Clinical, Nutritional, and Functional Evaluation of Chia Seed-Fortified Muffins
Abstract
:1. Introduction
2. Results
2.1. Results of Clinical Study
2.2. Results for Proximate Nutritional Composition
2.3. Rheological Studies
2.4. Color Experiments
2.5. Sensory Appraisal for CSF-Muffins
3. Discussion
3.1. Clinical Study
3.2. Product Development
4. Materials and Methods
4.1. Clinical Study
4.2. Proximate Nutrition Analysis
4.3. Rheological Studies of CSF-Blends on Farinograph
4.4. CSF-Muffin Production
4.5. CSF-Muffin Experiments
4.6. Statistical Design
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- World Health Organization. Follow-Up to the Political Declaration of the High-Level Meeting of the General Assembly on the Prevention and Control of Non-Communicable Diseases; World Health Organization: Geneva, Switzerland, 2013; Volume WHA66.10.
- American Heart Association. 2021 Heart Disease & Stroke Statistical Update Fact Sheet Global Burden of Disease; American Heart Association: Dallas, TX, USA, 2021. [Google Scholar]
- Heidenreich, P.A.; Trogdon, J.G.; Khavjou, O.A.; Butler, J.; Dracup, K.; Ezekowitz, M.D.; Finkelstein, E.A.; Hong, Y.; Johnston, S.C.; Khera, A.; et al. Forecasting the Future of Cardiovascular Disease in the United States A Policy Statement from the American Heart Association. Circulation 2011, 123, 933–944. [Google Scholar] [CrossRef] [PubMed]
- World Heart Federation. CVD Advocacy Toolkit—The Road to 2018; World Heart Federation: Geneva, Switzerland, 2018. [Google Scholar]
- Bruen, R.; Fitzsimons, S.; Belton, O. Atheroprotective effects of conjugated linoleic acid. Br. J. Clin. Pharm. 2017, 83, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Siscovick, D.S.; Barringer, T.A.; Fretts, A.M.; Wu, J.H.Y.; Lichtenstein, A.H.; Costello, R.B.; Kris-Etherton, P.M.; Jacobson, T.A.; Engler, M.B.; Alger, H.M.; et al. Omega-3 Polyunsaturated Fatty Acid (Fish Oil) Supplementation and the Prevention of Clinical Cardiovascular Disease: A Science Advisory from the American Heart Association. Circulation 2017, 135, e867–e884. [Google Scholar] [CrossRef] [PubMed]
- Tahreem, A.; Rakha, A.; Rabail, R.; Nazir, A.; Socol, C.T. Fad Diets: Facts and Fiction. Front. Nutr. 2022, 9, 960922. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Maqsood, M.; Saeed, R.A.; Alam, A.; Sahar, A.; Kieliszek, M.; Miecznikowski, A.; Muzammil, H.S.; Aadil, R.M. Phytochemistry, food application, and therapeutic potential of the medicinal plant (Withania coagulans): A review. Molecules 2021, 26, 6881. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, J.; Qiu, C.; Ye, Y.; Guo, X.; Chen, G.; Li, T.; Wang, Y.; Fu, X.; Liu, R.H. Comparison of phytochemical profiles and health benefits in fiber and oil flaxseeds (Linum usitatissimum L.). Food Chem. 2017, 214, 227–233. [Google Scholar] [CrossRef]
- Saeed, R.A.; Maqsood, M.; Saeed, R.A.; Shehzad, H.; Khan, M.I.; Asghar, L.; Nisa, S.U.; Aadil, R.M. Plant-based foods and hepatocellular carcinoma: A review on mechanistic understanding. Crit. Rev. Food Sci. Nutr. 2022, 2022, 1–34. [Google Scholar] [CrossRef]
- Konieczka, P.; Czauderna, M.; Smulikowska, S. The enrichment of chicken meat with omega-3 fatty acids by dietary fish oil or its mixture with rapeseed or flaxseed—Effect of feeding duration: Dietary fish oil, flaxseed, and rapeseed and n-3 enriched broiler meat. Anim. Feed Sci. Technol. 2017, 223, 42–52. [Google Scholar] [CrossRef]
- Rabail, R.; Shabbir, M.A.; Sahar, A.; Miecznikowski, A.; Kieliszek, M.; Aadil, R.M. An intricate review on nutritional and analytical profiling of coconut, flaxseed, olive, and sunflower oil blends. Molecules 2021, 26, 7187. [Google Scholar] [CrossRef]
- Shabbir, M.A.; Mehak, F.; Khan, Z.M.; Ahmed, W.; Haq, S.M.A.U.; Khan, M.R.; Bhat, Z.F.; Aadil, R.M. Delving the role of nutritional psychiatry to mitigate the COVID-19 pandemic induced stress, anxiety and depression. Trends Food Sci. Technol. 2022, 120, 25–35. [Google Scholar] [CrossRef]
- Rabail, R.; Saleem, J.; Tanveer, Z.; Patching, S.G.; Khalid, A.R.; Sultan, M.T.; Manzoor, M.F.; Karrar, E.; Inam-Ur-Raheem, M.; Shabbir, M.A.; et al. Nutritional and lifestyle changes required for minimizing the recovery period in home quarantined COVID-19 patients of Punjab, Pakistan. Food Sci. Nutr. 2021, 9, 5036–5059. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.M.; Gomez, M. Current trends in the realm of baking: When indulgent consumers demand healthy sustainable foods. Foods 2019, 8, 518. [Google Scholar] [CrossRef] [PubMed]
- Rabail, R.; Shabbir, M.A.; Ahmed, W.; Inam-Ur-Raheem, M.; Khalid, A.R.; Sultan, M.T.; Aadil, R.M. Nutritional, functional, and therapeutic assessment of muffins fortified with garden cress seeds. J. Food Process. Preserv. 2022, 2022, e16678. [Google Scholar] [CrossRef]
- Ciftci, O.N.; Przybylski, R.; Rudzińska, M. Lipid components of flax, perilla, and chia seeds. Eur. J. Lipid Sci. Technol. 2012, 114, 794–800. [Google Scholar] [CrossRef]
- Spotorno, V.; Mateo, C.M.; Diehl, B.W.K.; Nolasco, S.M.; Toma, M.C. Characterization of chia seed oils obtained by pressing and solvent extraction. J. Food Compos. Anal. 2011, 24, 166–174. [Google Scholar] [CrossRef]
- Rabail, R.; Khan, M.R.; Mehwish, H.M.; Rajoka, M.S.R.; Lorenzo, J.M.; Kieliszek, M.; Khalid, A.R.; Shabbir, M.A.; Aadil, R.M. An overview of chia seed (Salvia hispanica L.) bioactive peptides’ derivation and utilization as an emerging nutraceutical food. Front. Biosci. Landmark 2021, 26, 643–654. Front. Biosci. Landmark 2021, 26, 643–654. [Google Scholar] [CrossRef]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; El-Sabrout, K.; Alqaisi, O.; Dawood, M.A.O.; Soomro, H.; Abdelnour, S.A. Nutritional significance and health benefits of omega-3, -6 and -9 fatty acids in animals. Anim. Biotechnol. 2020, 2020, 1–13. [Google Scholar] [CrossRef]
- Gowda, A.; Sharma, V.; Goyal, A.; Singh, A.K.; Arora, S. Process optimization and oxidative stability of omega-3 ice cream fortified with flaxseed oil microcapsules. J. Food Sci. Technol. 2018, 55, 1705–1715. [Google Scholar] [CrossRef] [PubMed]
- McGuire, S.; U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2010, 7th ed.; Government Printing Office: Washington, DC, USA, 2011; Volume 2.
- Guiotto, E.N.; Tomas, M.C.; Haros, C.M. Development of Highly Nutritional Breads with By-Products of Chia (Salvia hispanica L.) Seeds. Foods 2020, 9, 819. [Google Scholar] [CrossRef]
- Fagundes, G.A.; Rocha, M.; Salas-Mellado, M.M. Improvement of protein content and effect on technological properties of wheat bread with the addition by cobia (Rachycentron canadum). Food Res. 2018, 2, 221–227. [Google Scholar] [CrossRef]
- Chicco, A.G.; D’Alessandro, M.E.; Hein, G.J.; Oliva, M.E.; Lombardo, Y.B. Dietary chia seed (Salvia hispanica L.) rich in a-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats. Br. J. Nutr. 2009, 101, 41–50. [Google Scholar] [CrossRef]
- Nieman, D.C.; Cayea, E.J.; Austin, M.D.; Henson, D.A.; McAnulty, S.R.; Jin, F. Chia seed does not promote weight loss or alter disease risk factors in overweight adults. Nutr. Res. 2009, 29, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Gillitt, N.; Jin, F.; Henson, D.A.; Kennerly, K.; Shanely, R.A.; Ore, B.; Su, M.; Schwartz, S. Chia seed supplementation and disease risk factors in overweight women: A metabolomics investigation. J. Altern. Complement. Med. 2012, 18, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Alamri, E. The Influence of Two Types of Chia Seed on Some Physiological Parameters in Diabetic Rats. Int. J. Pharm. Res. Allied Sci. 2019, 8, 131–136. [Google Scholar]
- Da Silva, C.S.; Monteiro, C.R.D.A.; da Silva, G.H.F.; Sarni, R.O.S.; Souza, F.I.S.; Feder, D.; Messias, M.C.F.; Carvalho, P.D.O.; Alberici, R.M.; Cunha, I.B.S.; et al. Assessing the Metabolic Impact of Ground Chia Seed in Overweight and Obese Prepubescent Children: Results of a Double-Blind Randomized Clinical Trial. J. Med. Food 2020, 23, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Kulczyński, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The Chemical Composition and Nutritional Value of Chia Seeds-Current State of Knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef]
- Mihafu, F.D.; Kiage, B.N.; Okoth, J.K.; Nyerere, A.K. Nutritional Composition and Qualitative Phytochemical Analysis of Chia Seeds (Salvia hispanica L.) Grown in East Africa. Curr. Nutr. Food Sci. 2019, 16, 988–995. [Google Scholar] [CrossRef]
- Sá, A.G.A.; da Silva, D.C.; Pacheco, M.T.B.; Moreno, Y.M.F.; Carciofi, B.A.M. Oilseed by-products as plant-based protein sources: Amino acid profile and digestibility. Futur. Foods 2021, 3, 100023. [Google Scholar] [CrossRef]
- Da Silva, B.P.; Anunciação, P.C.; da Silva Matyelka, J.C.; della Lucia, C.M.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Chemical composition of Brazilian chia seeds grown in different places. Food Chem. 2017, 221, 1709–1716. [Google Scholar] [CrossRef]
- Iglesias-Puig, E.; Haros, M. Evaluation of performance of dough and bread incorporating chia (Salvia hispanica L.). Eur. Food Res. Technol. 2013, 237, 865–874. [Google Scholar] [CrossRef]
- Hafeez, A.; Ahmad, A.; Amir, R.M.; Kaleem, M. Quality evaluation of coconut–flaxseed balls enriched with chiaseeds. J. Food Process. Preserv. 2019, 43, e14184. [Google Scholar] [CrossRef]
- Abdullah, M.; Masood, B. Chia Seeds as Potential Nutritional and Functional Ingredients: A Review of their Applications for Various Food Industries. J. Nutr. Food Sci. Technol. 2022, 4, 1–14. [Google Scholar]
- Sandri, L.T.B.; Santos, F.G.; Fratelli, C.; Capriles, V.D. Development of gluten-free bread formulations containing whole chia flour with acceptable sensory properties. Food Sci. Nutr. 2017, 5, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Romankiewicz, D.; Hassoon, W.H.; Cacak-Pietrzak, G.; Sobczyk, M.B.; Wirkowska-Wojdyła, M.; Ceglińska, A.; Dziki, D. The effect of chia seeds (Salvia hispanica L.) addition on quality and nutritional value of wheat bread. J. Food Qual. 2017, 2017, 7352631. [Google Scholar] [CrossRef]
- Toliba, A.; Mohamed, A. The Effect of Garden Cress Seeds Addition on Rheological Properties of Wheat Flour and Chocolate Flavored Cupcake. Egypt. J. Food Sci. 2019, 47, 187–199. [Google Scholar] [CrossRef]
- Zettel, V.; Krämer, A.; Hecker, F.; Hitzmann, B. Influence of gel from ground chia (Salvia hispanica L.) for wheat bread production. Eur. Food Res. Technol. 2015, 240, 655–662. [Google Scholar] [CrossRef]
- Hrušková, M.; Švec, I.; Jurinová, I. Chemometrics of wheat composites with hemp, teff, and chia flour: Comparison of rheological features. Int. J. Food Sci. 2013, 2013, 30–32. [Google Scholar] [CrossRef]
- NRC. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 1996; ISBN 9780309154000. [Google Scholar]
- Engel, P. Essential Fatty Acids Intake Recommendations. Available online: https://www.nutri-facts.org/en_US/nutrients/items/essential-fatty-acids/essential-fatty-acids/intake-recommendations.html (accessed on 1 April 2022).
- Bresson, J.L.; Flynn, A.; Heinonen, M.; Hulshof, K.; Korhonen, H.; Lagiou, P.; Løvik, M.; Marchelli, R.; Martin, A.; Moseley, B.; et al. Labelling reference intake values for n-3 and n-6 polyunsaturated fatty acids. Eur. Food Saf. Auth. J. 2009, 1176, 1–11. [Google Scholar]
- Gebauer, S.K.; Psota, T.L.; Harris, W.S.; Kris-Etherton, P.M. N-3 fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am. J. Clin. Nutr. 2006, 83, 1526S–1535S. [Google Scholar] [CrossRef] [PubMed]
- Sultan, M.T.; Butt, M.S.; Ahmad, R.S.; Pasha, I.; Ahmad, A.N.; Qayyum, M.M.N. Supplementation of Nigella sativa fixed and essential oil mediates potassium bromate induced oxidative stress and multiple organ toxicity. Pak. J. Pharm. Sci. 2012, 25, 175–181. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Ashraf, W.; Shehzad, A.; Sharif, H.R.; Aadil, R.M.; Rafiq Khan, M.; Zhang, L. Influence of selected hydrocolloids on the rheological, functional, and textural properties of wheat-pumpkin flour bread. J. Food Process. Preserv. 2020, 44, e14777. [Google Scholar] [CrossRef]
- Rehman, S.; Paterson, A.; Hussain, S. Influence of partial substitution of wheat flour with vetch (Lathyrus sativus L.) flour on quality characteristics of doughnuts. LWT-Food Sci. Technol. 2007, 40, 73–82. [Google Scholar] [CrossRef]
- Alshehry, G.A. Technological and sensory characteristics of biscuits fortified with garden cress (Lepidum sativum) seeds. Life Sci. J. 2019, 16, 28–35. [Google Scholar] [CrossRef]
Physiological Parameters | S-Study Control | S-Study CSF | T-Study Control | T-Study CSF |
---|---|---|---|---|
Total wt. gain (g) | 34.75 ± 4.031 | 32.15 ± 1.738 ns | 55.87 ± 3.679 | 51.00 ± 1.460 ns |
Wt. gain (g)/day | 1.24 ± 0.144 | 1.24 ± 0.244 ns | 1.73 ± 0.136 | 1.62 ± 0.029 *** |
Food intake (g)/day | 25 ± 1.174 | 26.95 ± 1.369 ns | 27.63 ± 2.576 | 28.57 ± 0.719 ns |
FER% | 4.95 ± 0.667 | 4.23 ± 0.669 ns | 6.26 ± 0.220 | 5.63 ± 0.898 *** |
Heart wt. (g) | 0.40 ± 0.027 | 0.38 ± 0.037 ns | 0.35 ± 0.029 | 0.32 ± 0.024 ns |
Liver wt. (g) | 3.42 ± 0.191 | 3.26 ± 0.351 ns | 2.78 ± 0.123 | 2.93 ± 0.063 ns |
Kidney wt. (g) | 0.33 ± 0.019 | 0.34 ± 0.029 ns | 0.28 ± 0.025 | 0.31 ± 0.025 ns |
Spleen wt. (g) | 0.19 ± 0.008 | 0.16 ± 0.037 ns | 0.16 ± 0.021 | 0.14 ± 0.021 ns |
Heart fat% | 9.07 ± 0.739 | 7.80 ± 0.685 * | 12.40 ± 0.561 | 10.5 ± 0.021 *** |
Liver fat% | 9.39 ± 0.455 | 5.30 ± 0.886 *** | 4.39 ± 0.103 | 2.40 ± 0.241 *** |
Kidney fat% | 32.00 ± 0.483 | 27.93 ± 5.678 ** | 34.30 ± 1.213 | 34.30 ± 1.415 ns |
Spleen fat% | 43.925 ± 10.274 | 32.80 ± 1.029 ns | 22.00 ± 0.794 | 15.00 ± 0.406 *** |
Groups | S-Study | T-Study | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S-Study Control | S-Study CSF | T-Study Control | T-Study CSF | ||||||||||
Labs | D-1 | D-32 | Effect | D-1 | D-32 | Effect | D-1 | D-32 | Effect | D-1 | D-32 | Effect | |
HCT (%) | 34.23 ± 0.75 | 35.67 ± 0.52 ns | 4.20 ˄ | 36.65 ± 0.45 | 41.93 ± 0.45 ****** | 14.40 ˄ | 30.77 ± 0.37 | 40.33 ± 0.60 *** | 31.07 ˄ | 37.30 ± 0.785 | 40.30 ± 1.143 ** ns | 8.04 ˄ | |
Hb (g/dL) | 11.55 ± 0.42 | 13.65 ± 0.73 ** | 18.18 ˄ | 12.63 ± 0.58 | 15.55 ± 0.48 ***** | 23.12 ˄ | 11.53 ± 0.59 | 14.43 ± 0.42 *** | 25.15 ˄ | 13.26 ± 0.890 | 14.43 ± 0.524 ns ns | 8.80 ˄ | |
RBCs (106/µL) | 5.80 ± 0.20 | 6.52 ± 0.30 ** | 12.41 ˄ | 6.04 ± 0.21 | 7.34 ± 0.23 ***** | 25.68 ˄ | 9.62 ± 0.42 | 7.32 ± 0.24 *** | 23.91 ˅ | 6.88 ± 0.131 | 7.08 ± 1.14 ns ns | 2.90 ˄ | |
TLCs (X 103/µL) | 8.73 ± 0.35 | 7.37 ± 0.51 ** | 15.57 ˅ | 10.60 ± 0.73 | 12.95 ± 0.67 ***** | 22.16 ˄ | 18.26 ± 0.25 | 12.63 ± 0.35 *** | 30.83 ˅ | 13.46 ± 0.294 | 11.63 ± 0.325 ***** | 13.50 ˅ | |
Platelets (103/µL) | 561 ± 2.95 | 469 ± 1.93 ** | 16.39 ˅ | 591 ± 2.25 | 773 ± 2.52 ****** | 30.79 ˄ | 480 ± 4.27 | 694 ± 4.92 *** | 44.58 ˄ | 381 ± 1.643 | 700 ± 2.124 *** ns | 90.70 ˄ | |
MCV (fL) | 57.90 ± 0.84 | 54.77 ± 0.31 *** | 5.40 ˅ | 61.00 ± 1.56 | 57.20 ± 0.77 ***** | 6.22 ˅ | 52.36 ± 0.92 | 55.13 ± 1.29 ** | 5.29 ˄ | 54.10 ± 0.477 | 55.73 ± 1.577 ns ns | 3.00 ˄ | |
MCH (pg) | 19.87 ± 0.36 | 20.97 ± 0.90 ns | 5.54 ˄ | 34.23 ± 0.99 | 36.80 ± 0.57 ***** | 7.5 ˄ | 32.10 ± 0.75 | 19.76 ± 0.29 *** | 38.44 ˅ | 19.23 ± 0.777 | 20.10 ± 1.047 ns ns | 4.50 ˄ | |
MCHC (g/dL) | 34.37 ± 0.82 | 38.28 ± 0.62 *** | 11.37 ˄ | 34.23 ± 0.71 | 36.80 ± 0.45 ***** | 7.5 ˄ | 30.13 ± 1.27 | 35.80 ± 0.32 *** | 18.8 ˄ | 35.5 3 ± 0.737 | 36.10 ± 0.217 ns ns | 1.60 ˄ | |
Glucose (mg/dL) | 83.46 ± 1.78 | 93.25 ± 2.68 *** | 11.73 ˄ | 83.46 ± 1.78 | 82.57 ± 0.83 ns *** | 1.06 ˅ | 92.82 ± 0.25 | 96.73 ± 0.75 *** | 4.21 ˄ | 92.82 ± 0.258 | 85.24 ± 0.258 ****** | 8.10 ˅ | |
AST (U/L) | 66.96 ± 0.55 | 70.55 ± 1.43 ** | 5.36 ˄ | 66.96 ± 0.55 | 70.32 ± 0.40 *** ns | 5.02 ˄ | 112.77 ± 2.41 | 108.98 ± 1.23 ns | 3.36 ˅ | 112.77 ± 2.418 | 103.73 ± 2.790 *** | 8.00 ˅ | |
ALT (U/L) | 43.29 ± 0.72 | 40.61 ± 1.45 ** | 6.19 ˅ | 43.29 ± 0.72 | 38.57 ± 0.72 *** ns | 10.90 ˅ | 33.29 ± 0.54 | 48.25 ± 0.54 *** | 44.93 ˄ | 33.29 ± 0.546 | 49.53 ± 1.047 *** ns | 48.70 ˄ | |
Creatinine (U/L) | 0.30 ± 0.01 | 0.35 ± 0.03 ns | 16.67 ˄ | 0.30 ± 0.01 | 0.45 ± 0.03 ***** | 50 ˄ | 0.30 ± 0.02 | 0.30 ± 0.01 ns | 0 | 0.30 ± 0.020 | 0.49 ± 0.026 ****** | 63.00 ˄ | |
TG (mg/dL) | 91.35 ± 1.08 | 92.90 ± 0.23 ns | 1.69 ˄ | 91.35 ± 1.08 | 86.85 ± 0.79 ****** | 4.92 ˅ | 206.27 ± 1.88 | 209.03 ± 1.88 ns | 1.33 ˄ | 206.27 ± 1.885 | 180.66 ± 1.534 ****** | 12.40 ˅ | |
TC (mg/dL) | 93.28 ± 1.27 | 90.24 ± 1.24 * | 3.33 ˅ | 93.28 ± 1.27 | 86.67 ± 0.63 ***** | 8.08 ˅ | 206.5 ± 2.33 | 232.70 ± 1.12 *** | 12.73 ˄ | 206.5 ± 2.332 | 172.58 ± 8.462 ****** | 16.40 ˅ | |
HDL (mg/dL) | 33.50 ± 0.58 | 31.54 ± 1.55 ns | 5.85 ˅ | 33.50 ± 0.58 | 34.03 ± 0.53 ns * | 1.58 ˄ | 45.38 ± 2.05 | 44.17 ± 1.04 ns | 2.67 ˅ | 45.38 ± 2.056 | 48.35 ± 1.691 ns * | 6.50 ˄ | |
VLDL (mg/dL) | 18.27 ± 0.25 | 18.58 ± 0.45 ns | 1.69 ˄ | 18.27 ± 0.25 | 17.37 ± 0.55 ns *** | 4.92 ˅ | 41.25 ± 0.65 | 41.81 ± 0.46 ns | 1.35 ˄ | 41.25 ± 0.653 | 36.13 ± 1.079 ***** | 12.40 ˅ | |
LDL (mg/dL) | 41.51 ± 0.69 | 40.12 ± 0.54 ns | 3.34 ˅ | 41.51 ± 0.69 | 35.27 ± 0.49 **** | 15.03 ˅ | 119.87 ± 1.09 | 146.72 ± 1.37 *** | 22.39 ˄ | 119.87 ± 1.093 | 88.10 ± 1.743 ****** | 26.50 ˅ |
Seed | Moisture | Ash | Crude Fat | Crude Protein | Crude Fiber | NFE | |
---|---|---|---|---|---|---|---|
CS% | 5.43 ± 0.21 | 4.26 ± 0.02 | 37.33 ± 1.36 | 20.34 ± 1.65 | 16.88 ± 1.04 | 15.75 ± 1.29 | |
CSF-blends% | C0 | 12.250 a | 0.312 e | 1.143 e | 11.500 c | 1.320 e | 73.475 a |
C5 | 11.909 ab | 0.510 d | 2.953 d | 11.942 bc | 2.098 d | 70.589 ab | |
C10 | 11.568 abc | 0.707 c | 4.762 c | 12.384 abc | 2.876 c | 67.703 bc | |
C15 | 11.278 bc | 0.852 b | 6.597 b | 12.850 ab | 3.391 b | 65.033 cd | |
C20 | 10.987 c | 0.998 a | 8.431 a | 13.316 a | 3.906 a | 62.363 d | |
CSF-muffins% | C0 | 34.830 ± 1.066 a | 1.430 ± 0.031 d | 11.730 ± 0.528 d | 9.860 ± 0.339 c | 1.200 ± 0.060 e | 40.950 ± 2.341 a |
C5 | 34.130 ± 1.533 ab | 1.900 ± 0.080 c | 14.360 ± 0.442 c | 10.180 ± 0.450 bc | 1.450 ± 0.086 d | 37.980 ± 1.390 ab | |
C10 | 32.670 ± 1.266 abc | 2.170 ± 0.083 b | 15.670 ± 0.258 b | 10.470 ± 0.382 bc | 1.730 ± 0.074 c | 37.290 ± 1.036 b | |
C15 | 31.850 ± 1.293 bc | 2.230 ± 0.037 ab | 16.630 ± 0.649 a | 10.830 ± 0.565 ab | 2.010 ± 0.067 b | 36.450 ± 0.794 b | |
C20 | 31.550 ± 0.785 c | 2.330 ± 0.068 a | 17.230 ± 0.621 a | 11.420 ± 0.329 a | 2.310 ± 0.046 a | 35.160 ± 2.717 b | |
Sum of squares | Blends | 2.994 * | 0.887 ** | 99.628 ** | 6.166 * | 12.678 ** | 231.72 ** |
Muffins | 24.478 * | 1.586 ** | 57.297 ** | 4.360 * | 2.315 ** | 56.199 * |
T | WA (%) | DDT (Min) | DST (Min) | DoS (FU) | DoS-ICC (FU) | DC (FU) | FQN | MTI (Min) |
---|---|---|---|---|---|---|---|---|
C0 | 60.000 ± 2.457 a | 1.700 ± 0.047 d | 5.600 ± 0.164 d | 41.000 ± 1.047 a | 58.000 ± 2.296 b | 506.000 ± 18.433 b | 76.000 ± 1.738 d | 6.700 ± 0.266 d |
C5 | 61.000 ± 1.678 a | 5.000 ± 0.352 c | 7.800 ± 0.194 c | 33.000 ± 1.588 b | 63.000 ± 2.642 b | 518.000 ± 19.333 ab | 98.000 ± 3.850 c | 10.000 ± 0.507 c |
C10 | 61.400 ± 1.609 a | 5.200 ± 0.175 c | 8.800 ± 0.063 b | 25.000 ± 0.606 c | 63.000 ± 4.542 b | 522.000 ± 27.528 ab | 110.000 ± 4.694 b | 10.200 ± 0.266 c |
C15 | 62.000 ± 1.971 a | 6.200 ± 0.118 b | 8.100 ± 0.190 c | 27.000 ± 1.351 c | 83.000 ± 3.848 a | 546.000 ± 25.557 ab | 105.000 ± 4.471 bc | 11.200 ± 0.195 b |
C20 | 62.800 ± 2.203 a | 7.700 ± 0.415 a | 9.900 ± 0.320 a | 15.000 ± 0.551 d | 86.000 ± 3.312 a | 556.000 ± 16.381 a | 123.000 ± 4.581 a | 12.700 ± 0.841 a |
Sum of squares | 13.296 ns | 58.572 ** | 30.156 ** | 1118.160 ** | 1996.160 ** | 5146.128 ns | 3615.124 ** | 58.545 ** |
CSF-Muffins | Supplementation Level % | L * | a * | b * | Chroma | Hue |
---|---|---|---|---|---|---|
Crust | C0 | 53.39 ± 1.82 a | 2.15 ± 0.09 b | 19.99 ± 0.64 b | 20.11 ± 0.63 b | 1.46 ± 0.04 a |
C5 | 51.51 ± 1.88 ab | −1.01 ± 0.03 c | 14.77 ± 0.95 c | 14.80 ± 0.46 c | −1.50 ± 0.10 b | |
C10 | 49.24 ± 1.15 b | −1.16 ± 0.02 d | 12.62 ± 0.59 d | 12.67 ± 0.32 d | −1.48 ± 0.05 b | |
C15 | 34.23 ± 0.71 d | 5.00 ± 0.08 a | 24.26 ± 0.93 a | 24.77 ± 0.66 a | 1.37 ± 0.04 a | |
C20 | 44.60 ± 2.32 c | −1.55 ± 0.03 e | 9.60 ± 0.36 e | 9.72 ± 0.43 e | −1.41 ± 0.04 b | |
Crumb | C0 | 64.78 ± 2.19 a | −4.99 ± 0.14 e | 19.76 ± 0.84 a | 20.38 ± 0.89 a | −1.32 ± 0.04 a |
C5 | 60.59 ± 2.34 b | −4.34 ± 0.13 d | 19.86 ± 0.85 a | 20.33 ± 0.79 a | −1.36 ± 0.03 a | |
C10 | 50.42 ± 2.27 c | −3.07 ± 0.16 c | 11.88 ± 0.23 b | 12.27 ± 0.53 b | −1.32 ± 0.05 a | |
C15 | 47.97 ± 1.06 c | −1.81 ± 0.07 a | 9.86 ± 0.66 c | 10.02 ± 0.29 c | −1.39 ± 0.05 a | |
C20 | 47.06 ± 1.05 c | −2.19 ± 0.09 b | 10.15 ± 0.33 c | 10.38 ± 0.31 c | −1.36 ± 0.04 a | |
Sum of squares | Crust | 702.673 ** | 96.199 ** | 413.07 *** | 434.357 ** | 29.835 ** |
Crumb | 770.330 ** | 22.322 ** | 310.338 ** | 330.966 ** | 0.010 ns |
Dietary Components | Control | Cholesterol | CS | |||
---|---|---|---|---|---|---|
g | Kcal | g | Kcal | g | Kcal | |
Corn starch | 65 | 260 | 65 | 260 | 64.48 | 257.92 |
Casein | 12 | 48 | 12 | 48 | 10.92 | 43.68 |
Corn oil | 10 | 90 | 8 | 72 | 8 | 72 |
Cholesterol | - | - | 2 | 18 | - | - |
Cellulose | 5.25 | - | 5.25 | - | 4.50 | - |
Wheat bran | 5.25 | - | 5.25 | - | 4.50 | - |
Mineral mix. | 1.5 | - | 1.5 | - | 1.5 | - |
Vitamin mix. | 1 | - | 1 | - | 1 | - |
CSF | - | - | - | - | 5.4 | 24.40 |
Total | 100 | 398 | 100 | 398 | 100.3 | 398 |
Ingredients | Quantity per Batch (Makes 6) | Quantity per Muffin |
---|---|---|
Flour | 100 | 16.66 |
Baking powder | 5 | 0.83 |
Baking soda | 1.25 | 0.21 |
Sugar | 50 | 8.33 |
Cinnamon powder | 1.25 | 0.83 |
Vanilla essence | 1 | 0.16 |
Yogurt | 60 | 10 |
Milk | 30 | 5 |
Lemon juice | 2 | 0.33 |
Coconut oil | 20 | 3.33 |
Egg whites | 30 | 5 |
Net weight | 300 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabail, R.; Sultan, M.T.; Khalid, A.R.; Sahar, A.T.; Zia, S.; Kowalczewski, P.Ł.; Jeżowski, P.; Shabbir, M.A.; Aadil, R.M. Clinical, Nutritional, and Functional Evaluation of Chia Seed-Fortified Muffins. Molecules 2022, 27, 5907. https://doi.org/10.3390/molecules27185907
Rabail R, Sultan MT, Khalid AR, Sahar AT, Zia S, Kowalczewski PŁ, Jeżowski P, Shabbir MA, Aadil RM. Clinical, Nutritional, and Functional Evaluation of Chia Seed-Fortified Muffins. Molecules. 2022; 27(18):5907. https://doi.org/10.3390/molecules27185907
Chicago/Turabian StyleRabail, Roshina, Muhammad Tauseef Sultan, Abdur Rauf Khalid, Aqiba Tus Sahar, Sania Zia, Przemysław Łukasz Kowalczewski, Paweł Jeżowski, Muhammad Asim Shabbir, and Rana Muhammad Aadil. 2022. "Clinical, Nutritional, and Functional Evaluation of Chia Seed-Fortified Muffins" Molecules 27, no. 18: 5907. https://doi.org/10.3390/molecules27185907
APA StyleRabail, R., Sultan, M. T., Khalid, A. R., Sahar, A. T., Zia, S., Kowalczewski, P. Ł., Jeżowski, P., Shabbir, M. A., & Aadil, R. M. (2022). Clinical, Nutritional, and Functional Evaluation of Chia Seed-Fortified Muffins. Molecules, 27(18), 5907. https://doi.org/10.3390/molecules27185907