Tris(2-Pyridyl)Arsine as a New Platform for Design of Luminescent Cu(I) and Ag(I) Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Theoretical Consideration
2.3. Photoluminescence of 1 and 2
3. Materials and Methods
3.1. General
3.2. [Cu(Py3As)I]·CH2Cl2 (1·CH2Cl2)
3.3. [Cu2(Py3As)2I2] (1a)
3.4. [Cu2(Py3As)2Br2] (2)
3.5. [Ag@Ag4(Py3As)4](CIO4)5·3H2O (3·3H2O)
3.6. [Ag2(Py2AsPh)2(MeCN)2](ClO4)2·CH3CN (4·CH3CN)
3.7. X-ray Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lescop, C. Coordination-Driven Supramolecular Synthesis Based on Bimetallic Cu(I) Precursors: Adaptive Behavior and Luminescence. Chem. Rec. 2020, 21, 544–557. [Google Scholar] [CrossRef] [PubMed]
- Marchenko, R.D.; Sukhikh, T.S.; Ryadun, A.A.; Potapov, A.S. Synthesis, Crystal Structure, and Luminescence of Cadmium(II) and Silver(I) Coordination Polymers Based on 1,3-Bis(1,2,4-triazol-1-yl)adamantane. Molecules 2021, 26, 5400. [Google Scholar] [CrossRef] [PubMed]
- Moutier, F.; Schiller, J.; Calvez, G.; Lescop, C. Self-assembled luminescent Cu(I) tetranuclear metallacycles based on 3,3′-bipyridine ligands. Org. Chem. Front. 2021, 8, 2893–2902. [Google Scholar] [CrossRef]
- Marchenko, R.D.; Lysova, A.A.; Samsonenko, D.G.; Dybtsev, D.N.; Potapov, A.S. Synthesis, structural diversity, luminescent properties and antibacterial effects of cadmium(II) and silver(I) coordination compounds with bis(1,2,3-benzotriazol-1-yl)alkanes. Polyhedron 2020, 177, 114330. [Google Scholar] [CrossRef]
- Khisamov, R.; Sukhikh, T.; Bashirov, D.; Ryadun, A.; Konchenko, S. Structural and Photophysical Properties of 2,1,3-Benzothiadiazole-Based Phosph(III)azane and Its Complexes. Molecules 2020, 25, 2428. [Google Scholar] [CrossRef]
- Sukhikh, T.S.; Khisamov, R.M.; Konchenko, S.N. Unexpectedly Long Lifetime of the Excited State of Benzothiadiazole Derivative and Its Adducts with Lewis Acids. Molecules 2021, 26, 2030. [Google Scholar] [CrossRef]
- Abramov, P.A.; Komarov, V.Y.; Pischur, D.A.; Sulyaeva, V.S.; Benassi, E.; Sokolov, M.N. Solvatomorphs of (Bu4N)2[{Ag(N2-py)}2Mo8O26]: Structure, colouration and phase transition. CrystEngComm. 2021, 23, 8527–8537. [Google Scholar] [CrossRef]
- Chupina, A.V.; Shayapov, V.; Novikov, A.S.; Volchek, V.V.; Benassi, E.; Abramov, P.A.; Sokolov, M.N. [{AgL}2Mo8O26]n– complexes: A combined experimental and theoretical study. Dalton Trans. 2020, 49, 1522–1530. [Google Scholar] [CrossRef]
- Chupina, A.V.; Mukhacheva, A.A.; Abramov, P.A.; Sokolov, M.N. Complexation and Isomerization of [β-Mo8O26]4− in the Presence of Ag+ and DMF. J. Struct. Chem. 2020, 61, 299–308. [Google Scholar] [CrossRef]
- Shmakova, A.A.; Berezin, A.S.; Abramov, P.A.; Sokolov, M.N. Self-Assembly of Ag+/[PW11NbO40]4– Complexes in Nonaqueous Solutions. Inorg. Chem. 2020, 59, 1853–1862. [Google Scholar] [CrossRef]
- Li, J.-J.; Liu, C.-Y.; Guan, Z.-J.; Lei, Z.; Wang, Q.-M. Anion-Directed Regulation of Structures and Luminescence of Heterometallic Clusters. Angew. Chem. Int. 2022, 61, e202201549. [Google Scholar]
- Leitl, M.J.; Zink, D.M.; Schinabeck, A.; Baumann, T.; Volz, D.; Yersin, H. Copper(I) Complexes for Thermally Activated Delayed Fluorescence: From Photophysical to Device Properties. Top Curr. Chem. 2016, 374, 141–174. [Google Scholar] [CrossRef]
- Yersin, H.; Rausch, A.F.; Czerwieniec, R.; Hofbeck, T.; Fischer, T. The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coord. Chem. Rev. 2011, 255, 2622–2652. [Google Scholar] [CrossRef]
- Yersin, H.; Czerwieniec, R.; Shafikov, M.Z.; Suleymanova, A.F. TADF Material Design: Photophysical Background and Case Studies Focusing on CuI and AgI Complexes. ChemPhysChem 2017, 18, 3508–3535. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Cheng, Z.; Rangan, S.; Cotlet, M.; Du, J.; Kasaei, L.; Kasaei, L.; Teat, S.J.; Liu, W.; Chen, Y.; et al. A New Type of Hybrid Copper Iodide as Nontoxic and Ultrastable LED Emissive Layer Material. ACS Energy Lett. 2021, 6, 2565–2574. [Google Scholar] [CrossRef]
- Hei, X.; Liu, W.; Zhu, K.; Teat, S.J.; Jensen, S.; Li, M.; O’Carroll, D.M.; Wei, K.; Tan, K.; Cotlet, M.; et al. Blending Ionic and Coordinate Bonds in Hybrid Semiconductor Materials: A General Approach toward Robust and Solution-Processable Covalent/Coordinate Network Structures. J. Am. Chem. Soc. 2020, 142, 4242–4253. [Google Scholar] [CrossRef]
- Vinogradova, K.A.; Plyusnin, V.F.; Kupryakov, A.S.; Rakhmanova, M.I.; Pervukhina, N.V.; Naumov, D.Y.; Sheludyakova, L.A.; Nikolaenkova, E.B.; Krivopalov, V.P.; Bushuev, M.B. Halide impact on emission of mononuclear copper(I) complexes with pyrazolylpyrimidine and triphenylphosphine. Dalton Trans. 2014, 43, 2953–2960. [Google Scholar] [CrossRef]
- Shekhovtsov, N.A.; Kokina, T.E.; Vinogradova, K.A.; Panarin, A.Y.; Rakhmanova, M.I.; Naumov, D.Y.; Pervukhina, N.V.; Nikolaenkova, E.B.; Krivopalov, V.P.; Czerwieniec, R.; et al. Near-infrared emitting copper(I) complexes with a pyrazolylpyrimidine ligand: Exploring relaxation pathways. Dalton Trans. 2022, 51, 2898–2911. [Google Scholar] [CrossRef] [PubMed]
- Evariste, S.; El Sayed Moussa, M.; Wong, H.-L.; Calvez, G.; Yam, V.W.-W.; Lescop, C. Straightforward Preparation of a Solid-state Luminescent Cu11 Polymetallic Assembly via Adaptive Coordination-driven Supramolecular Chemistry. Z. Anorg. Allg. Chem. 2020, 646, 754–760. [Google Scholar] [CrossRef]
- Shekhovtsov, N.A.; Vinogradova, K.A.; Berezin, A.S.; Sukhikh, T.S.; Krivopalov, V.P.; Nikolaenkova, E.B.; Bushuev, M.B. Excitation wavelength dependent emission of silver(I) complexes with a pyrimidine ligand. Inorg. Chem. Front. 2020, 7, 2212–2223. [Google Scholar] [CrossRef]
- Malakhova, Y.A.; Sukhikh, T.S.; Rakhmanova, M.I.; Vinogradova, K.A. Effect of polymorphism on the luminescent properties on silver(I) nitrate complexes with 2-amino-5-phenylpyrazine. J. Struct. Chem. 2022, 63, 485–500. [Google Scholar] [CrossRef]
- Dumur, F. Recent advances in organic light-emitting devices comprising copper complexes: A realistic approach for low-cost and highly emissive devices? Org. Electron. 2015, 21, 27–39. [Google Scholar] [CrossRef]
- Ravaro, L.P.; Zanoni, K.P.S.; de Camargo, A.S.S. Luminescent Copper(I) complexes as promising materials for the next generation of energy-saving OLED devices. Energy Rep. 2020, 6, 37–45. [Google Scholar] [CrossRef]
- Housecroft, C.E.; Constable, E.C. TADF: Enabling luminescent copper(I) coordination compounds for light-emitting electrochemical cells. J. Mater. Chem. C 2022, 10, 4456–4482. [Google Scholar] [CrossRef] [PubMed]
- Cariati, E.; Lucenti, E.; Botta, C.; Giovanella, U.; Marinotto, D.; Righetto, S. Cu(I) hybrid inorganic–organic materials with intriguing stimuli responsive and optoelectronic properties. Coord. Chem. Rev. 2016, 306, 566–614. [Google Scholar] [CrossRef]
- Kirakci, K.; Fejfarová, K.; Martinčík, J.; Nikl, M.; Lang, K. Tetranuclear Copper(I) Iodide Complexes: A New Class of X-ray Phosphors. Inorg. Chem. 2017, 56, 4609–4614. [Google Scholar] [CrossRef]
- Conesa-Egea, J.; Zamora, F.; Amo-Ochoa, P. Perspectives of the smart Cu-Iodine coordination polymers: A portage to the world of new nanomaterials and composites. Coord. Chem. Rev. 2019, 381, 65–78. [Google Scholar] [CrossRef]
- Evariste, S.; Khalil, A.M.; Kerneis, S.; Xu, C.; Calvez, G.; Costuas, K.; Lescop, C. Luminescent vapochromic single crystal to single crystal transition in one-dimensional coordination polymer featuring the first Cu(I) dimer bridged by an aqua ligand. Inorg. Chem. Front. 2020, 7, 3402–3411. [Google Scholar] [CrossRef]
- Paderina, A.V.; Koshevoy, I.O.; Grachova, E.V. Keep it tight: A crucial role of bridging phosphine ligands in the design and optical properties of multinuclear coinage metal complexes. Dalton Trans. 2021, 50, 6003–6033. [Google Scholar] [CrossRef]
- Conaghan, P.J.; Matthews, C.S.B.; Chotard, F.; Jones, S.T.E.; Greenham, N.C.; Bochmann, M.; Credgington, D.; Romanov, A.S. Highly efficient blue organic light-emitting diodes based on carbene-metal-amides. Nat. Commun. 2020, 11, 1758. [Google Scholar] [CrossRef]
- Kobayashi, A.; Ehara, T.; Yoshida, M.; Kato, M. Quantitative Thermal Synthesis of Cu(I) Coordination Polymers That Exhibit Thermally Activated Delayed Fluorescence. Inorg. Chem. 2020, 59, 9511–9520. [Google Scholar] [CrossRef]
- Kirst, C.; Tietze, J.; Mayer, P.; Böttcher, H.-C.; Karaghiosoff, K. Coinage Metal Complexes of Bis(quinoline-2-ylmethyl)phenylphosphine-Simple Reactions Can Lead to Unprecedented Results. ChemistryOpen 2022, 11, e202100224. [Google Scholar] [CrossRef] [PubMed]
- Kirst, C.; Zoller, F.; Bräuniger, T.; Mayer, P.; Fattakhova-Rohlfing, D.; Karaghiosoff, K. Investigation of Structural Changes of Cu(I) and Ag(I) Complexes Utilizing a Flexible, Yet Sterically Demanding Multidentate Phosphine Oxide Ligand. Inorg. Chem. 2021, 60, 2437–2445. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.M.; Xu, C.; Delmas, V.; Calvez, G.; Costuas, K.; Haouas, M.; Lescop, C. Coordination-driven supramolecular syntheses of new homo- and hetero-polymetallic Cu(I) assemblies: Solid-state and solution characterization. Inorg. Chem. Front. 2021, 8, 4887–4895. [Google Scholar] [CrossRef]
- Galimova, M.F.; Zueva, E.M.; Dobrynin, A.B.; Samigullina, A.I.; Musin, R.R.; Musina, E.I.; Karasik, A.A. Cu4I4-cubane clusters based on 10-(aryl)phenoxarsines and their luminescence. Dalton Trans. 2020, 49, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Galimova, M.F.; Zueva, E.M.; Dobrynin, A.B.; Kolesnikov, I.E.; Musin, R.R.; Musina, E.I.; Karasik, A.A. Luminescent Cu4I4-cubane clusters based on N-methyl-5,10-dihydrophenarsazines. Dalton Trans. 2021, 50, 13421–13429. [Google Scholar] [CrossRef]
- Kobayashi, R.; Kihara, H.; Kusukawa, T.; Imoto, H.; Naka, K. Dinuclear Rhombic Copper(I) Iodide Complexes with Rigid Bidentate Arsenic Ligands. Chem. Lett. 2021, 50, 382–385. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Demyanov, Y.V.; Rakhmanova, M.I.; Bagryanskaya, I.Y. Pyridylarsine-based Cu(I) complexes showing TADF mixed with fast phosphorescence: A speeding-up emission rate using arsine ligands. Dalton Trans. 2022, 51, 1048–1055. [Google Scholar] [CrossRef]
- Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M.T. Handbook of Photochemistry, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006; p. 633. [Google Scholar]
- Wallesch, M.; Volz, D.; Zink, D.M.; Schepers, U.; Nieger, M.; Baumann, T.; Bräse, S. Bright Coppertunities: Multinuclear CuI Complexes with N–P Ligands and Their Applications. Chem. Eur. J. 2014, 20, 6578–6590. [Google Scholar] [CrossRef]
- Zink, D.M.; Bächle, M.; Baumann, T.; Nieger, M.; Kühn, M.; Wang, C.; Klopper, W.; Monkowius, U.; Hofbeck, T.; Yersin, H.; et al. Synthesis, Structure, and Characterization of Dinuclear Copper(I) Halide Complexes with P^N Ligands Featuring Exciting Photoluminescence Properties. Inorg. Chem. 2013, 52, 2292–2305. [Google Scholar] [CrossRef]
- Cheng, G.; Zhou, D.; Monkowius, U.; Yersin, H. Fabrication of a Solution-Processed White Light Emitting Diode Containing a Single Dimeric Copper(I) Emitter Featuring Combined TADF and Phosphorescence. Micromachines 2021, 12, 1500. [Google Scholar] [CrossRef] [PubMed]
- Hofbeck, T.; Niehaus, T.A.; Fleck, M.; Monkowius, U.; Yersin, H. P∩N Bridged Cu(I) Dimers Featuring Both TADF and Phosphorescence. From Overview towards Detailed Case Study of the Excited Singlet and Triplet States. Molecules 2021, 26, 3415. [Google Scholar] [CrossRef] [PubMed]
- Hofbeck, T.; Monkowius, U.; Yersin, H. Highly Efficient Luminescence of Cu(I) Compounds: Thermally Activated Delayed Fluorescence Combined with Short-Lived Phosphorescence. J. Am. Chem. Soc. 2015, 137, 399–404. [Google Scholar] [CrossRef]
- Kobayashi, R.; Fujii, T.; Imoto, H.; Naka, K. Dinuclear Gold(I) Chloride Complexes with Diarsine Ligands. Eur. J. Inorg. Chem. 2021, 217–222. [Google Scholar] [CrossRef]
- Plajer, A.J.; Crusius, D.; Jethwa, R.B.; García-Romero, Á.; Bond, A.D.; García-Rodríguez, R.; Wright, D.S. Coordination chemistry of the bench-stable tris-2-pyridyl pnictogen ligands [E(6-Me-2-py)3] (E = As, As=O, Sb). Dalton Trans. 2021, 50, 2393–2402. [Google Scholar] [CrossRef] [PubMed]
- Gneuß, T.; Leitl, M.J.; Finger, L.H.; Yersin, H.; Sundermeyer, J. A new class of deep-blue emitting Cu(I) compounds—effects of counter ions on the emission behavior. Dalton Trans. 2015, 44, 20045–20055. [Google Scholar] [CrossRef]
- Baranov, A.; Berezin, A.S.; Samsonenko, D.G.; Mazur, A.; Tolstoy, P.; Plyusnin, V.F.; Kolesnikov, I.E.; Artem’ev, A. New Cu(I) halide complexes showing TADF combined with room temperature phosphorescence: The balance tuned by halogens. Dalton Trans. 2020, 49, 3155–3163. [Google Scholar] [CrossRef]
- Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 955–964. [Google Scholar] [CrossRef]
- Gneuß, T.; Leitl, M.J.; Finger, L.H.; Rau, N.; Yersin, H.; Sundermeyer, J. A new class of luminescent Cu(I) complexes with tripodal ligands—TADF emitters for the yellow to red color range. Dalton Trans. 2015, 44, 8506–8520. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Artem’ev, A.V.; Bagryanskaya, I.Y.; Doronina, E.P.; Tolstoy, P.M.; Gushchin, A.L.; Rakhmanova, M.I.; Ivanov, A.Y.; Suturina, A.O. A new family of clusters containing a silver-centered tetracapped [Ag@Ag4(μ3-P)4] tetrahedron, inscribed within a N12 icosahedron. Dalton Trans. 2017, 46, 12425–12429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolari, K.; Sahamies, J.; Kalenius, E.; Novikov, A.S.; Kukushkin, V.Y.; Haukka, M. Metallophilic interactions in polymeric group 11 thiols. Solid State Sci. 2016, 60, 92–98. [Google Scholar] [CrossRef]
- Andrusenko, E.V.; Kabin, E.V.; Novikov, A.S.; Bokach, N.A.; Starova, G.L.; Kukushkin, V.Y. Metal-mediated Generation of Triazapentadienate-terminated Di- and Trinuclear μ2-Pyrazolate NiII Species and Control of their Nuclearity. New J. Chem. 2017, 41, 316–325. [Google Scholar] [CrossRef]
- Bikbaeva, Z.M.; Novikov, A.S.; Suslonov, V.V.; Bokach, N.A.; Kukushkin, V.Y. Metal-mediated reactions between dialkylcyanamides and acetamidoxime generate unusual (nitrosoguanidinate)nickel(II) complexes. Dalton Trans. 2017, 46, 10090–10101. [Google Scholar] [CrossRef]
- Novikov, A.S. Strong metallophilic interactions in nickel coordination compounds. Inorg. Chim. Acta 2018, 483, 21–25. [Google Scholar] [CrossRef]
- Shmelev, N.Y.; Okubazghi, T.H.; Abramov, P.A.; Komarov, V.Y.; Rakhmanova, M.I.; Novikov, A.S.; Gushchin, A.L. Intramolecular aurophilic interactions in dinuclear gold(i) complexes with twisted bridging 2,2′-bipyridine ligands. Dalton Trans. 2021, 50, 12448–12456. [Google Scholar] [CrossRef]
- Grudova, M.V.; Novikov, A.S.; Kubasov, A.S.; Khrustalev, V.N.; Kirichuk, A.A.; Nenajdenko, V.G.; Tskhovrebov, A.G. Aurophilic Interactions in Cationic Three-Coordinate Gold(I) Bipyridyl/Isocyanide Complex. Crystals 2022, 12, 613. [Google Scholar] [CrossRef]
- Shmelev, N.Y.; Okubazghi, T.H.; Abramov, P.A.; Rakhmanova, M.I.; Novikov, A.S.; Sokolov, M.N.; Gushchin, A.L. Asymmetric Coordination Mode of Phenanthroline-like Ligands in Gold(I) Complexes: A Case of the Antichelate Effect. Cryst. Growth Des. 2022, 22, 3882–3895. [Google Scholar] [CrossRef]
- Espinosa, E.; Alkorta, I.; Elguero, J.; Molins, E. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–HF–Y systems. J. Chem. Phys. 2002, 117, 5529–5542. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef]
- Contreras-García, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan, D.N.; Yang, W. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, A.; Hasegawa, T.; Yoshida, M.; Kato, M. Environmentally Friendly Mechanochemical Syntheses and Conversions of Highly Luminescent Cu(I) Dinuclear Complexes. Inorg. Chem. 2016, 55, 1978–1985. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Bruker Apex3 Software Suite: Apex3, SADABS-2016/2 and SAINT, version 2018.7-2; Bruker AXS Inc.: Madison, WI, USA, 2017.
- Frisch, M.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Pritchard, B.P.; Altarawy, D.; Didier, B.; Gibson, T.D.; Windus, T.L. New basis set exchange: An open, up-to-date resource for the molecular sciences community. J. Chem. Inf. Model 2019, 59, 4814–4820. [Google Scholar] [CrossRef]
- Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996, 256, 454–464. [Google Scholar] [CrossRef]
- Van Caillie, C.; Amos, R.D. Geometric derivatives of excitation energies using SCF and DFT. Chem. Phys. Lett. 1999, 308, 249–255. [Google Scholar] [CrossRef]
- Scalmani, G.; Frisch, M.J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V. Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. J. Chem. Phys. 2006, 124, 094107. [Google Scholar] [CrossRef]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Barros, C.L.; De Oliveira, P.J.P.; Jorge, F.E.; Canal Neto, A.; Campos, M. Gaussian basis set of double zeta quality for atoms Rb through Xe: Application in non-relativistic and relativistic calculations of atomic and molecular properties. Mol. Phys. 2010, 108, 1965–1972. [Google Scholar] [CrossRef]
- Jorge, F.E.; Canal Neto, A.; Camiletti, G.G.; Machado, S.F. Contracted Gaussian basis sets for Douglas–Kroll–Hess calculations: Estimating scalar relativistic effects of some atomic and molecular properties. J. Chem. Phys. 2009, 130, 064108. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.C.; Jorge, F.E. All-electron double zeta basis sets for the most fifth-row atoms: Application in DFT spectroscopic constant calculations. Chem. Phys. Lett. 2013, 582, 158–162. [Google Scholar] [CrossRef]
- De Berrêdo, R.C.; Jorge, F.E. All-electron double zeta basis sets for platinum: Estimating scalar relativistic effects on platinum (II) anticancer drugs. J. Mol. Struct. Theochem. 2010, 961, 107–112. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
1·CH2Cl2 | 2 | ||
---|---|---|---|
Cu–N2 | 2.046(3) | Cu–As | 2.3207(5) |
Cu–N1 | 2.042(2) | Cu–N1′ | 2.051(3) |
Cu–N1′ | 2.042(2) | Cu–N2′ | 2.066(2) |
Cu–I | 2.5003(6) | Cu–Br | 2.4242(6) |
Symmetry code: (′) x, y, z–1/2. | Symmetry code: (′) 1–x, 1–y, 1–z. | ||
3·3H2O | 4·CH3CN | ||
Ag1∙∙∙Ag2 | 3.2413(14) | Ag∙∙∙Ag′ | 3.2206(4) |
Ag1∙∙∙Ag3 | 3.2360(14) | Ag–As′ | 2.4746(3) |
Ag1∙∙∙Ag4 | 3.2264(14) | Ag–N1 | 2.347(2) |
Ag1∙∙∙Ag5 | 3.3016(14) | Ag–N2 | 2.361(2) |
Ag1–As1 | 2.5780(15) | Ag–N3 | 2.371(3) |
Ag1–As2 | 2.5869(16) | Symmetry code: (′) 1–x, 2–y, 1–z. | |
Ag1–As3 | 2.5900(16) | ||
Ag1–As4 | 2.6041(15) | ||
Ag–N | 2.260(13)–2.343(11) |
Ag···Ag Contact | ρ(r) | ∇2ρ(r) | λ2 | Hb | V(r) | G(r) | ELF |
---|---|---|---|---|---|---|---|
Complex 3 | |||||||
3.241 Å | 0.019 a.u. | 0.030 a.u. | −0.019 a.u. | −0.003 a.u. | −0.013 a.u. | 0.010 a.u. | 0.125 a.u. |
3.236 Å | 0.019 a.u. | 0.029 a.u. | −0.019 a.u. | −0.003 a.u. | −0.013 a.u. | 0.010 a.u. | 0.129 a.u. |
3.226 Å | 0.020 a.u. | 0.030 a.u. | −0.020 a.u. | −0.003 a.u. | −0.014 a.u. | 0.011 a.u. | 0.129 a.u. |
3.302 Å | 0.017 a.u. | 0.029 a.u. | −0.017 a.u. | −0.003 a.u. | −0.012 a.u. | 0.009 a.u. | 0.112 a.u. |
3.249 Å | 0.019 a.u. | 0.029 a.u. | −0.019 a.u. | −0.003 a.u. | −0.013 a.u. | 0.010 a.u. | 0.124 a.u. |
3.252 Å | 0.019 a.u. | 0.029 a.u. | −0.019 a.u. | −0.003 a.u. | −0.013 a.u. | 0.010 a.u. | 0.124 a.u. |
3.281 Å | 0.018 a.u. | 0.029 a.u. | −0.018 a.u. | −0.002 a.u. | −0.012 a.u. | 0.010 a.u. | 0.117 a.u. |
3.209 Å | 0.020 a.u. | 0.030 a.u. | −0.020 a.u. | −0.003 a.u. | −0.014 a.u. | 0.011 a.u. | 0.136 a.u. |
3.222 Å | 0.020 a.u. | 0.029 a.u. | −0.020 a.u. | −0.003 a.u. | −0.014 a.u. | 0.011 a.u. | 0.134 a.u. |
3.214 Å | 0.020 a.u. | 0.030 a.u. | −0.020 a.u. | −0.003 a.u. | −0.014 a.u. | 0.011 a.u. | 0.134 a.u. |
3.247 Å | 0.019 a.u. | 0.030 a.u. | −0.019 a.u. | −0.003 a.u. | −0.013 a.u. | 0.010 a.u. | 0.125 a.u. |
3.313 Å | 0.017 a.u. | 0.029 a.u. | −0.017 a.u. | −0.002 a.u. | −0.011 a.u. | 0.009 a.u. | 0.110 a.u. |
Complex 4 | |||||||
3.221 Å | 0.021 a.u. | 0.028 a.u. | −0.021 a.u. | −0.003 a.u. | -0.014 a.u. | 0.011 a.u. | 0.156 a.u. |
Complex | λem, nm | PL Lifetime, μs | PLQY, % [298 K] | ||
---|---|---|---|---|---|
298 K | 77 K | 298 K | 77 K | ||
1·CH2Cl2 | 605 | 625 | 1.9 | 25 | 10 a |
1a | 511 | - | 0.8 | - | 14 b |
2 | 510 | 520 | 0.9 | 23 | 12 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demyanov, Y.V.; Sadykov, E.H.; Rakhmanova, M.I.; Novikov, A.S.; Bagryanskaya, I.Y.; Artem’ev, A.V. Tris(2-Pyridyl)Arsine as a New Platform for Design of Luminescent Cu(I) and Ag(I) Complexes. Molecules 2022, 27, 6059. https://doi.org/10.3390/molecules27186059
Demyanov YV, Sadykov EH, Rakhmanova MI, Novikov AS, Bagryanskaya IY, Artem’ev AV. Tris(2-Pyridyl)Arsine as a New Platform for Design of Luminescent Cu(I) and Ag(I) Complexes. Molecules. 2022; 27(18):6059. https://doi.org/10.3390/molecules27186059
Chicago/Turabian StyleDemyanov, Yan V., Evgeniy H. Sadykov, Marianna I. Rakhmanova, Alexander S. Novikov, Irina Yu. Bagryanskaya, and Alexander V. Artem’ev. 2022. "Tris(2-Pyridyl)Arsine as a New Platform for Design of Luminescent Cu(I) and Ag(I) Complexes" Molecules 27, no. 18: 6059. https://doi.org/10.3390/molecules27186059
APA StyleDemyanov, Y. V., Sadykov, E. H., Rakhmanova, M. I., Novikov, A. S., Bagryanskaya, I. Y., & Artem’ev, A. V. (2022). Tris(2-Pyridyl)Arsine as a New Platform for Design of Luminescent Cu(I) and Ag(I) Complexes. Molecules, 27(18), 6059. https://doi.org/10.3390/molecules27186059