Sol-Gel Synthesized High Entropy Metal Oxides as High-Performance Catalysts for Electrochemical Water Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of HEOs
2.3. Instrumentation
2.4. Electrode Modification
3. Results and Discussion
3.1. X-ray Diffraction
3.2. FTIR Analysis
3.3. SEM Analysis
3.4. Electrochemical Studies
3.4.1. Cyclic Voltammetric Responses of Equiatomic HEOs
3.4.2. Electrochemical Responses of NHEOs
3.4.3. Effect of Increase in Element’s Weight Percentage (25–35%)
3.4.4. Effect of Methanol Concentration on WOR
3.4.5. Kinetics of Water Oxidation over HEOs
3.4.6. The Normalized Current Density
3.4.7. Stability Test
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Zhao, G.; Rui, K.; Dou, S.X.; Sun, W. Boosting electrochemical water oxidation: The merits of heterostructured electrocatalysts. J. Mater. Chem. A 2020, 8, 6393–6405. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, W.; Ni, B.-J. Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: Recent advances. Curr. Opin. Green Sustain. Chem. 2021, 27, 100398. [Google Scholar] [CrossRef]
- Xia, C.; Back, S.; Ringe, S.; Jiang, K.; Chen, F.; Sun, X.; Siahrostami, S.; Chan, K.; Wang, H. Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nat. Catal. 2020, 3, 125–134. [Google Scholar] [CrossRef]
- Lei, Z.; Wang, T.; Zhao, B.; Cai, W.; Liu, Y.; Jiao, S.; Li, Q.; Cao, R.; Liu, M. Recent progress in electrocatalysts for acidic water oxidation. Adv. Energy Mater. 2020, 10, 2000478. [Google Scholar] [CrossRef]
- Song, F.; Bai, L.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance. J. Am. Chem. Soc. 2018, 140, 7748. [Google Scholar] [CrossRef]
- Yang, G.; Li, Y.; Lin, H.; Ren, X.; Philo, D.; Wang, Q.; He, Y.; Ichihara, F.; Luo, S.; Wang, S. Constructing Chemical Interaction between Hematite and Carbon Nanosheets with Single Active Sites for Efficient Photo-Electrochemical Water Oxidation. Small Methods 2020, 4, 2000577. [Google Scholar] [CrossRef]
- Tang, R.; Zhou, S.; Li, C.; Chen, R.; Zhang, L.; Zhang, Z.; Yin, L. Janus-Structured Co-Ti3C2 MXene Quantum Dots as a Schottky Catalyst for High-Performance Photoelectrochemical Water Oxidation. Adv. Funct. Mater. 2020, 30, 2000637. [Google Scholar] [CrossRef]
- Anantharaj, S.; Ede, S.R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 2016, 6, 8069–8097. [Google Scholar] [CrossRef]
- Fagiolari, L.; Zaccaria, F.; Costantino, F.; Vivani, R.; Mavrokefalos, C.K.; Patzke, G.R.; Macchioni, A. Ir-and Ru-doped layered double hydroxides as affordable heterogeneous catalysts for electrochemical water oxidation. Dalton Trans. 2020, 49, 2468–2476. [Google Scholar] [CrossRef]
- Pascuzzi, M.E.C.; Goryachev, A.; Hofmann, J.P.; Hensen, E.J. Mn promotion of rutile TiO2-RuO2 anodes for water oxidation in acidic media. Appl. Catal. B Environ. 2020, 261, 118225. [Google Scholar] [CrossRef]
- Xia, X.; Wang, L.; Sui, N.; Colvin, V.L.; William, W.Y. Recent progress in transition metal selenide electrocatalysts for water splitting. Nanoscale 2020, 12, 12249–12262. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Yan, Y.; Jin, X.; Huang, C.; Jin, W.; Gao, B.; Chu, P.K. Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 2020, 78, 105234. [Google Scholar] [CrossRef]
- Yang, H.; Huang, Y.; Teoh, W.Y.; Jiang, L.; Chen, W.; Zhang, L.; Yan, J. Molybdenum selenide nanosheets surrounding nickel selenides sub-microislands on nickel foam as high-performance bifunctional electrocatalysts for water splitting. Electrochim. Acta 2020, 349, 136336. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, S.; Yu, C.; Huang, H.; Zhao, J.; Dai, L.; Qiu, J. Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting. Energy Environ. Sci. 2020, 13, 545–553. [Google Scholar] [CrossRef]
- Ali, H.; Zaman, S.; Majeed, I.; Kanodarwala, F.K.; Nadeem, M.A.; Stride, J.A.; Nadeem, M.A. Porous Carbon/rGO Composite: An Ideal Support Material of Highly Efficient Palladium Electrocatalysts for the Formic Acid Oxidation Reaction. ChemElectroChem 2017, 4, 3126–3133. [Google Scholar] [CrossRef]
- Yang, W.; Gao, Z.; Ma, J.; Zhang, X.; Wang, J. Controlled synthesis of Co3O4 and Co3O4@MnO2 nanoarchitectures and their electrochemical capacitor application. J. Alloys Compd. 2014, 611, 171–178. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, J.; Sun, Z. Novel 2D Transition-Metal Carbides: Ultrahigh Performance Electrocatalysts for Overall Water Splitting and Oxygen Reduction. Adv. Funct. Mater. 2020, 30, 2000570. [Google Scholar] [CrossRef]
- Jin, D.; Johnson, L.R.; Raman, A.S.; Ming, X.; Gao, Y.; Du, F.; Wei, Y.; Chen, G.; Vojvodic, A.; Gogotsi, Y. Computational Screening of 2D Ordered Double Transition-Metal Carbides (MXenes) as Electrocatalysts for Hydrogen Evolution Reaction. J. Phys. Chem. C 2020, 124, 10584–10592. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, S.; Deng, J.; Zhang, W.; Feng, Y.; Ma, J. Transition metal carbides in electrocatalytic oxygen evolution reaction. Chin. Chem. Lett. 2021, 32, 291–298. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, H.; Xiong, P.; Li, G.; Qiu, T.; Gong, W.-B.; Zhao, F.; Li, C.; Li, Q.; Wang, G. Molecularly thin nitride sheets stabilized by titanium carbide as efficient bifunctional electrocatalysts for fiber-shaped rechargeable Zinc-air batteries. Nano Lett. 2020, 20, 2892–2898. [Google Scholar] [CrossRef]
- Baig, U.; Khan, A.; Gondal, M.A.; Dastageer, M.A.; Falath, W.S. Laser induced anchoring of nickel oxide nanoparticles on polymeric graphitic carbon nitride sheets using pulsed laser ablation for efficient water splitting under visible light. Nanomaterials 2020, 10, 1098. [Google Scholar] [CrossRef] [PubMed]
- Edalati, P.; Wang, Q.; Razavi-Khosroshahi, H.; Fuji, M.; Ishihara, T.; Edalati, K. Photocatalytic hydrogen evolution on a high-entropy oxide. J. Mater. Chem. A 2020, 8, 3814–3821. [Google Scholar] [CrossRef]
- Wang, T.; Chen, H.; Yang, Z.; Liang, J.; Dai, S. High-Entropy Perovskite Fluorides: A New Platform for Oxygen Evolution Catalysis. J. Am. Chem. Soc. 2020, 142, 4550–4554. [Google Scholar] [CrossRef] [PubMed]
- Amiri, A.; Shahbazian-Yassar, R. Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 2021, 9, 782–823. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Z.; Liu, J.; Do-Thanh, C.-L.; Chen, H.; Xu, S.; Lin, Q.; Jiao, Y.; Wang, J.; Wang, Y. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 2020, 11, 3908. [Google Scholar] [CrossRef]
- Sarkar, A.; Breitung, B.; Hahn, H. High entropy oxides: The role of entropy, enthalpy and synergy. Scr. Mater. 2020, 187, 43–48. [Google Scholar] [CrossRef]
- Mao, A.; Xie, H.X.; Xiang, H.Z.; Zhang, Z.G.; Zhang, H.; Ran, S. A novel six-component spinel-structure high-entropy oxide with ferrimagnetic property. J. Magn. Magn. Mater. 2020, 503, 166594. [Google Scholar] [CrossRef]
- Hana, A.; Janjua, N.K.; Subhani, T.; Ahmad, J.; Ali, F.; Awais, H.B. Structural and thermal properties of nanocrystalline Alx (SiFeCoNi) 100-x medium entropy alloys. Mater. Res. Express 2019, 6, 106585. [Google Scholar] [CrossRef]
- Li, M.; Chen, Q.; Cui, X.; Peng, X.; Huang, G. Evaluation of corrosion resistance of the single-phase light refractory high entropy alloy TiCrVNb0. 5Al0. 5 in chloride environment. J. Alloys Compd. 2021, 857, 158278. [Google Scholar] [CrossRef]
- Sonkusare, R.; Jain, R.; Biswas, K.; Parameswaran, V.; Gurao, N. High strain rate compression behaviour of single phase CoCuFeMnNi high entropy alloy. J. Alloys Compd. 2020, 823, 153763. [Google Scholar] [CrossRef]
- Witte, R.; Sarkar, A.; Velasco, L.; Kruk, R.; Brand, R.A.; Eggert, B.; Ollefs, K.; Weschke, E.; Wende, H.; Hahn, H. Magnetic properties of rare-earth and transition metal based perovskite type high entropy oxides. J. Appl. Phys. 2020, 127, 185109. [Google Scholar] [CrossRef]
- Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q.; Talasila, G.; de Biasi, L.; Kübel, C.; Brezesinski, T.; Bhattacharya, S.S.; Hahn, H. High entropy oxides for reversible energy storage. Nat. Commun. 2018, 9, 3400. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Stenzel, D.; Azmi, R.; Najib, S.; Wang, K.; Jeong, J.; Sarkar, A.; Wang, Q.; Sukkurji, P.A.; Bergfeldt, T. Spinel to rock-salt transformation in high entropy oxides with Li incorporation. Electrochem 2020, 1, 7. [Google Scholar] [CrossRef]
- Teng, Z.; Zhu, L.; Tan, Y.; Zeng, S.; Xia, Y.; Wang, Y.; Zhang, H. Synthesis and structures of high-entropy pyrochlore oxides. J. Eur. Ceram. Soc. 2020, 40, 1639–1643. [Google Scholar] [CrossRef]
- Wang, G.; Qin, J.; Feng, Y.; Feng, B.; Yang, S.; Wang, Z.; Zhao, Y.; Wei, J. Sol–Gel Synthesis of Spherical Mesoporous High-Entropy Oxides. ACS Appl. Mater. Interfaces 2020, 12, 45155–45164. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Liao, Y.C.; Lin, C.C.; Su, Y.H.; Ting, J.M. Advanced High Entropy Perovskite Oxide Electrocatalyst for Oxygen Evolution Reaction. Adv. Funct. Mater. 2021, 31, 2101632. [Google Scholar] [CrossRef]
- Jin, Z.; Lv, J.; Jia, H.; Liu, W.; Li, H.; Chen, Z.; Lin, X.; Xie, G.; Liu, X.; Sun, S. Nanoporous Al-Ni-Co-Ir-Mo High-Entropy Alloy for Record-High Water Splitting Activity in Acidic Environments. Small 2019, 15, 1904180. [Google Scholar] [CrossRef]
- Arshad, J.; Janjua, N.K.; Raza, R. Synthesis of Novel (Be, Mg, Ca, Sr, Zn, Ni)3O4 High Entropy Oxide with Characterization of Structural and Functional Properties and Electrochemical Applications. J. Electrochem. Sci. Technol. 2021, 12, 112–125. [Google Scholar] [CrossRef]
- Saghir, A.V.; Beidokhti, S.M.; Khaki, J.V.; Salimi, A. One-step synthesis of single-phase (Co, Mg, Ni, Cu, Zn)O High entropy oxide nanoparticles through SCS procedure: Thermodynamics and experimental evaluation. J. Eur. Ceram. Soc. 2021, 41, 563–579. [Google Scholar] [CrossRef]
- Wen, T.; Liu, H.; Ye, B.; Liu, D.; Chu, Y. High-entropy alumino-silicides: A novel class of high-entropy ceramics. Sci. China Mater. 2020, 63, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Wang, Q.; Schiele, A.; Chellali, M.R.; Bhattacharya, S.S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. 2019, 31, 1806236. [Google Scholar] [CrossRef] [PubMed]
- Lal, M.S.; Sundara, R. High Entropy Oxides—A Cost-Effective Catalyst for the Growth of High Yield Carbon Nanotubes and Their Energy Applications. ACS Appl. Mater. Interfaces 2019, 11, 30846–30857. [Google Scholar] [CrossRef] [PubMed]
- Butt, T.M.; Ullah, A.; Janjua, N.K. Electrokinetic Analysis of Water Oxidation on Alumina Supported Silver Oxide Nanopowders. J. Electroanal. Chem. 2022, 907, 116053. [Google Scholar] [CrossRef]
- Hou, Y.; Xu, Z.; Sun, S. Controlled synthesis and chemical conversions of FeO nanoparticles. Angew. Chem. 2007, 119, 6445–6448. [Google Scholar] [CrossRef]
- Kaviyarasu, K.; Devarajan, P.A. A versatile route to synthesize MgO nanocrystals by combustion technique. Der Pharma Chem. 2011, 3, 248–254. [Google Scholar]
- Firdous, F.; Janjua, N.K.; Wattoo, M.H.S. Promoting effect of ruthenium, platinum and palladium on alumina supported cobalt catalysts for ultimate generation of hydrogen from hydrazine. Int. J. Hydrog. Energy 2020, 45, 21573–21587. [Google Scholar] [CrossRef]
- Tonooka, K.; Shimokawa, K.; Nishimura, O. Properties of copper–aluminum oxide films prepared by solution methods. Thin Solid Film. 2002, 411, 129–133. [Google Scholar] [CrossRef]
- Hargreaves, J. Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts. Catal. Struct. React. 2016, 2, 33–37. [Google Scholar] [CrossRef]
- Mustapha, S.; Ndamitso, M.; Abdulkareem, A.; Tijani, J.; Shuaib, D.; Mohammed, A.; Sumaila, A. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 2019, 10, 045013. [Google Scholar] [CrossRef]
- Mahalakshmi, M.; Selvanayagam, S.; Selvasekarapandian, S.; Chandra, M.L.; Sangeetha, P.; Manjuladevi, R. Magnesium ion-conducting solid polymer electrolyte based on cellulose acetate with magnesium nitrate (Mg(NO3)2·6H2O) for electrochemical studies. Ionics 2020, 26, 4553–4565. [Google Scholar] [CrossRef]
- Sarakinou, K.M.; Banti, C.N.; Hatzidimitriou, A.G.; Hadjikakou, S.K. Utilization of metal complexes formed by copper (II) acetate or nitrate, for the urea assay. Inorg. Chim. Acta 2020, 517, 120203. [Google Scholar] [CrossRef]
- Thuy, N.T.; Minh, D.L. Size effect on the structural and magnetic properties of nanosized perovskite LaFeO3 prepared by different methods. Adv. Mater. Sci. Eng. 2012, 2012, 380306. [Google Scholar] [CrossRef]
- Egelund, S.; Caspersen, M.; Nikiforov, A.; Møller, P. Manufacturing of a LaNiO3 composite electrode for oxygen evolution in commercial alkaline water electrolysis. Int. J. Hydrog. Energy 2016, 41, 10152–10160. [Google Scholar] [CrossRef]
- Butt, T.M.; Janjua, N.K.; Mujtaba, A.; Ali Zaman, S.; Ansir, R.; Rafique, A.; Sumreen, P.; Mukhtar, M.; Pervaiz, M.; Yaqub, A.; et al. B-site doping in lanthanum cerate nanomaterials for water electrocatalysis. J. Electrochem. Soc. 2020, 167, 026503. [Google Scholar] [CrossRef]
- Lv, F.; Feng, J.; Wang, K.; Dou, Z.; Zhang, W.; Zhou, J.; Yang, C.; Luo, M.; Yang, Y.; Li, Y.; et al. Iridium−Tungsten Alloy Nanodendrites as pH-Universal Water-Splitting Electrocatalysts. ACS Cent. Sci. 2018, 4, 1244–1252. [Google Scholar] [CrossRef] [Green Version]
Serial No. | Catalyst/(Codes) | Dav (nm) |
---|---|---|
Equiatomic HEOs | ||
1 | (Fe, Al, Mg, Cd, Cr, Mn)3O4/(AK-1) | 20.4 |
2 | (Fe, Al, Mg, Cu, Ni, Co)3O4/(AS-1) | 24.4 |
Non-Equiatomic HEOs | ||
3 | [Mg35(Fe, Al, Cd, Cr, Mn)65]3O4/(AK-M) | 17.2 |
4 | [Fe35(Al, Mg, Cd, Cr, Mn)65]3O4/(AK-F) | 19.3 |
5 | [Al35(Fe, Mg, Cd, Cr, Mn)65]3O4/(AK-A) | 12.0 |
6 | [Mg0.35(Al, Fe, Cu, Ni, Co)0.65]3O4/(AS-M) | 30.2 |
7 | [Fe0.35(Al, Mg, Cu, Ni, Co)0.65]3O4/(AS-F) | 25.7 |
8 | [Al0.35(Mg, Fe, Cu, Ni, Co)0.65]3O4/(AS-A) | 23.3 |
9 | [Cu0.35(Al, Fe, Co, Cr, Ni)0.65]3O4 /(MMCu-35) | 4.85 |
10 | [Cu0.25(Al, Fe, Co, Cr, Ni)0.75]3O4 /(MMCu-25) | 5.16 |
11 | [Mn0.35(Al, Fe, Co, Cr, Ni)0.65]3O4 /(MMMn-35) | 3.36 |
12 | [Mn0.25(Al, Fe, Co, Cr, Ni)0.75]3O4 /(MMMn-25) | 7.14 |
Serial No. | Catalyst | D° × 10−8 (cm2 s−1) | k° × 10−4 (cm s−1) |
---|---|---|---|
Equiatomic HEOs | |||
1 | (Fe, Al, Mg, Cd, Cr, Mn)3O4 | 2.74 | 3.04 |
2 | (Fe, Al, Mg, Cu, Ni, Co)3O4 | 9.31 | 7.55 |
Non-Equiatomic HEOs | |||
3 | [Mg35(Fe, l, Cd, Cr, Mn)65]3O4 | 1.15 | 1.89 |
4 | [Fe35(Al, Mg, Cd, Cr, Mn)65]3O4 | 2.47 | 2.66 |
5 | [Al35(Fe, Mg, Cd, Cr, Mn)65]3O4 | 9.29 | 5.44 |
6 | [Mg0.35(Al, Fe, Cu, Ni, Co)0.65]3O4 | 4.87 | 5.66 |
7 | [Fe0.35(Al, Mg, Cu, Ni, Co)0.65]3O4 | 9.72 | 7.59 |
8 | [Al0.35(Mg, Fe, Cu, Ni, Co)0.65]3O4 | 10.90 | 7.98 |
9 | [Cu0.35(Al, Fe, Co, Cr, Ni)0.65]3O4 | 7.74 | 4.28 |
10 | [Cu0.25(Al, Fe, Co, Cr, Ni)0.75]3O4 | 5.34 | 3.58 |
11 | [Mn0.35(Al, Fe, Co, Cr, Ni)0.65]3O4 | 3.82 | 3.84 |
12 | [Mn0.25(Al, Fe, Co, Cr, Ni)0.75]3O4 | 2.65 | 3.12 |
HEOs | Jpa (mA cm−2) | HEOs | Jpa (mA cm−2) | HEOs | Jpa (mA cm−2) |
---|---|---|---|---|---|
Ak-1 | 61.7 | AS-1 | 19.2 | MMCu-35 | 62.2 |
Ak-F | 68.0 | AS-F | 58.4 | MMCu-25 | 58.9 |
Ak-A | 66.8 | AS-A | 68.0 | MMMn-35 | 49.8 |
Ak-M | 52.3 | AS-M | 52.3 | MMMn-25 | 48.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asim, M.; Hussain, A.; Khan, S.; Arshad, J.; Butt, T.M.; Hana, A.; Munawar, M.; Saira, F.; Rani, M.; Mahmood, A.; et al. Sol-Gel Synthesized High Entropy Metal Oxides as High-Performance Catalysts for Electrochemical Water Oxidation. Molecules 2022, 27, 5951. https://doi.org/10.3390/molecules27185951
Asim M, Hussain A, Khan S, Arshad J, Butt TM, Hana A, Munawar M, Saira F, Rani M, Mahmood A, et al. Sol-Gel Synthesized High Entropy Metal Oxides as High-Performance Catalysts for Electrochemical Water Oxidation. Molecules. 2022; 27(18):5951. https://doi.org/10.3390/molecules27185951
Chicago/Turabian StyleAsim, Muhammad, Akbar Hussain, Safia Khan, Javeria Arshad, Tehmeena Maryum Butt, Amina Hana, Mehwish Munawar, Farhat Saira, Malika Rani, Arshad Mahmood, and et al. 2022. "Sol-Gel Synthesized High Entropy Metal Oxides as High-Performance Catalysts for Electrochemical Water Oxidation" Molecules 27, no. 18: 5951. https://doi.org/10.3390/molecules27185951
APA StyleAsim, M., Hussain, A., Khan, S., Arshad, J., Butt, T. M., Hana, A., Munawar, M., Saira, F., Rani, M., Mahmood, A., & Janjua, N. K. (2022). Sol-Gel Synthesized High Entropy Metal Oxides as High-Performance Catalysts for Electrochemical Water Oxidation. Molecules, 27(18), 5951. https://doi.org/10.3390/molecules27185951