Influence Susceptibility to Antibiotics. Pathogens 2020, 9, 700. [Google Scholar] [CrossRef]
- Rojony, R.; Martin, M.; Campeau, A.; Wozniak, J.M.; Gonzalez, D.J.; Jaiswal, P.; Danelishvili, L.; Bermudez, L.E. Quantitative analysis of Mycobacterium avium subsp. hominissuis proteome in response to antibiotics and during exposure to different environmental conditions. Clin. Proteom. 2019, 16, 39. [Google Scholar] [CrossRef] [PubMed]
- Parker, H.; Lorenc, R.; Ruelas Castillo, J.; Karakousis, P.C. Mechanisms of Antibiotic Tolerance in Mycobacterium avium Complex: Lessons From Related Mycobacteria. Front. Microbiol. 2020, 11, 573983. [Google Scholar] [CrossRef]
- Quang, N.T.; Jang, J. Current Molecular Therapeutic Agents and Drug Candidates for Mycobacterium abscessus. Front. Pharmacol. 2021, 12, 724725. [Google Scholar] [CrossRef] [PubMed]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J.; Andrejak, C.; Bottger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clin. Infect. Dis. 2020, 71, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R.; Sheng, W.H.; Hung, C.C.; Yu, C.J.; Lee, L.N.; Hsueh, P.R. Mycobacterium abscessus Complex Infections in Humans. Emerg. Infect. Dis. 2015, 21, 1638–1646. [Google Scholar] [CrossRef]
- Diel, R.; Lipman, M.; Hoefsloot, W. High mortality in patients with Mycobacterium avium complex lung disease: A systematic review. BMC Infect. Dis. 2018, 18, 206. [Google Scholar] [CrossRef]
- Gupta, R.; Netherton, M.; Byrd, T.F.; Rohde, K.H. Reporter-Based Assays for High-Throughput Drug Screening against Mycobacterium abscessus. Front. Microbiol. 2017, 8, 2204. [Google Scholar] [CrossRef]
- Christophe, T.; Jackson, M.; Jeon, H.K.; Fenistein, D.; Contreras-Dominguez, M.; Kim, J.; Genovesio, A.; Carralot, J.P.; Ewann, F.; Kim, E.H.; et al. High content screening identifies decaprenyl-phosphoribose 2’ epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog. 2009, 5, e1000645. [Google Scholar] [CrossRef]
- Ananthan, S.; Faaleolea, E.R.; Goldman, R.C.; Hobrath, J.V.; Kwong, C.D.; Laughon, B.E.; Maddry, J.A.; Mehta, A.; Rasmussen, L.; Reynolds, R.C.; et al. High-throughput screening for inhibitors of Mycobacterium tuberculosis H37Rv. Tuberculosis 2009, 89, 334–353. [Google Scholar] [CrossRef] [Green Version]
- Chengalroyen, M.D.; Jordaan, A.; Seldon, R.; Ioerger, T.; Franzblau, S.G.; Nasr, M.; Warner, D.F.; Mizrahi, V. Biological Profiling Enables Rapid Mechanistic Classification of Phenotypic Screening Hits and Identification of KatG Activation-Dependent Pyridine Carboxamide Prodrugs With Activity Against Mycobacterium tuberculosis. Front. Cell. Infect. Microbiol. 2020, 10, 582416. [Google Scholar] [CrossRef] [PubMed]
- Richter, A.; Shapira, T.; Av-Gay, Y. THP-1 and Dictyostelium Infection Models for Screening and Characterization of Anti-Mycobacterium abscessus Hit Compounds. Antimicrob. Agents Chemother. 2019, 64, e01601-19. [Google Scholar] [CrossRef] [PubMed]
- Early, J.; Bermudez, L.E. Mimicry of the pathogenic mycobacterium vacuole in vitro elicits the bacterial intracellular phenotype, including early-onset macrophage death. Infect. Immun. 2011, 79, 2412–2422. [Google Scholar] [CrossRef]
- Chinison, J.J.; Danelishvili, L.; Gupta, R.; Rose, S.J.; Babrak, L.M.; Bermudez, L.E. Identification of Mycobacterium avium subsp. hominissuis secreted proteins using an in vitro system mimicking the phagosomal environment. BMC Microbiol. 2016, 16, 270. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.; Maser, J.; Lai, B.; Cai, Z.; Barry, C.E., 3rd; Honer Zu Bentrup, K.; Russell, D.G.; Bermudez, L.E. Elemental analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-containing phagosomes indicates pathogen-induced microenvironments within the host cell’s endosomal system. J. Immunol. 2005, 174, 1491–1500. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, L.E.; Petrofsky, M.; Kolonoski, P.; Young, L.S. An animal model of Mycobacterium avium complex disseminated infection after colonization of the intestinal tract. J. Infect. Dis. 1992, 165, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Danelishvili, L.; Stang, B.; Bermudez, L.E. Identification of Mycobacterium avium genes expressed during in vivo infection and the role of the oligopeptide transporter OppA in virulence. Microb. Pathog. 2014, 76, 67–76. [Google Scholar] [CrossRef]
- Martin, A.; Camacho, M.; Portaels, F.; Palomino, J.C. Resazurin microtiter assay plate testing of Mycobacterium tuberculosis susceptibilities to second-line drugs: Rapid, simple, and inexpensive method. Antimicrob. Agents Chemother. 2003, 47, 3616–3619. [Google Scholar] [CrossRef]
- Zhang, J.H.; Chung, T.D.; Oldenburg, K.R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J. Biomol. Screen. 1999, 4, 67–73. [Google Scholar] [CrossRef]
- Danelishvili, L.; Armstrong, E.; Miyasako, E.; Jeffrey, B.; Bermudez, L.E. Exposure of Mycobacterium avium subsp. homonissuis to Metal Concentrations of the Phagosome Environment Enhances the Selection of Persistent Subpopulation to Antibiotic Treatment. Antibiotics 2020, 9, 927. [Google Scholar] [CrossRef]
- Bussi, C.; Gutierrez, M.G. Mycobacterium tuberculosis infection of host cells in space and time. FEMS Microbiol. Rev. 2019, 43, 341–361. [Google Scholar] [CrossRef]
- Ganbat, D.; Seehase, S.; Richter, E.; Vollmer, E.; Reiling, N.; Fellenberg, K.; Gaede, K.I.; Kugler, C.; Goldmann, T. Mycobacteria infect different cell types in the human lung and cause species dependent cellular changes in infected cells. BMC Pulm. Med. 2016, 16, 19. [Google Scholar] [CrossRef]
- Maertzdorf, J.; Tonnies, M.; Lozza, L.; Schommer-Leitner, S.; Mollenkopf, H.; Bauer, T.T.; Kaufmann, S.H.E. Mycobacterium tuberculosis Invasion of the Human Lung: First Contact. Front. Immunol. 2018, 9, 1346. [Google Scholar] [CrossRef]
- Cohen, S.B.; Gern, B.H.; Delahaye, J.L.; Adams, K.N.; Plumlee, C.R.; Winkler, J.K.; Sherman, D.R.; Gerner, M.Y.; Urdahl, K.B. Alveolar Macrophages Provide an Early Mycobacterium tuberculosis Niche and Initiate Dissemination. Cell Host Microbe 2018, 24, 439–446.e434. [Google Scholar] [CrossRef]
- Cambier, C.J.; Takaki, K.K.; Larson, R.P.; Hernandez, R.E.; Tobin, D.M.; Urdahl, K.B.; Cosma, C.L.; Ramakrishnan, L. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 2014, 505, 218–222. [Google Scholar] [CrossRef]
- Danelishvili, L.; Shulzhenko, N.; Chinison, J.J.J.; Babrak, L.; Hu, J.; Morgun, A.; Burrows, G.; Bermudez, L.E. Mycobacterium tuberculosis Proteome Response to Antituberculosis Compounds Reveals Metabolic “Escape” Pathways That Prolong Bacterial Survival. Antimicrob. Agents Chemother. 2017, 61, e00430-17. [Google Scholar] [CrossRef]
- Kalsum, S.; Otrocka, M.; Andersson, B.; Welin, A.; Schon, T.; Jenmalm-Jensen, A.; Lundback, T.; Lerm, M. A high content screening assay for discovery of antimycobacterial compounds based on primary human macrophages infected with virulent Mycobacterium tuberculosis. Tuberculosis 2022, 135, 102222. [Google Scholar] [CrossRef]
- Subhash, N.; Sundaramurthy, V. Advances in host-based screening for compounds with intracellular anti-mycobacterial activity. Cell. Microbiol. 2021, 23, e13337. [Google Scholar] [CrossRef]
- Lele, A.C.; Raju, A.; Khambete, M.P.; Ray, M.K.; Rajan, M.G.; Arkile, M.A.; Jadhav, N.J.; Sarkar, D.; Degani, M.S. Design and Synthesis of a Focused Library of Diamino Triazines as Potential Mycobacterium tuberculosis DHFR Inhibitors. ACS Med. Chem. Lett. 2015, 6, 1140–1144. [Google Scholar] [CrossRef]
- Wang, X.; Inoyama, D.; Russo, R.; Li, S.G.; Jadhav, R.; Stratton, T.P.; Mittal, N.; Bilotta, J.A.; Singleton, E.; Kim, T.; et al. Antitubercular Triazines: Optimization and Intrabacterial Metabolism. Cell Chem. Biol. 2020, 27, 172–185.e11. [Google Scholar] [CrossRef]
- Selwood, T.; Larsen, B.J.; Mo, C.Y.; Culyba, M.J.; Hostetler, Z.M.; Kohli, R.M.; Reitz, A.B.; Baugh, S.D.P. Advancement of the 5-Amino-1-(Carbamoylmethyl)-1H-1,2,3-Triazole-4-Carboxamide Scaffold to Disarm the Bacterial SOS Response. Front. Microbiol. 2018, 9, 2961. [Google Scholar] [CrossRef] [PubMed]
- Scherman, M.S.; North, E.J.; Jones, V.; Hess, T.N.; Grzegorzewicz, A.E.; Kasagami, T.; Kim, I.H.; Merzlikin, O.; Lenaerts, A.J.; Lee, R.E.; et al. Screening a library of 1600 adamantyl ureas for anti-Mycobacterium tuberculosis activity in vitro and for better physical chemical properties for bioavailability. Bioorg. Med. Chem. 2012, 20, 3255–3262. [Google Scholar] [CrossRef] [PubMed]
- Dal Molin, M.; Selchow, P.; Schafle, D.; Tschumi, A.; Ryckmans, T.; Laage-Witt, S.; Sander, P. Identification of novel scaffolds targeting Mycobacterium tuberculosis. J. Mol. Med. 2019, 97, 1601–1613. [Google Scholar] [CrossRef] [PubMed]
- Kamat, V.; Santosh, R.; Poojary, B.; Nayak, S.P.; Kumar, B.K.; Sankaranarayanan, M.; Faheem; Khanapure, S.; Barretto, D.A.; Vootla, S.K. Pyridine- and Thiazole-Based Hydrazides with Promising Anti-inflammatory and Antimicrobial Activities along with Their In Silico Studies. ACS Omega 2020, 5, 25228–25239. [Google Scholar] [CrossRef]
- Hampannavar, G.A.; Karpoormath, R.; Palkar, M.B.; Shaikh, M.S.; Chandrasekaran, B. Dehydrozingerone Inspired Styryl Hydrazine Thiazole Hybrids as Promising Class of Antimycobacterial Agents. ACS Med. Chem. Lett. 2016, 7, 686–691. [Google Scholar] [CrossRef]
- Makam, P.; Kannan, T. 2-Aminothiazole derivatives as antimycobacterial agents: Synthesis, characterization, in vitro and in silico studies. Eur. J. Med. Chem. 2014, 87, 643–656. [Google Scholar] [CrossRef]
- Mori, G.; Chiarelli, L.R.; Esposito, M.; Makarov, V.; Bellinzoni, M.; Hartkoorn, R.C.; Degiacomi, G.; Boldrin, F.; Ekins, S.; de Jesus Lopes Ribeiro, A.L.; et al. Thiophenecarboxamide Derivatives Activated by EthA Kill Mycobacterium tuberculosis by Inhibiting the CTP Synthetase PyrG. Chem. Biol. 2015, 22, 917–927. [Google Scholar] [CrossRef]
- Strzelecka, M.; Swiatek, P. 1,2,4-Triazoles as Important Antibacterial Agents. Pharmaceuticals 2021, 14, 224. [Google Scholar] [CrossRef]
- Naz, S.; Farooq, U.; Ali, S.; Sarwar, R.; Khan, S.; Abagyan, R. Identification of new benzamide inhibitor against alpha-subunit of tryptophan synthase from Mycobacterium tuberculosis through structure-based virtual screening, anti-tuberculosis activity and molecular dynamics simulations. J. Biomol. Struct. Dyn. 2019, 37, 1043–1053. [Google Scholar] [CrossRef]
- Hopfner, S.M.; Lee, B.S.; Kalia, N.P.; Miller, M.J.; Pethe, K.; Moraski, G.C. Structure guided generation of thieno[3,2-d]pyrimidin-4-amine Mycobacterium tuberculosis bd oxidase inhibitors. RSC Med. Chem. 2021, 12, 73–77. [Google Scholar] [CrossRef]
- Friedrich, T.; Wohlwend, D.; Borisov, V.B. Recent Advances in Structural Studies of Cytochrome bd and Its Potential Application as a Drug Target. Int. J. Mol. Sci. 2022, 23, 3166. [Google Scholar] [CrossRef] [PubMed]
- Ayers, B.; Long, H.; Sim, E.; Smellie, I.A.; Wilkinson, B.L.; Fairbanks, A.J. Stereoselective synthesis of beta-arabino glycosyl sulfones as potential inhibitors of mycobacterial cell wall biosynthesis. Carbohydr. Res. 2009, 344, 739–746. [Google Scholar] [CrossRef] [PubMed]
Cluster | Compound | Structure | Name |
---|---|---|---|
Thiazole- hydrazine | 24 | 4-(4-chlorophenyl)-N-[(Z)-(4methoxyphenyl)methylideneamino]-1,3-thiazol-2-amine | |
25 | N-[(Z)-(4-chlorophenyl)methylideneamino]-4-phenyl-1,3-thiazol-2-amine | ||
26 | N-[(E)-benzylideneamino]-4-(4-methylphenyl)-1,3-thiazol-2-amine | ||
47 | N-[(Z)-(4-methylphenyl)methylideneamino]-4-phenyl-1,3-thiazol-2-amine | ||
Pyridine- hydrazide | 55 | N-[(5-hydroxy-2-adamantylidene)amino]pyridine-4-carboxamide | |
56 | N-[(Z)-[5-(2,3-dichlorophenyl)furan-2-yl]methylideneamino]pyridine-4-carboxamide | ||
57 | N-[(Z)-1-(2,3-dihydro-1,4-benzodioxin-3-yl)ethylideneamino]pyridine-3-carboxamide | ||
58 | N-[(Z)-3-phenylpropylideneamino]pyridine-4-carboxamide | ||
Triazole- carboxamides | 30 | 1-(4-ethylphenyl)-N-(3-fluorophenyl)-5-methyltriazole-4-carboxamide | |
31 | 1-(4-ethylphenyl)-5-methyl-N-(4-methylphenyl)triazole-4-carboxamide | ||
35 | N-(3-fluorophenyl)-1-(3-methoxyphenyl)-5-methyltriazole-4-carboxamide | ||
37 | 1-(3-methoxyphenyl)-5-methyl-N-(4-propoxyphenyl)triazole-4-carboxamide | ||
Pyrimidine | 19 | N-butyl-2-methyl-[1]benzofuro[3,2-d]pyrimidin-4-amine | |
36 | 4-(2-methylpiperidin-1-yl)-[1]benzofuro[3,2-d]pyrimidine | ||
50 | N-cyclopentylquinazolin-4-amine | ||
Phenyl- urea | 44 | 1-(3-chloro-4-fluorophenyl)-3-(4-methylphenyl)urea | |
46 | 1-(4-chlorophenyl)-3-(3-fluorophenyl)urea | ||
54 | 1-(3-chlorophenyl)-3-[2-(5-fluoro-1H-indol-3-yl)ethyl]urea | ||
Triazine diamine | 5 | 4-N-ethyl-2-N-propan-2-yl-6-pyrrolidin-1-yl-1,3,5-triazine-2,4-diamine | |
10 | 2-N-tert-butyl-6-(3,5-dimethylpyrazol- 1-yl)-4-N-propan-2-yl-1,3,5-triazine-2,4-diamine | ||
Benzamide | 16 | N-[[3-chloro-4-(4-propanoylpiperazin-1-yl)phenyl]carbamothioyl]benzamide | |
18 | N-(3-butan-2-yloxyphenyl)-4-fluorobenzamide | ||
Thiophene- carboxamide | 11 | N-(3-fluorophenyl)-5-methylthiophene-3-carboxamide | |
51 | 5-ethyl-N-pyridin-4-yl-4,5,6,7-tetrahydro-1-benzothiophene-2-carboxamide | ||
Alcohol with piperazine | 17 | 1-(1-adamantylmethoxy)-3-(3-methylpiperidin-1-yl)propan-2-ol | |
42 | 1-tert-butoxy-3-[4-(5-chloro-2-methylphenyl)-1-piperazinyl]-2-propanol hydrochloride | ||
Thiourea | 48 | [1-(4-chlorophenyl)-2,5-dioxopyrrolidin-3-yl] N’-[(Z)-[(E)-4[4(dimethylamino)phenyl]but-3-en-2-ylidene]amino] carbamimidothioate | |
53 | [(Z)-[4-(1-adamantyl)phenyl]methylideneamino]thiourea | ||
Sulfone | 15 | 1-[(3,4-dichlorophenyl)methylsulfonyl]-4-methylpiperazine | |
49 | 4-methyl-N-(4-methylphenyl)piperidine-1-sulfonamide | ||
Pyridine- carboxamides | 4 | N’-(4-biphenylylmethylene)isonicotinohydrazide | |
Carboxylic acid | 6 | 7-(4carbamothioylpiperazin-1-yl)-1-ethyl-6-fluoro-4-oxoquinoline-3-carboxylic acid | |
Aminothiazole | 7 | N-(3,4-dimethylphenyl)-4-pyridin-2-yl-1,3-thiazol-2-amine | |
Acetamide | 32 | N-[4-(4-acetylpiperazin-1-yl)-3-chlorophenyl]-2-(4-chlorophenoxy) acetamide | |
Imidazole | 40 | 1-(4-methyl-2-phenylimidazo[1,2-a]benzimidazol-1-yl)propan-1-one | |
Pyridine- thioether | 52 | 4-[2-(2-phenylethylsulfanyl)ethyl]pyridine |
Compound | THP-1 Cytotoxicity [μM] | Intracellular Killing in THP-1 Cells | MIC50 [μM] | ||||
---|---|---|---|---|---|---|---|
MAH104 | Mab19977 | MtbH37Ra | MAH104 | Mab19977 | MtbH37Ra | ||
4 | 32 | Yes | Yes | Yes | 10 | - | 3 |
5 | 32 | Yes | Yes | - | - | - | - |
6 | - | Yes | Yes | - | 3 | 32 | 10 |
7 | 10 | Yes | - | Yes | 10 | 10 | 10 |
10 | 32 | Yes | Yes | Yes | - | - | - |
11 | 32 | Yes | - | - | - | 32 | - |
15 | - | Yes | Yes | - | - | - | - |
16 | 10 | Yes | - | Yes | 32 | - | - |
17 | 32 | Yes | - | Yes | 100 | - | 10 |
18 | 32 | * | - | - | 100 | - | - |
19 | - | - | - | - | 100 | 100 | 10 |
24 | - | - | - | Yes | - | - | - |
25 | - | Yes | - | Yes | 32 | - | 10 |
26 | 32 | Yes | - | Yes | - | - | 10 |
30 | - | - | - | - | - | - | 10 |
31 | - | Yes | Yes | - | - | - | - |
32 | 32 | - | Yes | - | - | - | - |
35 | 32 | * | - | - | - | 100 | - |
36 | 32 | * | * | - | 100 | 100 | - |
37 | 32 | - | Yes | - | 100 | - | - |
40 | 32 | - | - | - | - | - | 10 |
42 | - | - | Yes | - | - | - | 10 |
44 | - | Yes | Yes | - | - | - | - |
46 | 32 | * | * | - | 10 | 32 | - |
47 | - | Yes | Yes | Yes | - | - | - |
48 | 32 | Yes | Yes | Yes | 10 | - | 10 |
49 | 32 | - | - | - | - | - | 10 |
50 | - | Yes | Yes | - | - | - | - |
51 | 32 | - | Yes | - | - | - | 10 |
52 | - | Yes | Yes | - | 10 | - | - |
53 | 32 | Yes | Yes | Yes | - | - | 10 |
54 | 10 | Yes | Yes | - | 32 | - | 10 |
55 | - | * | - | Yes | 32 | - | 10 |
56 | 32 | Yes | - | Yes | 100 | 10 | - |
57 | 32 | Yes | - | Yes | 32 | - | - |
58 | - | * | - | - | 100 | - | - |
Compound | MIC50 [μM] | |||||||
---|---|---|---|---|---|---|---|---|
MAH104 | NJH 0133 | MAH B | MAH C | Mab19977 | DNA 01627 | NR49093 Strain DJO44274 | NR44273 Strain 4529 | |
4 | 10 | 10 | 100 | 10 | - | - | - | - |
6 | 3 | 3 | - | 3 | 32 | 32 | 32 | 32 |
7 | 10 | 10 | - | - | 10 | 10 | 10 | 10 |
11 | - | - | - | - | 32 | 32 | 32 | 32 |
16 | 32 | 32 | 100 | 100 | - | - | - | 100 |
17 | 100 | 100 | 100 | - | - | - | - | - |
18 | 100 | 100 | 100 | 100 | - | - | - | 100 |
19 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
25 | 32 | - | - | - | - | - | - | - |
35 | - | - | - | - | 100 | 100 | 32 | 32 |
36 | 100 | 100 | - | 100 | 100 | 100 | 32 | 32 |
37 | 100 | 100 | - | 100 | - | - | - | - |
46 | 10 | 10 | - | 10 | 32 | 32 | 10 | 32 |
48 | 10 | 10 | 32 | 32 | - | - | - | - |
52 | 10 | - | - | - | - | - | - | - |
54 | 32 | 100 | - | - | - | - | - | - |
55 | 32 | 10 | 10 | 10 | - | - | - | - |
56 | 100 | 10 | 10 | 10 | 10 | 10 | 32 | 32 |
57 | 32 | 10 | 10 | 100 | - | - | - | - |
58 | 100 | 10 | 10 | 100 | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vande Voorde, R.; Dzalamidze, E.; Nelson, D.; Danelishvili, L. Identification of Small Molecule Inhibitors against Mycobacteria in Activated Macrophages. Molecules 2022, 27, 5824. https://doi.org/10.3390/molecules27185824
Vande Voorde R, Dzalamidze E, Nelson D, Danelishvili L. Identification of Small Molecule Inhibitors against Mycobacteria in Activated Macrophages. Molecules. 2022; 27(18):5824. https://doi.org/10.3390/molecules27185824
Chicago/Turabian StyleVande Voorde, Rebecca, Elizaveta Dzalamidze, Dylan Nelson, and Lia Danelishvili. 2022. "Identification of Small Molecule Inhibitors against Mycobacteria in Activated Macrophages" Molecules 27, no. 18: 5824. https://doi.org/10.3390/molecules27185824
APA StyleVande Voorde, R., Dzalamidze, E., Nelson, D., & Danelishvili, L. (2022). Identification of Small Molecule Inhibitors against Mycobacteria in Activated Macrophages. Molecules, 27(18), 5824. https://doi.org/10.3390/molecules27185824