Study on the Distribution of Low Molecular Weight Metabolites in Mango Fruit by Air Flow-Assisted Ionization Mass Spectrometry Imaging
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material
3.2. AFAI-MS Imaging
3.3. Data Processing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Colliver, T.L.; Brummel, C.L.; Pacholski, M.L.; Swanek, F.D.; Ewing, A.G.; Winograd, N. Atomic and Molecular Imaging at the Single-Cell Level with TOF-SIMS. Anal. Chem. 1997, 69, 2225–2231. [Google Scholar] [CrossRef] [PubMed]
- Stoeckli, M.; Chaurand, P.; Hallahan, D.E.; Caprioli, R.M. Imaging Mass Spectrometry: A New Technology for the Analysis of Protein Expression in Mammalian Tissues. Nat. Med. 2001, 7, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Takáts, Z.; Wiseman, J.; Gologan, B.; Cooks, R. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–473. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, J.M.; Ifa, D.R.; Song, Q.; Cooks, R.G. Tissue Imaging at Atmospheric Pressure Using Desorption Electrospray Ionization (DESI) Mass Spectrometry. Angew. Chem. Int. Ed. 2006, 45, 7188–7192. [Google Scholar] [CrossRef]
- McMahon, J.M.; Dookeran, N.N.; Todd, P.J. Organic Ion Imaging beyond the Limit of Static Secondary Ion Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 1047–1058. [Google Scholar] [CrossRef]
- Caprioli, R.M.; Farmer, T.B.; Gile, J. Molecular Imaging of Biological Samples: Localization of Peptides and Proteins Using MALDI-TOF MS. Anal. Chem. 1997, 69, 4751–4760. [Google Scholar] [CrossRef]
- Amstalden van Hove, E.R.; Smith, D.F.; Heeren, R.M.A. A Concise Review of Mass Spectrometry Imaging. J. Chromatogr. A 2010, 1217, 3946–3954. [Google Scholar] [CrossRef]
- Sun, C.; Li, Z.; Ma, C.; Zang, Q.; Wang, X. Acetone Immersion Enhanced MALDI-MS Imaging of Small Molecule Metabolites in Biological Tissues. J. Pharm. Biomed. Anal. 2019, 176, 112797. [Google Scholar] [CrossRef]
- Luo, Z.; He, J.; Chen, Y.; He, J.; Gong, T.; Tang, F.; Wang, X.; Zhang, R.; Huang, L.; Zhang, L.; et al. Air Flow-Assisted Ionization Imaging Mass Spectrometry Method for Easy Whole-Body Molecular Imaging under Ambient Conditions. Anal. Chem. 2013, 85, 2977–2982. [Google Scholar] [CrossRef]
- Luo, Z.-G.; He, J.-M.; Li, T.-G.; Zhou, Z.; Huang, L.; Zhang, R.; Ma, S.-G.; Yu, S.-S.; Abliz, Z. Development of a Novel Imaging Method for Whole-Body Animal Biopharmaceutical Analysis Using High Resolution Mass Spectrometry Technique. J. Chin. Mass Spectrom. Soc. 2017, 38, 417–424. [Google Scholar] [CrossRef]
- Chen, Y. AFAI-MSI Base Metabolomics Research of Human Nasopharyngeal Carcinoma. Ph.D. Thesis, Peking Union Medical College, Beijing, China, 2016. [Google Scholar]
- Wang, Z.; He, B.; Sun, C.; Song, X.; He, J.; Zhang, R.; Abliz, Z. Study on Tissue Distribution of A Variety of Endogenous Metabolites By Air Flow Assisted Ionization-Ultra High Resolution Mass Spectrometry Imaging. Chin. J. Anal. Chem. 2018, 46, 406–411. [Google Scholar] [CrossRef]
- Boughton, B.A.; Thinagaran, D.; Sarabia, D.; Bacic, A.; Roessner, U. Mass Spectrometry Imaging for Plant Biology: A Review. Phytochem. Rev. 2016, 15, 445–488. [Google Scholar] [CrossRef]
- Zafar, T.A.; Sidhu, J.S. Composition and Nutritional Properties of Mangoes. In Handbook of Mango Fruit; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 217–236. ISBN 978-1-119-01436-2. [Google Scholar]
- Maldonado-Celis, M.; Yahia, E.; Bedoya, R.; Landázuri, P.; Loango, N.; Aguillón, J.; Restrepo, B.; Ospina, J.C.G. Chemical Composition of Mango (Mangifera indica L.) Fruit: Nutritional and Phytochemical Compounds. Front. Plant Sci. 2019, 10, 1073. [Google Scholar] [CrossRef]
- López-Cobo, A.; Verardo, V.; Diaz-de-Cerio, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Gómez-Caravaca, A.M. Use of HPLC- and GC-QTOF to Determine Hydrophilic and Lipophilic Phenols in Mango Fruit (Mangifera indica L.) and Its by-Products. Food Res. Int. 2017, 100, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Dars, A.G.; Liu, Q.; Xie, B.; Sun, Z. Phytochemical Profiling of the Ripening of Chinese Mango (Mangifera indica L.) Cultivars by Real-Time Monitoring Using UPLC-ESI-QTOF-MS and Its Potential Benefits as Prebiotic Ingredients. Food Chem. 2018, 256, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Yahia, E.M.; Carrillo-Lopez, A. Postharvest Physiology and Biochemistry of Fruits and Vegetables; Woodhead Publishing: Sawston, UK, 2018. [Google Scholar]
- Tharanathan, R.N.; Yashoda, H.M.; Prabha, T.N. Mango (Mangifera indica L.), “The King of Fruits”—An Overview. Food Rev. Int. 2006, 22, 95–123. [Google Scholar] [CrossRef]
- Shashirekha, M.S.; Patwardhan, M.V. Changes in Amino Acids, Sugars and Nonvolatile Organic Acids in a Ripening Mango Fruit (Mangifera indica L. Badami Variety). LWT Leb. Wissensch. Technol. 1976, 9, 369–370. [Google Scholar]
- Sarker, S.C.; Muhsi, A.A.A. Study on the Content and Interconversion of Organic Acids of Mango (Mangifera indica Lin.) at Various Stages of Fruit Development. Bangladesh J. Agric. Sci. 1981, 8, 69–75. [Google Scholar]
- Medlicott, A.P.; Thompson, A.K. Analysis of Sugars and Organic Acids in Ripening Mango Fruits (Mangifera indica L. Var Keitt) by High Performance Liquid Chromatography. J. Sci. Food Agric. 2010, 36, 561–566. [Google Scholar] [CrossRef]
- Pierson, J.T.; Monteith, G.R.; Roberts-Thomson, S.J.; Dietzgen, R.G.; Gidley, M.J.; Shaw, P.N. Phytochemical Extraction, Characterisation and Comparative Distribution across Four Mango (Mangifera indica L.) Fruit Varieties. Food Chem. 2014, 149, 253–263. [Google Scholar] [CrossRef]
- Diplock, A.T.; Charuleux, J.-L.; Crozier-Willi, G.; Kok, F.J.; Rice-Evans, C.; Roberfroid, M.; Stahl, W.; Viña-Ribes, J. Functional Food Science and Defence against Reactive Oxidative Species. Br. J. Nutr. 1998, 80, S77–S112. [Google Scholar] [CrossRef]
- Mohammad, F. Occurrence, biosynthesis and potentialities of ascorbic acid in plants. IJPAES 2011, 1, 167–184. [Google Scholar]
- Pastori, G.M.; Kiddle, G.; Antoniw, J.; Bernard, S.; Veljovic-Jovanovic, S.; Verrier, P.J.; Noctor, G.; Foyer, C.H. Leaf Vitamin C Contents Modulate Plant Defense Transcripts and Regulate Genes That Control Development through Hormone Signaling. Plant Cell 2003, 15, 939–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barth, C.; Moeder, W.; Klessig, D.F.; Conklin, P.L. The Timing of Senescence and Response to Pathogens Is Altered in the Ascorbate-Deficient Arabidopsis Mutant Vitamin c-1. Plant Physiol. 2004, 134, 1784–1792. [Google Scholar] [CrossRef] [PubMed]
- Pavet, V.; Olmos, E.; Kiddle, G.; Mowla, S.; Kumar, S.; Antoniw, J.; Alvarez, M.E.; Foyer, C.H. Ascorbic Acid Deficiency Activates Cell Death and Disease Resistance Responses in Arabidopsis. Plant Physiol. 2005, 139, 1291–1303. [Google Scholar] [CrossRef] [PubMed]
- Draths, K.M.; Ward, T.L.; Frost, J.W. Biocatalysis and Nineteenth Century Organic Chemistry: Conversion of D-Glucose into Quinoid Organics. J. Am. Chem. Soc. 1992, 114, 9725–9726. [Google Scholar] [CrossRef]
- Barco, A.; Benetti, S.; De Risi, C.; Marchetti, P.; Pollini, G.P.; Zanirato, V. D-(-)-Quinic Acid: A Chiron Store for Natural Product Synthesis. Tetrahedron Asymmetry 1997, 8, 3515–3545. [Google Scholar] [CrossRef]
- Minamikawa, T. A Comparative Study on the Metabolism of Quinic and Shikimic Acids in Plants. Bot. Mag. Shokubutsu-Gaku-Zasshi 1976, 89, 141–144. [Google Scholar] [CrossRef]
- Ghosh, S.; Chisti, Y.; Banerjee, U.C. Production of Shikimic Acid. Biotechnol. Adv. 2012, 30, 1425–1431. [Google Scholar] [CrossRef]
- Pan, X. Preliminary Studies on the Relationships of Quality and Ultrastructure of Mango Fruits with Different Varieties. Chin. J. J. Guangxi Agric. Univ. 1993, 12, 69–75. [Google Scholar]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef] [PubMed]
- Yahia, E.M.; Maldonado Celis, M.E.; Svendsen, M. The Contribution of Fruit and Vegetable Consumption to Human Health. In Fruit and Vegetable Phytochemicals; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–52. ISBN 978-1-119-15804-2. [Google Scholar]
- Mattila, P.; Kumpulainen, J. Determination of Free and Total Phenolic Acids in Plant-Derived Foods by HPLC with Diode-Array Detection. J. Agric. Food Chem. 2002, 50, 3660–3667. [Google Scholar] [CrossRef] [PubMed]
- Burton-Freeman, B.M.; Sandhu, A.K.; Edirisinghe, I. Mangos and Their Bioactive Components: Adding Variety to the Fruit Plate for Health. Food Funct. 2017, 8, 3010–3032. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; López-Cobo, A.; Verardo, V.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-DAD-q-TOF-MS as a Powerful Platform for the Determination of Phenolic and Other Polar Compounds in the Edible Part of Mango and Its by-Products (Peel, Seed, and Seed Husk). Electrophoresis 2016, 37, 1072–1084. [Google Scholar] [CrossRef] [PubMed]
Compound Name | Ion Formula | Theoretical Mass (Da) | Observed Mass (Da) | Mass Difference (mDa) |
---|---|---|---|---|
Citric acid | [C6H8O7-H]− | 191.0197 | 191.0192 | −0.5 |
Malic acid | [C4H6O5-H]− | 133.0142 | 133.0133 | −0.9 |
Vitamin C | [C6H8O6-H]− | 175.0248 | 175.0242 | −0.6 |
Quinic acid | [C7H12O6-H]− | 191.0561 | 191.0556 | −0.5 |
5-Galloylquinic acid | [C14H16O10-H]− | 343.0670 | 343.0676 | 0.6 |
Galloylglucose isomer | [C13H16O10-H]− | 331.0670 | 331.0675 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Yu, P.; Han, B.; Qiao, F. Study on the Distribution of Low Molecular Weight Metabolites in Mango Fruit by Air Flow-Assisted Ionization Mass Spectrometry Imaging. Molecules 2022, 27, 5873. https://doi.org/10.3390/molecules27185873
Zhao D, Yu P, Han B, Qiao F. Study on the Distribution of Low Molecular Weight Metabolites in Mango Fruit by Air Flow-Assisted Ionization Mass Spectrometry Imaging. Molecules. 2022; 27(18):5873. https://doi.org/10.3390/molecules27185873
Chicago/Turabian StyleZhao, Deqing, Ping Yu, Bingjun Han, and Fei Qiao. 2022. "Study on the Distribution of Low Molecular Weight Metabolites in Mango Fruit by Air Flow-Assisted Ionization Mass Spectrometry Imaging" Molecules 27, no. 18: 5873. https://doi.org/10.3390/molecules27185873
APA StyleZhao, D., Yu, P., Han, B., & Qiao, F. (2022). Study on the Distribution of Low Molecular Weight Metabolites in Mango Fruit by Air Flow-Assisted Ionization Mass Spectrometry Imaging. Molecules, 27(18), 5873. https://doi.org/10.3390/molecules27185873