Oxidized Biomass and Its Usage as Adsorbent for Removal of Heavy Metal Ions from Aqueous Solutions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Oxidized Wool Fibers
2.2. Adsorption/Desorption of Metal Cations on/from Wool Fibers
2.2.1. Adsorption Kinetics
2.2.2. Adsorption Isotherms
2.2.3. Thermodynamic Adsorption Parameters
2.2.4. Desorption Assay and Re-Use Tests
3. Materials and Methods
3.1. Materials
3.2. Oxidized Wool-Synthesis Protocol
3.3. Characterization Techniques
3.4. Adsorption Assays for the Retention of Metal Cations
3.5. Desorption Assays of Metal Cations from Oxidized Wool Fibers and Re-Use Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sayqal, A.; Ahmed, O.B. Advances in Heavy Metal Bioremediation: An Overview. Appl. Bionics Biomech. 2021, 2021, 1609149. [Google Scholar] [CrossRef] [PubMed]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Molecular, clinical and environmental toxicicology. Environ. Toxicol. 2012, 101, 133–164. [Google Scholar] [CrossRef]
- Hussain, F.S.; Memon, N.; Khatri, Z.; Memon, S. Solid waste-derived biodegradable keratin sponges for removal of chromium: A circular approach for waste management in leather industry. Environ. Technol. Innov. 2020, 20, 101–120. [Google Scholar] [CrossRef]
- Gisbert, C.; Ros, R.; De Haro, A.; Walker, D.J.; Bernal, M.P.; Serrano, R.; Navarro-Aviñó, J. A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun. 2003, 303, 440–445. [Google Scholar] [CrossRef]
- Carlin, A.; Environmental Law Institute; United States Environmental Protection Agency. Environmental Investments: The Cost of a Clean Environment: A Summary; Science, Economics and Statistics Division, Office of Regulatory Management and Evaluation, Office of Policy, Planning and Evaluation, U.S. Environmental Protection Agency: Washington, DC, USA, 1990.
- Sen Raychaudhuri, S.; Pramanick, P.; Talukder, P.; Basak, A. Polyamines, metallothioneins, and phytochelatins—Natural defense of plants to mitigate heavy metals. Stud. Nat. Prod. Chem. 2021, 69, 227–261. [Google Scholar] [CrossRef]
- Lajayer, B.A.; Ghorbanpour, M.; Nikabadi, S. Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol. Environ. Saf. 2017, 145, 377–390. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2000; p. 432. [Google Scholar]
- Shahid, M.; Khalid, S.; Abbas, G.; Shahid, N.; Nadeem, M.; Sabir, M.; Aslam, M.; Dumat, C. Heavy Metal Stress and Crop Productivity. In Crop Production and Global Environmental Issues, 1st ed.; Hakeem, K.R., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–25. [Google Scholar]
- Park, J.H.; Lamb, D.; Paneerselvam, P.; Choppala, G.; Bolan, N.; Chung, J.W. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 2011, 185, 549–574. [Google Scholar] [CrossRef]
- Adriano, D.C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, 2nd ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Monier, M.; Ayad, D.M.; Sarhan, A.A. Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers. J. Hazard. Mater. 2010, 176, 348–355. [Google Scholar] [CrossRef]
- Basso, M.C.; Cerrella, E.G.; Cukierman, A.L. Activated carbons developed from a rapidly renewable biosource for removal of cadmium(II) and nickel(II) ions from dilute aqueous solutions. Ind. Eng. Chem. Res. 2002, 41, 180–189. [Google Scholar] [CrossRef]
- Guo, X.Y.; Liang, S.; Tian, Q.H. Removal of Heavy Metal Ions from Aqueous Solutions by Adsorption Using Modified Orange Peel as Adsorbent. Adv. Mat. Res. 2011, 236–238, 237–240. [Google Scholar] [CrossRef]
- Reddad, Z.; Gerente, C.; Andres, Y.; Le Cloirec, P. Adsorption of several metal ions onto a low-cost biosorbent: Kinetic and equilibrium studies. Environ. Sci. Technol. 2002, 36, 2067–2073. [Google Scholar] [CrossRef] [PubMed]
- Simonič, M.; Flucher, V.; Luxbacher, T.; Vesel, A.; Fras Zemljič, L. Adsorptive Removal of Heavy Metal Ions by Waste Wool. J. Nat. Fibers. 2022, 1, 1–14. [Google Scholar] [CrossRef]
- Hanzlíková, Z.; Braniša, J.; Jomová, K.; Fülöp, M.; Hybler, P.; Porubská, M. Electron beam irradiated sheep wool—Prospective sorbent for heavy metals in wastewater. Sep. Purif. Technol. 2018, 193, 345–350. [Google Scholar] [CrossRef]
- Enkhzaya, S.; Shiomori, K.; Oyuntsetseg, B. Removal of heavy metals from aqueous solution by adsorption using livestock biomass of Mongolia. J. Environ. Sci. Technol. 2017, 10, 107–119. [Google Scholar] [CrossRef]
- Condurache, B.C.; Cojocaru, C.; Pascariu, P.; Samoila, P.; Harabagiu, V. Innovative nanostructured magnetite/wool/polysiloxane composite as magnetic adsorbent for oil spill removal. Comptes Rendus Chim. 2022, 25, 245–260. [Google Scholar] [CrossRef]
- Balkose, D.; Baltacioglu, H. Adsorption of Heavy Metal Cations from Aqueous Solutions by Wool Fibers. J. Chem. Technol. Biotechnol. 1992, 54, 393–397. [Google Scholar] [CrossRef]
- Friedman, M.; Harrison, C.S.; Ward, W.H.; Lundgren, H.P. Sorption behavior of mercuric and methylmercuric salts on wool. J. Appl. Polym. Sci. 1973, 17, 377–390. [Google Scholar] [CrossRef]
- Yang, C.; Guan, L.; Zhao, Y.; Yan, Y. Sorption of Cu2+ and Zn2+ by natural biomaterial: Duck feather. Appl. Biochem. Biotechnol. 2007, 142, 168–178. [Google Scholar] [CrossRef]
- Rajabinejad, H.; Bucişcanu, I.I.; Maier, S.S. Current approaches for raw wool waste management and unconventional valorization: A review. Environ. Eng. Manag. J. 2019, 18, 1439–1456. [Google Scholar] [CrossRef]
- Freddi, G.; Arai, T.; Colonna, G.M.; Boschi, A.; Tsukada, M. Binding of Metal Cations to Chemically Modified Wool and Antimicrobial Properties of the Wool-Metal Complexes. J. Appl. Polym. Sci. 2001, 82, 3513–3519. [Google Scholar] [CrossRef]
- Goto, M.; Suyama, K. Occlusion of Transition Metal Ions by New Adsorbents Synthesized from Plant Polyphenols and Animal Fibrous Proteins. Appl. Biochem. Biotechnol. 2000, 84, 1021–1038. [Google Scholar] [CrossRef]
- Aluigi, A.; Corbellini, A.; Rombaldoni, F.; Mazzuchetti, G. Wool-derived keratin nanofiber membranes for dynamic adsorption of heavy-metal ions from aqueous solutions. Text. Res. J. 2013, 83, 1574–1586. [Google Scholar] [CrossRef]
- Lo Nostro, P.; Fratoni, L.; Ninham, B.W.; Baglioni, P. Water absorbency by wool fibers: Hofmeister effect. Biomacromolecules 2002, 3, 1217–1224. [Google Scholar] [CrossRef] [PubMed]
- Radetić, M.; Radojević, D.; Ilić, V.; Jocić, D.; Povrenović, D.; Potkonjak, B.; Puaĉ, N.; Jovanĉić, P. Removal of metal cations from wastewater using recycled wool-based non-woven material. J. Serbian Chem. Soc. 2007, 72, 605–614. [Google Scholar] [CrossRef]
- Sekimoto, Y.; Okiharu, T.; Nakajima, H.; Fujii, T.; Shirai, K.; Moriwaki, H. Removal of Pb(II) from water using keratin colloidal solution obtained from wool. Environ. Sci. Pollut. Res. 2013, 20, 6531–6538. [Google Scholar] [CrossRef] [PubMed]
- Taddei, P.; Monti, P.; Freddi, G.; Arai, T.; Tsukada, M. Binding of Co(II) and Cu(II) cations to chemically modified wool fibres: An IR investigation. J. Mol. Struct. 2003, 650, 105–113. [Google Scholar] [CrossRef]
- Naik, R.; Wen, G.; Dharmaprakash, M.S.; Hureau, S.; Uedono, A.; Wang, X.; Liu, X.; Cookson, P.G.; Smith, S.V. Metal ion binding properties of novel wool powders. J. Appl. Polym. Sci. 2010, 115, 1642–1650. [Google Scholar] [CrossRef]
- Erdogan, U.H.; Seki, Y.; Selli, F. Wool fibres. In Handbook of Natural Fibres, 2nd ed.; Kozłowski, R.M., Mackiewicz-Talarczyk, M., Eds.; Woodhead Publishing: Cambridge, UK, 2020; Volume 1, pp. 257–278. [Google Scholar]
- Popescu, C.; Höcker, H. Hair—The most sophisticated biological composite material. Chem. Soc. Rev. 2007, 36, 1282–1291. [Google Scholar] [CrossRef] [PubMed]
- Condurache, B.C.; Cojocaru, C.; Samoila, P.; Ignat, M.; Harabagiu, V. Data-driven modeling and optimization of oil spill sorption by wool fibers: Retention kinetics and recovery by centrifugation. Int. J. Environ. Sci. Technol. 2022, 19, 367–378. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, W.; Hayashi, C.; Gatesy, J.; McKittrick, J. Microstructure and mechanical properties of different keratinous horns. J. R. Soc. Interface 2018, 15, 20180093. [Google Scholar] [CrossRef] [Green Version]
- Fernández-d’Arlas, B. Improved aqueous solubility and stability of wool and feather proteins by reactive-extraction with H2O2 as bisulfide (–S–S–) splitting agent. Eur. Polym. J. 2018, 103, 187–197. [Google Scholar] [CrossRef]
- Trofimov, B.A.; Sinegovskaya, L.M.; Gusarova, N.K. Vibrations of the S–S bond in elemental sulfur and organic polysulfides: A structural guide. J. Sulphur Chem. 2009, 30, 518–554. [Google Scholar] [CrossRef]
- Zhao, Z.; Song, C.; Zhou, J.; Hu, R.; Xiao, H.; Liu, Y.; Lu, M. An eco-friendly method based on the self-glue effect of keratins for preparing Fe3O4-coated wool. J. Appl. Polym. Sci. 2020, 137, 49179. [Google Scholar] [CrossRef]
- Brebu, M.; Spiridon, I. Thermal degradation of keratin waste. J. Anal. Appl. Pyrolysis. 2011, 91, 288–295. [Google Scholar] [CrossRef]
- Chandwani, N.; Dave, P.; Jain, V.; Kumar Nema, S.; Mukherjee, S. Experimental Study to Improve Anti-Felting Characteristics of Merino Wool Fiber by Atmosphere Pressure Air Plasma. IPR Library. 2016; IPR/RR-776/2016. Available online: https://www.researchgate.net/publication/297556553_EXPERIMENTAL_STUDY_TO_IMPROVE_ANTI-FELTING_CHARACTERISTICS_OF_MERINO_WOOL_FIBER_BY_ATMOSPHERE_PRESSURE_AIR_PLASMA?channel=doi&linkId=56dfd40208ae979addef683a&showFulltext=true (accessed on 24 August 2022).
- Mahdi, Z.; Yu, Q.J.; El Hanandeh, A. Competitive adsorption of heavy metal ions (Pb2+, Cu2+, and Ni2+) onto date seed biochar: Batch and fixed bed experiments. Sep. Sci. Technol. 2018, 56, 888–901. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J. Removal of Pb2+, Ag+, Cs+ and Sr2+ from aqueous solution by brewery’s waste biomass. J. Hazard. Mater. 2008, 151, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.B.; MA, Y.B.; Chen, L.; Xian, K. Adsorption of aqueous Cd2+, Pb2+, Cu2+ ions by nano-hydroxyapatite: Single- and multi-metal competitive adsorption study. Geochem. J. 2010, 44, 233–239. [Google Scholar] [CrossRef]
- Slater, J.C. Atomic Radii in Crystals. J. Chem. Phys. 1964, 41, 3199–3204. [Google Scholar] [CrossRef]
- Kumar, K.V. Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. J. Hazard. Mater. 2006, 137, 1538–1544. [Google Scholar] [CrossRef]
- Cojocaru, C.; Diaconu, M.; Cretescu, I.; Savić, J.; Vasić, V. Biosorption of copper(II) ions from aqua solutions using dried yeast biomass. Colloids Surfaces A Physicochem. Eng. Asp. 2009, 335, 181–188. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Dhedan, S.K. Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Phase Equilib. 2012, 317, 9–14. [Google Scholar] [CrossRef]
- Kumar, K.V.; Sivanesan, S. Prediction of optimum sorption isotherm: Comparison of linear and non-linear method. J. Hazard. Mater. 2005, 126, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S. Selection of optimum sorption isotherm. Carbon 2004, 42, 2115–2116. [Google Scholar] [CrossRef]
- Al-Anber, M.A. Thermodynamics Approach in the Adsorption of Heavy Metals. In Thermodynamics-Interaction Studies-Solids, Liquids and Gases; Moreno-Pirajan, J.C., Ed.; IntechOpen: London, UK, 2011; pp. 1–30. [Google Scholar] [CrossRef]
- Danesh-Khorasgani, M.; Faghihian, H.; Givianrad, M.H.; Aberoomand-Azar, P.; Saber-Tehrani, M. A comprehensive study on removal of cadmium from aqueous solution by using mesoporous SBA-15 functionalized by 1,5-diphenyl carbazide: Experimental design, kinetic, thermodynamic, and isotherm aspects. Comptes Rendus Chim. 2021, 24, 43–59. [Google Scholar] [CrossRef]
- Kebir, M.; Bourzami, R.; Nasrallah, N.; Lebouachera, S.E.I.; Dergal, F.; Ladji, R.; Trari, M.; Harharah, H.B.; Jery, A.; Azzaz, A.A.; et al. Pharmaceutical pollutants adsorption onto activated carbon: Isotherm, kinetic investigations and DFT modeling approaches. Comptes Rendus Chim. 2022, 25, 9–25. [Google Scholar] [CrossRef]
- Havryliak, V.; Mykhaliuk, V.; Petrina, R.; Fedorova, O.; Lubenets, V.; Novikov, V. Adsorbents based on keratin for lead and cadmium removal. Curr. Appl. Sci. Technol. 2020, 20, 136–143. [Google Scholar] [CrossRef]
- Atef El-Sayed, A.; Salama, M.; Kantouch, A.A.M. Wool micro powder as a metal ion exchanger for the removal of copper and zinc. Desalin. Water Treat. 2015, 56, 1010–1019. [Google Scholar] [CrossRef]
- Nikiforova, T.; Kozlov, V.; Islyaikin, M. Sorption of d-metal cations by keratin from aqueous solutions. J. Environ. Chem. Eng. 2019, 7, 103417. [Google Scholar] [CrossRef]
- Kong, J.; Yue, Q.; Sun, S.; Gao, B.; Kan, Y.; Li, Q.; Wang, Y. Adsorption of Pb(II) from aqueous solution using keratin waste-hide waste: Equilibrium, kinetic and thermodynamic modeling studies. Chem. Eng. J. 2014, 241, 393–400. [Google Scholar] [CrossRef]
- Aluigi, A.; Tonetti, C.; Vineis, C.; Tonin, C.; Mazzuchetti, G. Adsorption of copper(II) ions by keratin/PA6 blend nanofibres. Eur. Polym. J. 2011, 47, 1756–1764. [Google Scholar] [CrossRef]
- Ki, C.S.; Gang, E.H.; Um, I.C.; Park, Y.H. Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. J. Membr. Sci. 2007, 302, 20–26. [Google Scholar] [CrossRef]
- Cojocaru, C.; Samoila, P.; Pascariu, P. Chitosan-based magnetic adsorbent for removal of water-soluble anionic dye: Artificial neural network modeling and molecular docking insights. Int. J. Biol. Macromol. 2019, 123, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, P. Removal of cadmium (Cd-II) from aqueous solution using gas industry-based adsorbent. SN Appl. Sci. 2019, 1, 365. [Google Scholar] [CrossRef]
- Bayuo, J.; Abukari, M.A.; Pelig-Ba, K.B. Desorption of chromium (VI) and lead (II) ions and regeneration of the exhausted adsorbent. Appl. Water Sci. 2020, 10, 171. [Google Scholar] [CrossRef]
- Liu, R.; Guan, Y.; Chen, L.; Lian, B. Adsorption and desorption characteristics of Cd2+ and Pb2+ by micro and nano-sized biogenic CaCO3. Front. Microbiol. 2018, 9, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cation | qe(obs) 1 | PFO Model | PSO Model | ||||
---|---|---|---|---|---|---|---|
k1 | qe(mg/g) | k2 | qe (mg/g) | ||||
Cu2+ | 8.30 | 0.091 | 7.971 | 0.308 | 0.015 | 8.604 | 0.053 |
Cd2+ | 7.29 | 0.128 | 7.280 | 0.069 | 0.023 | 7.804 | 0.311 |
Pb2+ | 8.73 | 0.673 | 8.495 | 0.032 | 0.174 | 8.688 | 0.029 |
Cation | qe(obs) 1 | PFO Model | PSO Model | ||||
---|---|---|---|---|---|---|---|
k1 | qe (mg/g) | k2 | qe(mg/g) | ||||
Cu2+ | 5.06 | 0.667 | 4.929 | 0.009 | 0.299 | 5.040 | 0.013 |
Cd2+ | 5.65 | 0.396 | 5.446 | 0.011 | 0.128 | 5.638 | 0.023 |
Pb2+ | 3.84 | 1.372 | 3.721 | 0.008 | 1.403 | 3.759 | 0.004 |
Cation | T (K) | Freundlich Isotherm | Langmuir Isotherm | |||||
---|---|---|---|---|---|---|---|---|
KF (mg/g)(L/g)1/n | nF | qm (mg/g) | KL (L/mg) | RL | ||||
Cu2+ | 300 | 7.469 | 16.610 | 0.135 | 9.414 | 2.295 | 0.017 | 0.017 |
323 | 6.733 | 9.354 | 0.639 | 10.062 | 1.218 | 0.018 | 0.167 | |
Cd2+ | 300 | 4.592 | 4.391 | 0.839 | 10.423 | 0.457 | 0.024 | 0.239 |
323 | 5.562 | 4.636 | 1.058 | 11.798 | 0.663 | 0.023 | 0.240 | |
Pb2+ | 300 | 15.709 | 4.493 | 62.393 | 30.709 | 1.686 | 0.022 | 51.293 |
323 | 19.859 | 4.541 | 79.586 | 37.849 | 2.815 | 0.021 | 66.340 |
Adsorbent Material | Heavy Metal Ion | Adsorption Capacity (mg/g) | Adsorption Efficiency (%) | Ref. |
---|---|---|---|---|
Wool fibers (Erdenet city, Mongolia) | Cu2+ | 7.15 | - | [18] |
Cd2+ | 6.26 | - | ||
Pb2+ | 4.30 | - | ||
Wool fibers (“Askania-Nova”, Ukraine) | Cd2+ | - | 15.5 | [53] |
Pb2+ | - | 28.0 | ||
Wool powder | Cu2+ | 122.10 | - | [54] |
Keratin | Cu2+ | 0.55 | - | [55] |
Cd2+ | 0.73 | - | ||
Keratin | Pb2+ | 9.29 | - | [56] |
Keratin/Polyamide 6 (50/50) | Cu2+ | 6.19 | - | [57] |
Wool keratin/silk fibroin | Cu2+ | 2.90 | - | [58] |
Wool fibers treated with Na2S | Cu2+ | 26.04 | - | [18] |
Cd2+ | 37.35 | - | ||
Pb2+ | 43.72 | - | ||
Pristine wool fibers | Cu2+ | 2.49 | - | This work |
Cd2+ | 3.87 | - | ||
Pb2+ | 8.66 | - | ||
Oxidized wool fibers | Cu2+ | 9.41 | 96.80 | This work |
Cd2+ | 10.42 | 97.13 | ||
Pb2+ | 30.71 | 99.70 |
Cation | ∆G (kJ/mol) | ∆H (kJ/mol) | ∆S (J/mol·K) |
---|---|---|---|
Cu2+ | −29.94 | −22.20 | 24.85 |
Cd2+ | −28.59 | 12.97 | 133.44 |
Pb2+ | −33.74 | 17.95 | 165.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Condurache, B.-C.; Cojocaru, C.; Samoila, P.; Cosmulescu, S.F.; Predeanu, G.; Enache, A.-C.; Harabagiu, V. Oxidized Biomass and Its Usage as Adsorbent for Removal of Heavy Metal Ions from Aqueous Solutions. Molecules 2022, 27, 6119. https://doi.org/10.3390/molecules27186119
Condurache B-C, Cojocaru C, Samoila P, Cosmulescu SF, Predeanu G, Enache A-C, Harabagiu V. Oxidized Biomass and Its Usage as Adsorbent for Removal of Heavy Metal Ions from Aqueous Solutions. Molecules. 2022; 27(18):6119. https://doi.org/10.3390/molecules27186119
Chicago/Turabian StyleCondurache, Bogdan-Constantin, Corneliu Cojocaru, Petrisor Samoila, Susana Felicia Cosmulescu, Georgeta Predeanu, Andra-Cristina Enache, and Valeria Harabagiu. 2022. "Oxidized Biomass and Its Usage as Adsorbent for Removal of Heavy Metal Ions from Aqueous Solutions" Molecules 27, no. 18: 6119. https://doi.org/10.3390/molecules27186119
APA StyleCondurache, B. -C., Cojocaru, C., Samoila, P., Cosmulescu, S. F., Predeanu, G., Enache, A. -C., & Harabagiu, V. (2022). Oxidized Biomass and Its Usage as Adsorbent for Removal of Heavy Metal Ions from Aqueous Solutions. Molecules, 27(18), 6119. https://doi.org/10.3390/molecules27186119