Insights into Two Novel Orthopalladated Chromophores with Antimicrobial Activity against Escherichia coli
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry and Optical Response
2.2. Crystal Structure of Pd1
2.3. Theoretical Analysis
2.4. Antibacterial Response
3. Experimental Section
3.1. Materials and Methods
3.2. Synthesis of L2
3.3. Synthesis of Pd1 and Pd2
3.4. Single-Crystal X-ray Analysis
3.5. Molecular Modelling
3.6. In Vitro Antibacterial Activity Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Uddin, M.N.; Ahmed, S.S.; Alam, S.M.R. REVIEW: Biomedical applications of Schiff base metal complexes. J. Coord. Chem. 2020, 73, 3109–3149. [Google Scholar] [CrossRef]
- Alihosseini, F.; Sun, G. Antibacterial colorants for textiles. In Functional Textiles for Improved Performance, Protection and Health; Woodhead Publishing: Cambrige, UK, 2011; pp. 376–403. [Google Scholar]
- Li, H.-B.; Huang, Q.-X.; Zhou, C.-L.; Liu, G.-M.; Qin, M.A. Stainless steel microstructural evolution of hot-rolled clad plate. Mater. Sci. 2016, 22, 495–500. [Google Scholar] [CrossRef]
- Arunkumar, E.; Forbes, C.C.; Smith, B.D. Improving the properties of organic dyes by molecular encapsulation. Eur. J. Org. Chem. 2005, 4051–4059. [Google Scholar] [CrossRef]
- Würthner, F.; Kaiser, T.E.; Saha-Möller, C.R. J-aggregates: From serendipitous discovery to supramolecular engineering of functional dye materials. Angew. Chem. Int. Ed. 2011, 50, 3376–3410. [Google Scholar] [CrossRef] [PubMed]
- Stadler, A.L.; Delos Santos, J.O.; Stensrud, E.S.; Dembska, A.; Silva, G.L.; Liu, S.; Shank, N.I.; Kunttas-Tatli, E.; Sobers, C.J.; Gramlich, P.M.E.; et al. Fluorescent DNA Nanotags Featuring Covalently Attached Intercalating Dyes: Synthesis, Antibody Conjugation, and Intracellular Imaging. Bioconjug. Chem. 2011, 22, 1491–1502. [Google Scholar] [CrossRef]
- Hannah, K.C.; Armitage, B.A. DNA-templated assembly of helical cyanine dye aggregates: A supramolecular chain polymerization. Acc. Chem. Res. 2004, 37, 845–853. [Google Scholar] [CrossRef]
- von Berlepsch, H.; Böttcher, C.; Ouart, A.; Burger, C.; Dähne, S.; Kirstein, S. Supramolecular Structures of J-Aggregates of Carbocyanine Dyes in Solution. J. Phys. Chem. B 2000, 104, 5255–5262. [Google Scholar] [CrossRef]
- Dsouza, R.N.; Pischel, U.; Nau, W.M. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem. Rev. 2011, 111, 7941–7980. [Google Scholar] [CrossRef]
- Ruiz, A.Z.; Li, H.; Calzaferri, G. Organizing supramolecular functional dye-zeolite crystals. Angew. Chem. Int. Ed. 2006, 45, 5282–5287. [Google Scholar] [CrossRef]
- Stasiak, N.; Kukula-Koch, W.; Glowniak, K. Modern industrial and pharmacological applications of indigo dye and its derivatives—A review. Acta Pol. Pharm. 2014, 71, 215–221. [Google Scholar]
- Lowe, C.R.; Burton, S.J.; Pearson, J.C.; Clonis, Y.D.; Stead, V. Design and application of bio-mimetic dyes in biotechnology. J. Chromatogr. B Biomed. Sci. Appl. 1986, 376, 121–130. [Google Scholar] [CrossRef]
- Nigel Corns, S.; Partington, S.M.; Towns, A.D. Industrial organic photochromic dyes. Coloration Technol. 2009, 125, 249–261. [Google Scholar] [CrossRef]
- Glenn, W.H.; Brienza, M.J.; Demaria, A.J. Mode locking of an organic dye laser. Appl. Phys. Lett. 1968, 12, 54–56. [Google Scholar] [CrossRef]
- Aldalbahi, A.; Periyasami, G.; Alrehaili, A. Synthesis of high molar extinction coefficient push-pull tricyanofuran-based disperse dyes: Biological activity and dyeing performance. New J. Chem. 2021, 45, 2208–2216. [Google Scholar] [CrossRef]
- Khan, M.N.; Parmar, D.K.; Das, D. Recent applications of azo dyes: A paradigm shift from medicinal chemistry to biomedical sciences. Mini-Rev. Med. Chem. 2021, 21, 1071–1084. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yang, Z.; Xing, L.; Zhang, X.; Li, X.; Zhang, D. Recent advances in the biodegradation of azo dyes. World J. Microbiol. Biotechnol. 2021, 37, 137. [Google Scholar] [CrossRef]
- Boschi, A.; Cinili, S.; Bystrenova, E.; Ruani, G.; Groppi, J.; Credi, A.; Baroncini, M.; Candini, A.; Gentili, D.; Cavallini, M. Multimodal sensing in rewritable, data matrix azobenzene-based devices. J. Mater. Chem. C 2022, 10, 10132–10138. [Google Scholar] [CrossRef]
- Egawa, Y.; Miki, R.; Seki, T. Colorimetric sugar sensing using boronic acid-substituted azobenzenes. Materials 2014, 7, 1201–1220. [Google Scholar] [CrossRef]
- Ali, Y.; Hamid, S.A.; Rashid, U. Biomedical applications of aromatic azo compounds. Mini-Rev. Med. Chem. 2018, 18, 1548–1558. [Google Scholar] [CrossRef]
- Piotto, S.; Concilio, S.; Sessa, L.; Diana, R.; Torrens, G.; Juan, C.; Caruso, U.; Iannelli, P. Synthesis and antimicrobial studies of new antibacterial azo-compounds active against staphylococcus aureus and listeria monocytogenes. Molecules 2017, 22, 1372. [Google Scholar] [CrossRef]
- Banaszak-Leonard, E.; Fayeulle, A.; Franche, A.; Sagadevan, S.; Billamboz, M. Antimicrobial azo molecules: A review. J. Iran. Chem. Soc. 2021, 18, 2829–2851. [Google Scholar] [CrossRef]
- Piotto, S.; Concilio, S.; Sessa, L.; Porta, A.; Calabrese, E.C.; Zanfardino, A.; Varcamontic, M.; Iannelli, P. Small azobenzene derivatives active against bacteria and fungi. Eur. J. Med. Chem. 2013, 68, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.T. Azo dyes and human health: A review. J. Environ. Sci. Health—Part C Environ. Carcinog. Ecotoxicol. Rev. 2016, 34, 233–261. [Google Scholar] [CrossRef] [PubMed]
- Sessa, L.; Concilio, S.; Iannelli, P.; De Santis, F.; Porta, A.; Piotto, S. Antimicrobial azobenzene compounds and their potential use in biomaterials. AIP Conf. Proc. 2016, 1727, 020018. [Google Scholar]
- Wang, X.; Ding, G.; Duan, Y.; Zhu, Y.; Zhu, G.; Wang, M.; Li, X.; Zhang, Y.; Qin, X.; Hung, C.H. A novel triphenylamine-based bis-Schiff bases fluorophores with AIE-Activity as the hydrazine fluorescence turn-off probes and cell imaging in live cells. Talanta 2020, 217, 121029. [Google Scholar] [CrossRef]
- La, D.D.; Bhosale, S.V.; Jones, L.A.; Bhosale, S.V. Tetraphenylethylene-Based AIE-Active Probes for Sensing Applications. ACS Appl. Mater. Interfaces 2018, 10, 12189–12216. [Google Scholar] [CrossRef]
- Peng, L.; Xu, S.; Zheng, X.; Cheng, X.; Zhang, R.; Liu, J.; Liu, B.; Tong, A. Rational Design of a Red-Emissive Fluorophore with AIE and ESIPT Characteristics and Its Application in Light-Up Sensing of Esterase. Anal. Chem. 2017, 89, 3162–3168. [Google Scholar] [CrossRef]
- Diana, R.; Panunzi, B.; Tuzi, A.; Piotto, S.; Concilio, S.; Caruso, U. An amphiphilic pyridinoyl-hydrazone probe for colorimetric and fluorescence pH sensing. Molecules 2019, 24, 3833. [Google Scholar] [CrossRef]
- Sun, M.; Guo, J.; Yang, Q.; Xiao, N.; Li, Y. A new fluorescent and colorimetric sensor for hydrazine and its application in biological systems. J. Mater. Chem. B 2014, 2, 1846–1851. [Google Scholar] [CrossRef]
- Diana, R.; Panunzi, B. The role of zinc(II) ion in fluorescence tuning of tridentate pincers: A review. Molecules 2020, 25, 4984. [Google Scholar] [CrossRef]
- Ceramella, J.; Iacopetta, D.; Catalano, A.; Cirillo, F.; Lappano, R.; Sinicropi, M.S. A Review on the Antimicrobial Activity of Schiff Bases: Data Collection and Recent Studies. Antibiotics 2022, 11, 191. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Sawamura, J.; Murata, Y.; Nishikata, T.; Yazaki, R.; Ohshima, T. Amino Acid Schiff Base Bearing Benzophenone Imine As a Platform for Highly Congested Unnatural α-Amino Acid Synthesis. J. Am. Chem. Soc. 2020, 142, 8498–8505. [Google Scholar] [CrossRef] [PubMed]
- Bakry, R.; Vallant, R.M.; Najam-ul-Haq, M.; Rainer, M.; Szabo, Z.; Huck, C.W.; Bonn, G.K. Medicinal applications of fullerenes. Int. J. Nanomed. 2007, 2, 639. [Google Scholar]
- Morris, M.C. Fluorescent biosensors for Cancer cell imaging and diagnostics. In Biosensors and Cancer; Preedy, V., Hunter, J., Eds.; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-1-57808-734-1. [Google Scholar]
- Nicewicz, D.A.; Nguyen, T.M. Recent Applications of Organic Dyes as Photoredox Catalysts in Organic Synthesis. ACS Catal. 2014, 4, 355–360. [Google Scholar] [CrossRef]
- Fukuzumi, S.; Ohkubo, K. Organic synthetic transformations using organic dyes as photoredox catalysts. Org. Biomol. Chem. 2014, 12, 6059–6071. [Google Scholar] [CrossRef]
- Diana, R.; Panunzi, B.; Shikler, R.; Nabha, S.; Caruso, U. A symmetrical azo-based fluorophore and the derived salen multipurpose framework for emissive layers. Inorg. Chem. Commun. 2019, 104, 186–189. [Google Scholar] [CrossRef]
- Haji, A. Antibacterial dyeing of wool with natural cationic dye using metal mordants. Medziagotyra 2012, 18, 267–270. [Google Scholar] [CrossRef]
- Foisal, A.B.M.; Rahman, A.; Uddin, M.N. A Study on Usual and Nano Pretreated Dyeing of Cotton Knit Fabric. Southeast Univ. J. Text. Eng. 2021, 1, 37–41. [Google Scholar]
- Borbone, F.; Caruso, U.; Concilio, S.; Nabha, S.; Piotto, S.; Shikler, R.; Tuzi, A.; Panunzi, B. From cadmium(II)-aroylhydrazone complexes to metallopolymers with enhanced photoluminescence. A structural and DFT study. Inorg. Chim. Acta 2017, 458, 129–1371. [Google Scholar] [CrossRef]
- Yuan, Y.-J.; Yu, Z.-T.; Chen, D.-Q.; Zou, Z.-G. Metal-complex chromophores for solar hydrogen generation. Chem. Soc. Rev. 2017, 46, 603–631. [Google Scholar] [CrossRef]
- Hemmert, C.; Gornitzka, H. Luminescent bioactive NHC–metal complexes to bring light into cells. Dalton Trans. 2016, 45, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Borbone, F.; Caruso, U.; Diana, R.; Panunzi, B.; Roviello, A.; Tingoli, M.; Tuzi, A. Second order nonlinear optical networks with excellent poling stability from a new trifunctional thiophene based chromophore. Org. Electron. 2009, 10, 53–60. [Google Scholar] [CrossRef]
- Diana, R.; Panunzi, B.; Tuzi, A.; Caruso, U. Two tridentate pyridinyl-hydrazone zinc(II) complexes as fluorophores for blue emitting layers. J. Mol. Struct. 2019, 1197, 672–680. [Google Scholar] [CrossRef]
- Casalboni, M.; Caruso, U.; De Maria, A.; Fusco, M.; Panunzi, B.; Quatela, A.; Roviello, A.; Sarcinelli, F.; Sirigu, A. New polyurethanes and polyesters for second-order nonlinear optical applications. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 3013–3022. [Google Scholar] [CrossRef]
- Doistau, B.; Jiménez, J.R.; Piguet, C. Beyond Chiral Organic (p-Block) Chromophores for Circularly Polarized Luminescence: The Success of d-Block and f-Block Chiral Complexes. Front. Chem. 2020, 8, 555. [Google Scholar] [CrossRef]
- Diana, R.; Panunzi, B.; Concilio, S.; Marrafino, F.; Shikler, R.; Caruso, T.; Caruso, U. The effect of bulky substituents on two π-conjugated mesogenic fluorophores. Their organic polymers and zinc-bridged luminescent networks. Polymers 2019, 11, 1379. [Google Scholar] [CrossRef]
- Bozic-Weber, B.; Brauchli, S.Y.; Constable, E.C.; Fürer, S.O.; Housecroft, C.E.; Malzner, F.J.; Wright, I.A.; Zampese, J.A. Improving the photoresponse of copper(i) dyes in dye-sensitized solar cells by tuning ancillary and anchoring ligand modules. Dalton Trans. 2013, 42, 12293–12308. [Google Scholar] [CrossRef]
- Panunzi, B.; Diana, R.; Caruso, U. A highly efficient white luminescent zinc (II) based metallopolymer by RGB approach. Polymers 2019, 11, 1712. [Google Scholar] [CrossRef]
- Concilio, S.; Ferrentino, I.; Sessa, L.; Massa, A.; Iannelli, P.; Diana, R.; Panunzi, B.; Rella, A.; Piotto, S. A novel fluorescent solvatochromic probe for lipid bilayers. Supramol. Chem. 2017, 29, 887–895. [Google Scholar] [CrossRef]
- Bronner, C.; Wenger, O.S. Luminescent cyclometalated gold(iii) complexes. Dalton Trans. 2011, 40, 12409–12420. [Google Scholar] [CrossRef] [PubMed]
- Anthony, E.J.; Bolitho, E.M.; Bridgewater, H.E.; Carter, O.W.L.; Donnelly, J.M.; Imberti, C.; Lant, E.C.; Lermyte, F.; Needham, R.J.; Sadler, P.M.; et al. Metallodrugs are unique: Opportunities and challenges of discovery and development. Chem. Sci. 2020, 11, 12888–12917. [Google Scholar] [CrossRef] [PubMed]
- Bobbarala, V. A Search for Antibacterial Agents; InTech: Rijeka, Croatia, 2012; ISBN 978-953-51-0724-8. [Google Scholar]
- Atilla-Gokcumen, G.E.; Di Costanzo, L.; Meggers, E. Structure of anticancer ruthenium half-sandwich complex bound to glycogen synthase kinase 3β. J. Biol. Inorg. Chem. 2011, 16, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Gourdon, L.; Cariou, K.; Gasser, G. Phototherapeutic anticancer strategies with first-row transition metal complexes: A critical review. Chem. Soc. Rev. 2022, 51, 1167–1195. [Google Scholar] [CrossRef] [PubMed]
- Paprocka, R.; Wiese-Szadkowska, M.; Janciauskiene, S.; Kosmalski, T.; Kulik, M.; Helmin-Basa, A. Latest developments in metal complexes as anticancer agents. Coord. Chem. Rev. 2022, 452, 214307. [Google Scholar] [CrossRef]
- Pervaiz, M.; Munir, A.; Riaz, A.; Saeed, Z.; Younas, U.; Imran, M.; Ullah, S.; Bashir, R.; Rashid, A.; Adnan, A. Review article-Amalgamation, scrutinizing, and biological evaluation of the antimicrobial aptitude of thiosemicarbazide Schiff bases derivatives metal complexes. Inorg. Chem. Commun. 2022, 141, 109459. [Google Scholar] [CrossRef]
- Roviello, A.; Borbone, F.; Carella, A.; Diana, R.; Roviello, G.; Panunzi, B.; Ambrosio, A.; Maddalena, P. High quantum yield photoluminescence of new polyamides containing oligo-PPV amino derivatives and related oligomers. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 2677–2689. [Google Scholar] [CrossRef]
- Utreja, D.; Vibha; Singh, S.; Kaur, M. Schiff bases and their metal complexes as anti-cancer agents: A review. Curr. Bioact. Compd. 2015, 11, 215–230. [Google Scholar] [CrossRef]
- Diana, R.; Panunzi, B.; Shikler, R.; Nabha, S.; Caruso, U. Highly efficient dicyano-phenylenevinylene fluorophore as polymer dopant or zinc-driven self-assembling building block. Inorg. Chem. Commun. 2019, 104, 145–149. [Google Scholar] [CrossRef]
- More, M.S.; Joshi, P.G.; Mishra, Y.K.; Khanna, P.K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: A review. Mater. Today Chem. 2019, 14, 100195. [Google Scholar] [CrossRef]
- Caruso, U.; Panunzi, B.; Roviello, A.; Tingoli, M.; Tuzi, A. Two aminobenzothiazole derivatives for Pd(II) and Zn(II) coordination: Synthesis, characterization and solid state fluorescence. Inorg. Chem. Commun. 2011, 14, 46–48. [Google Scholar] [CrossRef]
- Caruso, U.; Diana, R.; Panunzi, B.; Roviello, A.; Tingoli, M.; Tuzi, A. Facile synthesis of new Pd(II) and Cu(II) based metallomesogens from ligands containing thiophene rings. Inorg. Chem. Commun. 2009, 12, 1135–1138. [Google Scholar] [CrossRef]
- Cariati, F.; Caruso, U.; Centore, R.; De Maria, A.; Fusco, M.; Panunzi, B.; Roviello, A.; Tuzi, A. New NLO active cyclopalladated chromophores in main-chain polymers. Inorg. Chim. Acta 2004, 357, 548–556. [Google Scholar] [CrossRef]
- Rubino, S.; Busà, R.; Attanzio, A.; Alduina, R.; Di Stefano, V.; Girasolo, M.A.; Orecchio, S.; Tesoriere, L. Synthesis, properties, antitumor and antibacterial activity of new Pt(II) and Pd(II) complexes with 2,2′-dithiobis(benzothiazole) ligand. Bioorg. Med. Chem. 2017, 25, 2378–2386. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.M. Pd(ii) and Pt(ii) complexes of tridentate ligands with selective toxicity againstCryptococcus neoformansandCandida albicans. RSC Adv. 2021, 11, 39748–39757. [Google Scholar] [CrossRef] [PubMed]
- Fasiulla, F.; Yashoda, M.P. Synthesis and spectral studies on substituted metal (II)-tetra-1-(thiophene-2-yl)methanimine phthalocyanine complexes. Orient. J. Chem. 2018, 34, 1526–1532. [Google Scholar] [CrossRef]
- Kunkely, H.; Vogler, A. Excited state properties of dimeric π-allylpalladium(II) chloride. Photoreduction of palladium induced by ligand-to-metal charge transfer excitation. Inorg. Chim. Acta 2003, 344, 262–264. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, J.; Ren, L.; Tang, C. Metal-containing and related polymers for biomedical applications. Chem. Soc. Rev. 2016, 45, 5232–5263. [Google Scholar] [CrossRef]
- De La Torre, G.; Claessens, C.G.; Torres, T. Phthalocyanines: Old dyes, new materials. Putting color in nanotechnology. Chem. Commun. 2007, 2000–2015. [Google Scholar] [CrossRef]
- Kosal, M.E.; Chou, J.H.; Wilson, S.R.; Suslick, K.S. A functional zeolite analogue assembled from metalloporphyrins. Nat. Mater. 2002, 1, 118–121. [Google Scholar] [CrossRef]
- Borras, A.; Gröning, O.; Aguirre, M.; Gramm, F.; Gröning, P. One-step dry method for the synthesis of supported single-crystalline organic nanowires formed by π-Conjugated Molecules. Langmuir 2010, 26, 5763–5771. [Google Scholar] [CrossRef]
- Pan, L.; Jia, K.; Huang, Y.; Liu, X. Formation of organometallic microstructures via self-assembling of carboxylated zinc phthalocyanines with selective adsorption and visible light-driven photodegradation of cationic dyes. J. Mater. Sci. 2018, 53, 492–505. [Google Scholar] [CrossRef]
- Aiello, I.; Caruso, U.; Ghedini, M.; Panunzi, B.; Quatela, A.; Roviello, A.; Sarcinelli, F. NLO active Pd(II)-based organometallic side-chain polymers with C,N or N,O-chelating chromophoric ligands. Polymer 2003, 44, 7635–7643. [Google Scholar] [CrossRef]
- Morley, J.O.; Pugh, D. Calculations of the electronic spectra and hyperpolarisabilities of selected dyes and pigments. J. Chem. Soc. Faraday Trans. 1991, 87, 3021–3025. [Google Scholar] [CrossRef]
- Thakare, T.W.; Rathod, A.S.; Doshi, A.G.; Raut, A.W. Synthesis of Schiff Bases of N-N-Dimethylamino Benzaldehyde and its Antimicrobial Activity. Orient. J. Chem. 2010, 26, 717–719. [Google Scholar]
- Diana, R.; Caruso, U.; Di Costanzo, L.; Concilio, S.; Piotto, S.; Sessa, L.; Panunzi, B. A Water Soluble 2-Phenyl-5-(pyridin-3-yl)-1,3,4-oxadiazole Based Probe: Antimicrobial Activity and Colorimetric/Fluorescence pH Response. Molecules 2022, 27, 1824. [Google Scholar] [CrossRef]
- van Walree, C.A.; Franssen, O.; Marsman, A.W.; Flipse, M.C.; Jenneskens, L.W. Second-order nonlinear optical properties of stilbene, benzylideneaniline and azobenzene derivatives. The effect of π-bridge nitrogen insertion on the first hyperpolarizability. J. Chem. Soc. Perkin Trans. 1997, 799–808. [Google Scholar] [CrossRef]
- Rîmbu, C.; Danac, R.; Pui, A. Antibacterial activity of Pd(II) complexes with salicylaldehyde-amino acids Schiff bases ligands. Chem. Pharm. Bull. 2014, 62, 12–15. [Google Scholar] [CrossRef]
- Dechouk, L.F.; Bouchoucha, A.; Abdi, Y.; Si Larbi, K.; Bouzaheur, A.; Terrachet-Bouaziz, S. Coordination of new palladium (II) complexes with derived furopyran-3,4-dione ligands: Synthesis, characterization, redox behaviour, DFT, antimicrobial activity, molecular docking and ADMET studies. J. Mol. Struct. 2022, 1257, 132611. [Google Scholar] [CrossRef]
- Juribašić, M.; Molčanov, K.; Kojić-Prodić, B.; Bellotto, L.; Kralj, M.; Zani, F.; Tušek-Božić, L. Palladium(II) complexes of quinolinylaminophosphonates: Synthesis, structural characterization, antitumor and antimicrobial activity. J. Inorg. Biochem. 2011, 105, 867–879. [Google Scholar] [CrossRef]
- Petitjean, M.; Condamine, B.; Denamur, E.; Ruppé, E. Phylum barrier and Escherichia coli intra-species phylogeny drive the acquisition of resistome in E. coli. bioRxiv 2010. [Google Scholar] [CrossRef]
- Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Evans, P.R. An introduction to data reduction: Space-group determination, scaling and intensity statistics. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Burla, M.C.; Carrozzini, B.; Cascarano, G.L.; Giacovazzo, C.; Polidori, G. Solving proteins at non-atomic resolution by direct methods. J. Appl. Crystallogr. 2015, 48, 1692–1698. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGXandORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Raghavachari, K. Perspective on “Density functional thermochemistry. III. The role of exact exchange”. Theor. Chem. Acc. 2000, 103, 361–363. [Google Scholar] [CrossRef]
- Diana, R.; Caruso, U.; Gentile, F.S.; Di Costanzo, L.; Musto, P.; Panunzi, B. Structural feature of thermo-induced fluorochromism in a 1D zinc coordination polymer. A cross-analysis by PL and FTIR spectroscopy, and DFT formalism. Dye. Pigment. 2022, 202, 110247. [Google Scholar] [CrossRef]
- Diana, R.; Caruso, U.; Gentile, F.S.; Di Costanzo, L.; Turrà, D.; Vitale, S.; Panunzi, B. Benzodifuran-based fluorescent brighteners: A novel platform for plant cell wall imaging. Dye. Pigment. 2022, 199, 110071. [Google Scholar] [CrossRef]
- Grimme, S.; Bohle, F.; Hansen, A.; Pracht, P.; Spicher, S.; Stahn, M. Efficient Quantum Chemical Calculation of Structure Ensembles and Free Energies for Nonrigid Molecules. J. Phys. Chem. A 2021, 125, 4039–4054. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Platonenko, A.; Gentile, F.S.; Pascale, F.; Ferrari, A.M.; D’Amore, M.; Dovesi, R. Nitrogen substitutional defects in silicon. A quantum mechanical investigation of the structural, electronic and vibrational properties. Phys. Chem. Chem. Phys. 2019, 21, 20939–20950. [Google Scholar] [CrossRef]
- Di Palma, G.; Kirtman, B.; Gentile, F.S.; Platonenko, A.; Ferrari, A.M.; Dovesi, R. The VN2 negatively charged defect in diamond. A quantum mechanical investigation of the EPR response. Carbon 2020, 159, 443–450. [Google Scholar] [CrossRef]
λmax (nm) a | |||||||
---|---|---|---|---|---|---|---|
Dioxane | Diethyl Ether | Ethanol | Acetone | ε (Lmol−1 cm−1) c | DMF | Solid Sample | |
Pd1 | 435 | 461 | 470 | 471 | 6.2 × 106 | 477 | 474 |
Pd2 | 426 | 450 | 455 | 457 | 1.3 × 106 | 483 | 460 |
μ(D) b | 0 | 1.15 | 1.66 | 2.69 | 3.86 |
Pd1 | |
---|---|
CCDC number | 2178828 |
Probe and solvent | Pd1 • 0.4 H2O • 0.6 CH3 COOH |
Temperature (K) | 100 |
Wavelength (Å) | 0.7000 |
Crystal system | Monoclinic |
Space group | P1 21/c 1 |
a (Å) | 20.055(5) |
b (Å) | 10.219(2) |
c (Å) | 17.621(4) |
β (°) | 101.634(3) |
R-merge (last shell: 0.71–0.67 Å) | 0.044 (0.091) |
CC(1/2) | 0.999 (0.995) |
I/σ(I) | 24.1 (11.8) |
Completeness (%) | 98.6 (96.6) |
Estimated mosaicity (°) | 0.197 |
Volume | 3537.1 Å3 |
Z | 2 |
Calculated density | 1.637 g/cm3 |
θ range for data collection (°) | 0.904 to 27.663 |
All data/restraints/parameters | 12,293/0/441 |
R1 indices (I > 2s(I), 10,695) | 0.0554 (0.0493, all data) |
wR2 | 0.153, all data |
F(000) | 1462 |
Largest diff. peak and hole | 1.64 and −1.95 e-/Å3 |
Goodness-of-fit on F2 | 1.072 |
Atoms | Distances (Å) | Angles (°) |
---|---|---|
Pd-N1 | 2.021 | |
Pd-O | 2.067 | |
Pd-C | 1.995 | |
Pd-N2 | 2.065 | |
N1-Pd-O | 86.48 | |
N2-Pd-C | 81.09 | |
N1-Pd-C | 97.86 | |
N2-Pd-O | 94.84 | |
O(wat)-HO-Pd1 | 2.673 | |
O(Acetic acid)-HO-Pd1 | 3.381 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diana, R.; Gentile, F.S.; Carella, A.; Di Costanzo, L.; Panunzi, B. Insights into Two Novel Orthopalladated Chromophores with Antimicrobial Activity against Escherichia coli. Molecules 2022, 27, 6060. https://doi.org/10.3390/molecules27186060
Diana R, Gentile FS, Carella A, Di Costanzo L, Panunzi B. Insights into Two Novel Orthopalladated Chromophores with Antimicrobial Activity against Escherichia coli. Molecules. 2022; 27(18):6060. https://doi.org/10.3390/molecules27186060
Chicago/Turabian StyleDiana, Rosita, Francesco Silvio Gentile, Antonio Carella, Luigi Di Costanzo, and Barbara Panunzi. 2022. "Insights into Two Novel Orthopalladated Chromophores with Antimicrobial Activity against Escherichia coli" Molecules 27, no. 18: 6060. https://doi.org/10.3390/molecules27186060
APA StyleDiana, R., Gentile, F. S., Carella, A., Di Costanzo, L., & Panunzi, B. (2022). Insights into Two Novel Orthopalladated Chromophores with Antimicrobial Activity against Escherichia coli. Molecules, 27(18), 6060. https://doi.org/10.3390/molecules27186060