Flavanones from Erythrina crista-galli Twigs and Their Antioxidant Properties Determined through In Silico and In Vitro Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction and Isolation
2.2. Antioxidant Properties through in Silico Studies
2.2.1. The Global Descriptive Parameters
2.2.2. Ionization Potential and Electron Affinity
2.2.3. Electro-donating (ω−) and Electro-accepting Power (ω+)
2.2.4. Donor Acceptor Map (DAM)
2.2.5. Solvent Effect
2.2.6. Frontier Molecule Orbital analysis
2.3. DPPH Radical Scavenging Assays
3. Materials and Methods
3.1. General
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Computational Methods
3.5. DPPH Radical Sscavenging Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fahmy, N.M.; Al-Sayed, E.; El-Shazly, M.; Singab, A.N. Comprehensive review on flavonoids biological activities of Erythrina plant species. Ind. Crop. Prod. 2018, 123, 500–538. [Google Scholar] [CrossRef]
- Son, N.T.; Elshamy, A.I. Flavonoids and other non-alkaloidal constituents of genus Erythrina: Phytochemical review. Comb. Chem. High Throughput Screen. 2021, 24, 20–58. [Google Scholar] [CrossRef]
- Araújo-júnior, J.X.; Oliveira, M.S.G.; Aquino, P.G.; Alexandre-moreira, M.S.; Ana, A.E.G.S. A Phytochemical and ethnopharmacological review of the genus Erythrina. In Phytochemicals; Oliveira, M., Ed.; IntechOpen: Rijeka, Yugoslavia, 2012; Ch.16. [Google Scholar]
- Rukachaisirikul, T.; Innok, P.; Aroonrerk, N.; Boonamnuaylap, W.; Limrangsun, S.; Boonyon, C.; Woonjina, U.; Suksamrarn, A. Antibacterial pterocarpans from Erythrina Subumbrans. J. Ethnopharmacol. 2007, 110, 171–175. [Google Scholar] [CrossRef]
- Tjahjandarie, T.S.; Saputri, R.D.; Tanjung, M. Methyl 2,5-Dihydroxy-4-(31-methyl-21-butenyl)benzoate. Molbank 2016, 1, 2–5. [Google Scholar]
- Tjahjandarie, T.S.; Pudjiastuti, P.; Saputri, R.D.; Tanjung, M. Antimalarial and antioxidant activity of phenolic compounds isolated from Erythrina crista-galli L. J. Chem. Pharm. Res. 2014, 6, 786–790. [Google Scholar]
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. WAO J. 2012, 5, 9–19. [Google Scholar] [CrossRef]
- Przybylski, P.; Konopko, A.; Łętowski, P.; Jodko-Piórecka, K.; Litwinienko, G. Concentration-dependent HAT/ET mechanism of the reaction of phenols with 2,2-diphenyl-1-picrylhydrazyl (dpph) in methanol. RSC Adv. 2022, 12, 8131–8136. [Google Scholar] [CrossRef]
- Martínez, A.; Rodríguez-Girones, M.A.; Barbosa, A.; Costas, M. Donator acceptor map for carotenoids, melatonin and vitamins. J. Phys. Chem. A. 2008, 112, 9037–9042. [Google Scholar] [CrossRef]
- Martínez, A. Donator acceptor map of psittacofulvins and anthocyanins: Are they good antioxidant substances? J. Phys. Chem. B. 2009, 113, 4915–4921. [Google Scholar] [CrossRef]
- Tirzitis, G.; Bartosz, G. Determination of antiradical and antioxidant activity: Basic principles and new insights. Acta Biochim. Pol. 2010, 57, 139–142. [Google Scholar] [CrossRef]
- Vinduja, P.; Muraleedharan, K. Theoretical studies on anti-oxidant activity of the phytochemical, coumestrol and its derivatives. In Functional Foods; Arshad, M.S., Ahmad, M.H., Eds.; IntechOpen: Rijeka, Yugoslavia, 2021. [Google Scholar]
- Hikmawanti, N.P.E.; Wiyati, T.; Abdul Muis, M.; Nurfaizah, F.A.; Septiani, W. Total Flavonoids Content of Polar Extracts of Cayratia trifolia Leaves. IOP Conf. Ser. Earth Environ. Sci. 2021, 819, 12056. [Google Scholar] [CrossRef]
- Struchkov, P.; Beloborodov, V.; Kolkhir, V.; Voskoboynikova, I.; Savvateev, A. Comparison of spectrophotometric methods of total flavonoid assay based on complex formation with aluminum chloride as applied to multicomponent herbal drug angionorm. J. Pharm. Negat. Results 2018, 9, 1. [Google Scholar] [CrossRef]
- Bajracharya, G.; Paudel, M.; KC, R. Insight into the Structure Elucidation of Flavonoids Through UV-Visible Spectral Analysis of Quercetin Derivatives Using Shift Reagents. J. Nepal Chem. Soc. 2017, 37, 55–64. [Google Scholar] [CrossRef]
- Khaomek, P.; Ichino, C.; Ishiyama, A.; Sekiguchi, H.; Namatame, M.; Ruangrungsi, N.; Saifah, E.; Kiyohara, H.; Otoguro, K.; Omura, S.; et al. In vitro antimalarial activity of prenylated flavonoids from Erythrina Fusca. J. Nat. Med. 2008, 62, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Farrokhnia, M. Density functional theory studies on the antioxidant mechanism and electronic properties of some bioactive marine meroterpenoids: Sargahydroquionic acid and sargachromanol. ACS Omega 2020, 5, 20382–20390. [Google Scholar] [CrossRef]
- Xue, Y.; Zheng, Y.; An, L.; Dou, Y.; Liu, Y. Density functional theory study of the structure-antioxidant activity of polyphenolic deoxybenzoins. Food Chem. 2014, 151, 198–206. [Google Scholar] [CrossRef]
- Lin, K.W.; Liu, C.H.; Tu, H.Y.; Ko, H.H.; Wei, B.L. Antioxidant prenylflavonoids from Artocarpus communis and Artocarpus elasticus. Food Chem. 2009, 115, 558–562. [Google Scholar] [CrossRef]
- Schober, P.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Bailey, T.L. Experimental determination of the electron affinity of fluorine. J. Chem. Phys. 1958, 28, 792–798. [Google Scholar] [CrossRef]
- Hereon, J.T.; Dibeler, V.H. Ionization potential of fluorine. J. Chem. Phys. 1960, 32, 1884–1885. [Google Scholar] [CrossRef]
- Jose, J.; Pradhan, G.B.; Radojević, V.; Manson, S.T.; Deshmukh, P.C. Valence photodetachment of Li- and Na- using relativistic many-body techniques. Phys. Rev. A 2011, 83, 1–7. [Google Scholar] [CrossRef]
- Thaler, R.M. A calculation of the electron affinity of sodium. Phys. Rev. 1951, 83, 131–133. [Google Scholar] [CrossRef]
- Bedane, K.; Kusari, S.; Eckelmann, D.; Masesane, I.B.; Spiteller, M.; Majinda, R.R.T. Fitoterapia Erylivingstone A – C with antioxidant and antibacterial activities from Erythrina Livingstoniana. Fitoterapia 2015, 105, 113–118. [Google Scholar] [CrossRef] [PubMed]
Compound | I | A | η | s | χ | μ | ω |
---|---|---|---|---|---|---|---|
Lupinifolin (1) | 7.15 | 0.07 | 3.53 | 104.62 | 3.61 | −3.61 | 0.24 |
Citflavanone (2) | 7.24 | −0.00 | 3.62 | 102.14 | 3.61 | −3.61 | 0.24 |
Lonchocarpol A (3) | 7.24 | −0.10 | 3.67 | 100.70 | 3.57 | −3.57 | 0.23 |
Quercetin (standard) | 8.03 | 2.99 | 2.51 | 147.01 | 5.51 | −5.51 | 0.55 |
Ascorbic acid (standard) | 9.74 | 3.06 | 3.34 | 110.83 | 6.40 | −6.40 | 0.75 |
Compound | ω− | ω+ | Rd | Ra |
---|---|---|---|---|
Lupinifolin (1) | 4.09 | 0.48 | 1.18 | 0.14 |
Citflavanone (2) | 4.06 | 0.45 | 1.17 | 0.13 |
Lonchocarpol A (3) | 3.97 | 0.40 | 1.14 | 0.12 |
Quercetin (standard) | 9.10 | 3.59 | 2.62 | 1.05 |
Ascorbic acid (standard) | 9.75 | 3.35 | 2.81 | 0.98 |
Compound | I (gas) | A (gas) | I (MeOH) | A (MeOH) |
---|---|---|---|---|
Lupinifolin (1) | 7.15 | 0.07 | 5.77 | 1.71 |
Citflavanone (2) | 7.24 | −0.01 | 5.76 | 1.74 |
Lonchocarpol A (3) | 7.24 | −0.10 | 5.98 | 1.65 |
Sample | IC50 (ppm) |
---|---|
n-hexane extract | 536.47 |
Ethyl acetate extract | 64.41 |
Lupinifolin (1) | 128.64 |
Citflavanone (2) | 548.72 |
Lonchocarpol A (3) | 441.49 |
Quercetin (standard) | 8.14 |
Ascorbic acid (standard) | 4.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deviani, V.; Hardianto, A.; Farabi, K.; Herlina, T. Flavanones from Erythrina crista-galli Twigs and Their Antioxidant Properties Determined through In Silico and In Vitro Studies. Molecules 2022, 27, 6018. https://doi.org/10.3390/molecules27186018
Deviani V, Hardianto A, Farabi K, Herlina T. Flavanones from Erythrina crista-galli Twigs and Their Antioxidant Properties Determined through In Silico and In Vitro Studies. Molecules. 2022; 27(18):6018. https://doi.org/10.3390/molecules27186018
Chicago/Turabian StyleDeviani, Vanny, Ari Hardianto, Kindi Farabi, and Tati Herlina. 2022. "Flavanones from Erythrina crista-galli Twigs and Their Antioxidant Properties Determined through In Silico and In Vitro Studies" Molecules 27, no. 18: 6018. https://doi.org/10.3390/molecules27186018
APA StyleDeviani, V., Hardianto, A., Farabi, K., & Herlina, T. (2022). Flavanones from Erythrina crista-galli Twigs and Their Antioxidant Properties Determined through In Silico and In Vitro Studies. Molecules, 27(18), 6018. https://doi.org/10.3390/molecules27186018